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Poissonian twin-beam states and the effect of symmetrical photon subtraction in loss estimations
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We have devised an experimentally realizable model generating twin-beam states whose individual beam
photon statistics are varied from thermal to Poissonian (by temporal mode averaging) keeping the nonclassical
mode correlation intact. We have studied the usefulness of these states for loss measurement by considering
three different estimators, comparing with the correlated thermal twin-beam states generated from spontaneous
parametric down conversion or four-wave mixing. We then incorporated the photon subtraction operation into
the model and demonstrated their performance in loss estimations with respect to unsubtracted states at both
fixed squeezing and per photon exposure of the absorbing sample. For instance, at fixed squeezing, for two
photon subtraction, up to three times advantage is found. An unexpected result in the latter case is that in some
operating regimes the photon subtraction scheme can also give up to 20% advantage over the correlated thermal
beam result and no advantages are obtained when the statistics of each beam turns to Poissonian. We have also
made a comparative study of these estimators for finding the best measurement for loss estimations. We present
results for all the values of the model parameters changing the statistics of twin-beam states from thermal to
Poissonian.
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I. INTRODUCTION

Absorption based measurement underpins many ap-
proaches to spectroscopy and imaging. It finds application in
all branches of science from chemistry and biology to physics
and material science. However, the best sensitivity in loss
estimation reached so far using classical light probes is limited
by photon shot noise. In past years, nonclassical resources
such as non-Gaussian states (by de-Gaussification of Gaussian
states) have shown how to reach the sub-shot-noise (SSN)
limit in loss estimations in terms of Fisher information [1].
De-Gaussified single mode squeezed vacuum has been re-
ported for theoretical quantum enhancement in loss estimation
[2]. Two basic operations that can lead to non-Gaussian states
are photon addition to, or photon subtraction from, Gaus-
sian light states [3,4]. Another important feature of bipartite
quantum states to reach the sub-shot-noise limit (SSNL) are
nonclassical correlations [5].

It is known that the twin-beam state (TBS) generated by
the spontaneous parametric down conversion (SPDC) or four
wave mixing (FWM) process has thermal photon statistics in
the individual modes, but its perfect photon number nonclas-
sical mode correlation allows surpassing the shot-noise limit
(SNL) reaching SSN sensitivity in the realistic scenario of
loss estimations [6–12]. More recently, unbiased estimations
of optical losses [13] (losses are estimated in an absolute
way without precalibration of the apparatus) at the ultimate
quantum limit have been reported exploiting the quantum
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correlations in TBS. In the laboratory context, these correlated
beams usually appear Poissonian due to temporal (or spatial)
averaging of thermal statistics [14]. Bandwidth and gating
time were varied using the pulse pump to show transition
from thermal (Gaussian) to Poissonian. In our model we have
explored such types of averaging of thermal statistics in de-
tails which will be useful for simulating results for realistic
quantum metrological applications.

De-Gaussification by symmetrical photon subtraction on
both of the modes of TBS has not only been shown to im-
prove the individual mode photon statistics from thermal to
sub-Poissonian [15], but it also increases the entanglement
between them [16–18]. In the past years, the resulting TBS
states after photon subtraction have been theoretically investi-
gated reporting their advantage over TBS for target detection
in the presence of noise, the so-called “quantum illumination”
[19]. Their advantage over TBS has also been demonstrated
in single interferometry with parity measurements [20] and
more recently for probing the Planck scale physics [21] and
distillation of squeezing [22]. Looking at all these advan-
tages of symmetrical photon subtracted TBS (SPSTBS) over
TBS because of their improved photon statistics and non-
classical correlation, we proliferated our interest for using
multithermal averaged SPTBS for loss estimations. However,
a question on fundamental grounds naturally arises: does pho-
ton subtraction have any advantage in noise suppression if
the individual mode photon statistics of TBS becomes Pois-
sonian (due to averaging of thermal statistics). Keeping this
motivation in mind, we have devised a theoretical but experi-
mental realizable model (accounting detection losses), where
changing the value of a parameter of the models changes
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FIG. 1. Equivalent ways of getting a photon subtracted state: (a) the left-hand side image represents the conventional approach in which
two high transmittance beam splitters are placed in each path of TBS and a simultaneous photon clicks on the single photon detectors, which
confirms the implementation of symmetrical photon subtraction; this subtraction operation can be implemented equivalently by seeding a
superposition state to the nonlinear crystal (NL) together with the pump beam as shown in the right image (b).

the TBS individual beam photon statistics from thermal to
Poissonian.

For a null value of the model parameter, i.e., when the
statistics of individual thermal averaged beams are Poisso-
nian (without thermal averaging the value of the parameter
is 1), the resulting state becomes correlated Poissonian TBS
(CPTBS), keeping the initial TBS nonclassical mode corre-
lation intact. We then incorporated the symmetrical photon
subtraction into the model of absorption measurement. For
ease of calculation, we replace the conventional approach of
obtaining the photon subtraction (placing high transmittance
beam splitters on the individual beam paths) by an alternate
way of seeding the photon number superposition state to the
squeezer as shown in Fig. 1(b), similar to one reported without
thermal averaging in [21].

One of the important goals of this article is to answer the
following question. To what extent does photon subtraction
bring an advantage for absorption measurement compared to
TBS at both fixed squeezing and per photon exposure to the
absorbing sample and, furthermore, does photon subtraction
provide any advantage particularly when the individual TBS
mode statistics turns to Poissonian. The physical significance
of considering the fixed squeezing comes due to the fact that
optical nonlinearity which relates to squeezing in the SPDC
process is usually tiny, resulting in the generation of low mean
number of photons. Since photon subtraction increases mean
photons of the resulting state, at fixed squeezing, it provides an
advantage with respect to its unsubtracted counterpart. There-
fore, most of the quantum optics and information protocols
demonstrate the advantage of photon subtraction at a fixed
squeezing parameter [1,23–25]. The relevance of the second
approach, which has been considered up to now only for phase
measurement [20,21], is to check if photon subtraction could
bring any improvement in photon statistics in addition to an
increase in the mean number of photons.

This paper is organized in the following way. In Sec. II, we
shall briefly describe the absorption measurement and various
types of estimators for loss estimation. The importance of
photon statistics and nonclassical correlation in measuring
these estimators will also be addressed. Section III contains
details about modal averaging and a way to incorporate the

photon subtraction operation. We shall also present results
for different types of absorption estimators up to two photon
subtraction and discuss the usefulness of our model. All the
values of the model parameter that change the statistics of
TBS from thermal to Poissonian and in between have also
been considered in the result. We conclude the paper with a
summary in Sec. IV.

II. ABSORPTION MEASUREMENT

Absorption is measured by probing the sample with known
light intensity and then measuring the light intensity at the
detection stage as shown in Fig. 2, where γ is the absorption
coefficient, η is the detection efficiency, and 〈N1〉 and 〈N ′

1〉 are
the mean number of detected photons before and after placing
the sample, respectively. A detector is said to be highly lossy
if it has very low detection efficiency or vice versa. The losses
due to the presence of the sample and the detection losses
are modeled by using a single beam splitter with effective
transmittance ητ so that 〈N ′

1〉 = τ 〈N1〉, where τ = 1 − γ . For
applications where low light illumination is required, the un-
certainty in measuring γ is dominated by photon shot noise
(SN). The uncertainty in absorption measurement due to pho-
ton shot noise can be improved by considering two balanced
beams(〈N1〉 = 〈N2〉), which are correlated in the photon num-
ber basis as in TBS states generated by the SPDC process.
The first beam passes though the sample, whereas the second
beam acts as a reference, thus partially canceling the SN going
below the shot-noise limit in realistic scenarios. We shall
consider three different absorption estimators, namely number
difference and optimized balanced [13] including one based
on ratio measurement [26], the TBS state as input source, and
balanced detection (quantum efficiency η remains the same
for both beams) throughout this paper. The estimators con-
sidered in this work are not all unbiased. However, we have
calculated the uncertainty in measuring the absorption coef-
ficient by propagating uncertainties of associated variables
in the estimators. As long as these variables have the same
functional form, the associated uncertainties in measuring ab-
sorption coefficients remain the same irrespective of whether
the estimators are biased or not.
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FIG. 2. Absorption measurement: (a) direct one path imaging of
a sample object of absorption coefficient γ and η is the detection
efficiency, (b) beam splitter equivalence of reflection and detection
losses in direct one path imaging, and (c) photon number difference
measurement in the presence of quantum correlation generated by
pumping the nonlinear crystal in the SPDC process.

The results reported in the article [13] using TBS refer
only to a particular experimental situation where a very large
number of collected thermal modes each with very low mean
photons are averaged and does not show any way of changing
their statistics from thermal to Poissonian or vice versa. The
principal points of this work are to show the dependence of
uncertainties in measuring different absorption estimators on
parameters that characterize photon statistics and correlation
of the input probe states such as Fano factor (F ), and noise
reduction factor denoted by the symbol σ , and finding the
best absorption measurement for loss estimations in a more
general perspective, including photon subtraction. Fano fac-
tor is defined as the variance of photon number of a state
normalized to its mean value. In terms of statistics, it repre-
sents how a state is different from a coherent state. F > 1,
F = 1, and F < 1 refers to super-Poissonian, Poissonian, and
sub-Poissonian statistics of the light state, respectively. Other
related parameters such as second-order autocorrelation func-
tion g(2)(0) = F−1

〈N1〉 + 1 and Mandel’s parameter Q = F − 1
can also be useful in place of F . Analogously, for any bipartite
state, σ is defined as variance of the photon number differ-
ence normalized to their mean. One can easily check σ < 1
refers to nonclassical photon number correlation. It is worth
checking the change in these two parameters when individual
TBS mode statistics change from thermal (super-Poissonian)
to Poissonian. We have devised a phenomenological model
in this context and we shall detail it in the next sections.
Furthermore, it is interesting for both fundamental perspec-
tives and applications to see the effect of symmetrica photon
subtraction on TBS when its individual beam photon statistics
is varied from thermal to Poissonian and to investigate up to

what extent the photon subtraction operation is advantageous
in this scheme.

A. Number difference measurement

In this measurement, the observable under consideration
ô(γ ) = N2 − N ′

1 is the photon number difference of two
beams after placing the object as shown in Fig. 2(c). N ′

1 and
N2 are the variables which carry photon number fluctuations.
Since 〈ô〉 = γ 〈N1〉 �= γ , the observable is not an unbiased
estimator. As per theory of error propagation, the uncertainty
in measuring γ [13,27] is

�γdiff =
√

�2ô∣∣ ∂〈ô〉
∂γ

∣∣ =
√

γ 2[F − 1] + γ + 2σ (1 − γ )

〈N1〉 , (1)

where 〈N1〉 = Mη sinh2 r = ηλ is the total detected mean
number of photons of the probe TBS state, r being the squeez-
ing parameter which carries necessary information about the
pump intensity and phase-matching function of the SPDC
process. M is the total number of modes and it is related to
the model parameter as we shall see in the next section. It
is easy to check for classical states, i.e, F = 1 and σ = 1, a
limit �γdiff = √

(2 − γ )/〈N1〉 known as the shot-noise limit
(SNL) in differential absorption measurement. It is paramount
to note that, for no absorption (γ = 0), this limit is twice the
standard shot-noise limit in direct one path imaging 1/

√〈N1〉.
Each beam carries one unit of shot noise although, for γ = 1,
standard SNL is reached. It can be checked that, for low
values of absorption, i.e., γ � 1, F = 1 and σ < 1/2 allows
beating SNL, whereas for relatively high γ , the probe state
with σ < 1/2 and F < 1 is required for reaching the SSN
limit.

B. Optimized balanced absorption estimator

In the past couple of years, a different absorption estimator
of the following form [10] has been considered:

γ̂opt = 1 − N ′
1 − k�N2 + δE

〈N1〉 , (2)

where k is a factor to be experimentally determined in order
to minimize the uncertainty and δE is a correction factor for
making the estimator unbiased so that 〈γ̂opt〉 = γ . Exploiting
theory of error propagation, uncertainty of this estimator takes
the following form [13]:

�γopt =
√

γ (1 − γ )

〈N1〉 + (1 − γ )2σ

〈N1〉
(

2 − σ

F

)
. (3)

A clear advantage of this estimator is seen as it is
√

2 times
advantageous compared to the number difference at low ab-
sorption (γ → 0) for σ = 1 and F = 1. Another interesting
point about this estimator is the requirement of lower quantum
correlation, i.e., σ < 1 (σ < 1/2 for the number difference
case) and F < 1 for reaching the SSN limit in the absorption
measurement. It can be easily checked for both σ = 0, F = 1
(perfect photon number correlation and Poissonian individ-
ual statistics) and σ = 1, F = 1/2 (classical photon number
correlation and sub-Poissonian individual statistics), the un-
certainty in Eq. (3) simplifies to an ultimate quantum limit
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FIG. 3. Scheme for generating correlated TBS states: coherent
beam pumps a nonlinear crystal (NL) for generating correlated twin
photon states at the exit face of the crystal.

(UQL) [13],

�γopt =
√

γ (1 − γ )

〈N1〉 . (4)

The single mode squeezed vacuum state also reaches this limit
for a low mean number of photon 〈N1〉 → 0 [28].

C. Ratio measurement

We have considered an estimator based on ratio measure-
ment proposed in the article in [26]. In this measurement the
observable we consider is ô(γ ) = N ′

1/N2 or ô(γ ) = N2/N ′
1. As

〈ô〉 �= γ , the estimator is not unbiased. Propagating the uncer-
tainties in N ′

1 and N2, we obtain the expression of uncertainty
in ratio measurement as

�γratio =
√

γ (1 − γ )

〈N1〉 + (1 − γ )22σ

〈N1〉 . (5)

Unlike the other two estimators, it shows dependence of the
measured absorption uncertainty only on correlation of the
probe state σ . It can be checked for σ = 1/2 and σ = 0 (per-
fect quantum correlation) that the corresponding uncertainty
becomes SNL (direct one path imaging) and UQL [Eq. (4)],
respectively. Thus, similar to the number difference measure-
ment, the ratio estimator beats direct one path imaging when
less than 50% of the photon number correlation is lost.

III. MODEL FOR CORRELATED TWB STATE AND
SYMMETRICAL PHOTON SUBTRACTION

Let us consider a single correlated photon pair each with
mean number of photons λ′ generated in the coherence time
of the SPDC process as shown in Fig. 3. The mode operators
before and after the nonlinear crystal can be easily written as

ĉ1(λ′) = â1

√
1 + λ′ + â†

2

√
λ′, (6)

ĉ2(λ′) = â2

√
1 + λ + â†

1

√
λ′. (7)

When M numbers of single modes are collected from corre-
lated photon pairs by detectors in a given acquisition time of
an experiment, the total average number of collected photons
becomes λ = Mλ′. Letting β = 1/M, the input output mode
operators can be rewritten in terms of λ as

ĉ1(λ) ≈ â1

√
1 + βλ + â†

2

√
βλ, (8)

ĉ2(λ) ≈ â2

√
1 + βλ + â†

1

√
βλ. (9)

Both Eqs. (6), (7) and Eqs. (8), (9) are the same and the
evolved individual modes follow commutation relation, i.e.,
[ĉ1, ĉ1

†
] = Î and [ĉ2, ĉ2

†
] = Î , but the latter provides infor-

mation about how many individual modes are considered for
statistical averaging in order to get the total mean number
of photons λ. For the single mode and no averaging case
λ′ = βλ, these sets of equations look like the usual Bougoli-
bov transformation when a vacuum state turns to a two mode
squeezed state by an action of a two mode squeezed operator
Ŝ1,2(βλ = λ′), whose photon statistics follow:

〈N1〉′ = 〈N2〉′ = βηλ,

〈�2N1〉′ = 〈�2N2〉′ = βηλ + β2η2λ2,
(10)

〈�(N1, N2)〉′ = η2(βλ + β2λ2),

σ ′ = 〈�2(N1 − N2)〉
〈N1〉 + 〈N2〉 = 1 − η,

where 〈N〉′ is the detected mean numbers of photons per
mode, the subscripts (1) and (2) correspond to probe (sig-
nal) and reference (idler), respectively, and 〈�2N〉′ = 〈N2〉′ −
〈N〉′2 and 〈�(N1, N2)〉′ = 〈N1N2〉′ − 〈N1〉′〈N2〉′ are the respec-
tive variance and covariance. In the experimental situation,
the significance of β can be seen as follows: for a single
temporal mode in the time window of picoseconds, which is
the coherence time τcoh of the SPDC, β = 1, whereas for more
time exposure, many temporal modes are collected and in that
case β ≈ 0. The last case is realized for a high temporal band
width pump beam so that many more modes M = τp/τcoh

are generated. This situation is usually considered experi-
mentally for alleviating the excess noise from the individual
TBS, demonstrating its usefulness for the SSN absorption
measurement [29]. In the past years, a similar situation of the
CW pump has been considered, demonstrating experimentally
the SSN advantage in reconstructing the absorption profile
of an object [10], and more recently in the construction of
the SSN raster scanning microscope [11]. Another important
point is the effect of pump photon statistics on the generated
twin photon statistics via SPDC. Intuitively, 0 � β � 1 ac-
counts for all of the last considered experimental situations.
Therefore, it is intriguing to consider the parameter β in this
model. Detected multimode photon statistics and correlation
can be obtained by adding contribution from M numbers of
individual modes or equivalently deviding Eq. (10) by the
parameter β as follows:

〈N1〉 = 〈N2〉 = ηλ,

〈�2N1〉 = 〈�2N2〉 = ηλ + βη2λ2,

〈�(N1, N2)〉 = η2
(
λ + βλ2

)
,

σ = 〈�2(N1 − N2)〉
〈N1〉 + 〈N2〉 = 1 − η = σ ′. (11)

An important remark here is that, for balanced detection effi-
ciency, i.e., η1 = η2 = η, averaged σ is independent of β and
is equal to the noise reduction factor of a single correlated
mode σ ′ as it is only limited by η. It implies the photon
number correlation remain intact regardless of the values of β.
Looking at the expression of variance, when β = 0, 〈�N2

j 〉 =
〈Nj〉 ( j = 1, 2), i.e., the individual beam noise has Poissonian
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statistics, whereas, for β = 1, it is easy to see the noise of the
individual beam has dominant thermal noise contribution [30],
and in this case both Eq. (11) and Eq. (10) give the same result.
In a realistic experimental situation, individual modes of the
beam remain thermal; it is the averaging over many collected
thermal modes that leads to the measurement of Poissonian
statistics. Thus the model shows a way to switch from thermal
to Poissonian statistics by varying the model parameter β from
one to zero.

A. Symmetrical photon subtraction

In this section, we shall see how to incorporate symmetrical
photon subtraction taking into account the modal averaging
parameter β (β = 1 case has been theoretically studied up to
now [21]).

Theoretically photon subtraction is a nonunitary operation,
so a normalization factor is required for getting a symmetri-
cal photon subtracted squeezed vacuum state (thermal single
mode case)

|�〉m = N−
m (βλ)(â1)m(â2)m ˆS1,2(βλ)|0, 0〉1,2, (12)

where N−
m is the normalization constant of the form

N−
m (βλ) = m!(−i

√
βλ)mPm(i

√
βλ), (13)

with Pm being the mth order Legendre’s polynomial and m
being the number of subtracted photons. In an experimental
scenario, two high transmittance beam splitters are placed in
the paths of the two beams of the TWB. Two simultaneous
clicks at the single photon detectors (SPDS) confirms the
probabilistic generation of subtracted states as shown in the
left image of Fig. 1. Alternatively by injecting the m + 1
component superposition state to the NL (squeezer) in place of
vacuum equivalently executes deterministically the m photon
subtraction operation as shown in Fig. 1(b). Thus the symmet-
rical photon subtracted state can be equivalently written as

|�〉m = Ŝ1,2(βλ)|�s(βλ)〉m,

|�s(βλ)〉m =
m∑

k=0

Cm
k (λ, β )|k, k〉1,2, (14)

and

Cm
k (λ, β ) =

√
(1 + βλ)m

Pm(2βλ + 1)

×
(

m

k

)(√
βλ

βλ + 1

)k

, (15)

with
∑

k |Cm
k (λ, β )|2 = 1. Such superposition states

|�s(βλ)〉m can be experimentally generated [31]. Thus single
mode photon subtraction is incorporated by these m + 1
component superposition states and the set of transformation
equations defined in Eq. (8) and Eq. (9). The second method
up to now has been realized only for single mode β = 1.
Although both methods give the same result, we have
considered the second in our model involving more than one
mode (general beta) for making calculations easy.

FIG. 4. Plots of Fano factor as a function of λ with η = 0.98
(γ = 0) for different values of m: m = 0 (solid red line), m = 1
(solid blue line), and m = 2 (solid green line). We set β = 1 (top),
β = 0.001 (middle), and β → 0 (bottom).

For single mode photon subtracted states, statistics of the
transformed operator are obtained by using this input su-
perposition state in place of vacuum. We calculated photon
statistics and correlation of the multimode averaged photon
subtracted states following the same approach of the squeezed
vacuum state discussed earlier in this section. This approach
enables calculating photon statistics and correlation of photon
subtracted states for a situation involving any value of β. The
photon statistics expressions are too cumbersome to present
here and we will analyze them graphically. For an experimen-
tal point of view, the total collected mean number of photons
and modal averaging parameters in connection with the num-
ber of modes are important parameters and will be sufficiently
discussed throughout the paper. Fano factors of the multimode
averaged photon subtracted states are plotted in Fig. 4. It is
evident that, for β = 1 (two individual beams are thermal
for m = 0), photon subtraction changes the statistics from
thermal to sub-Poissonian for low values of the mean number
of photons. On the other hand, for β = 0, when large numbers
of modes are averaged (two individual beams are Poissonian
as expected), photon subtraction does not provide any further
improvement in the statistics. However, for intermediate val-
ues of β = 0.001, i.e., when thousands of modes are averaged,
interestingly, the individual beams preserve sub-Poissonian
statistics up to a certain range of the total average number of
collected photons due to photon subtraction. Moreover, in this
case, the states have a higher threshold in terms of λ before
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FIG. 5. 3D plots of detected mean number of photons with η =
0.98 gated by m detections: m = 0 (bottom red sheet), m = 1 (middle
blue sheet), and m = 2 (top green sheet).

they become thermal compared to the case of β = 1. Our
calculation shows that the noise reduction factor σ remains the
same regardless of the number of photon subtraction m. This
is quite expected as, for the balanced case, σ is independent
of the statistics of the state and only depends on the detection
efficiency.

B. Results

Before interpreting the results, we would like to show the
dependence of the mean number of photons per mode with
the model parameter β as m changes from 0 to 2. Figure 5
shows the nonlinear rise of the mean number of photons with
increasing m. Increase in the mean number of photons is eluci-
dated due to photon subtraction in the TBS and the increment
is maximum for β → 0 with respect to β = 1; as in the former
case a very large number of modes are involved. Substituting
the expression of F and σ in the uncertainty equations for
different values of m (m = 0–2), we worked out the uncertain-
ties for the above described three absorption estimators. The
expressions are too cumbersome to present here, so we shall
only depict the results graphically with relevant parameters of
interest in the limiting cases.

1. Fixed squeezing parameter

The analysis of comparing uncertainties for different m
at fixed squeezing has been carried out at the mean energy
(photon number exposure) of the unsubtracted (m = 0) state.
In this way for a given number of collected modes M, r is fixed
as mean energy λ (for m = 0)=M sinh2 r. Uncertainties for
number difference measurement is shown in Fig. 6. It shows
SSN for different values of m (0–2) in this measurement.
Albeit, photon subtraction show the advantage for all values
of γ , particularly for low γ and low λ, and m = 2 shows
maximum advantage of almost three times over m = 0 for
β = 1. The magnitude of uncertainty greatly varies with β.
For instance, uncertainty improves by a factor of around 100
when 1000 modes are averaged each with λ′ = 1. In this case
of β = 0.001, as λ increases, the thermal noise contribution
in terms of F in the uncertainty increases as per Eq. (1), as
a result of which the SSN advantage for different m values

FIG. 6. Plots of uncertainty in the number difference measure-
ment versus absorption coefficient γ with η = 0.98 for different
values of m: m = 0 (solid red line), m = 1 (solid blue line), and
m = 2 (solid green line). We set λ = 0.05, β = 1 (top), λ = 1000,
β = 0.001 (middle), and λ = 1000, β → 0 (bottom). Dotted lines
are the uncertainties evaluated using classical resources with average
energies of the m photon subtracted state.

is lost differently for relative high values of γ , as shown
in Fig. 6 (middle). Magnitude of uncertainty remains the
same for β → 0, i.e., when a very large number of collected
modes are averaged to give the same λ as the previously
considered β = 0.001 case. The improvement in uncertainty
due to photon subtraction comes only due to an increase in
the mean number of photons as the statistics for different
m approximates to Poissonian as per Fig. 4 (bottom). In the
limit of γ → 0 (low absorption) and β → 0 (an experimental
situation when a large number of modes are usually collected),
the uncertainties in the number difference measurement for
different m values scale as

�γ m=0
diff ≈

√
2(1 − η)√

ηλ
,

�γ m=1
diff ≈

√
(1 − η)√

2ηλ
,

�γ m=2
diff ≈

√
2(1 − η)

3
√

ηλ
. (16)
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FIG. 7. Plots of uncertainty in the optimized balanced estimator
versus absorption coefficient γ with η = 0.98 for different values of
m: m = 0 (solid red line), m = 1 (solid blue line), and m = 2 (solid
green line). We set λ = 0.05, β = 1 (top), λ = 1000, β = 0.001
(middle), and λ = 1000, β → 0 (bottom). Dotted lines are the un-
certainties evaluated using classical resources with average energies
of the m photon subtracted state.

On the other limiting case of complete absorption (γ → 1)
and β → 0, the uncertainty scales as

�γ m=0
diff ≈ 1√

ηλ
,

�γ m=1
diff ≈ 1

2
√

ηλ
,

�γ m=2
diff ≈ 1

3
√

ηλ
. (17)

This set of equations confirms the standard SNL for the limit
γ → 1 as per the discussion in Sec. II A. The improvement in
the standard SNL for the limit γ → 0 comes from a detection
efficiency dependent factor 1 − η in the numerator. The factor
of improvements in the same limit due to different number of
photon subtraction are also clear.

Normalized uncertainty for the optimized balanced absorp-
tion estimator is plotted in Fig. 7. For β = 1 (thermal case),
photon subtraction shows the SSN advantage for all values
of γ , particularly for low γ and low λ, and the two photon
subtracted state shows maximum advantage of almost three
times over TBS without photon subtraction. The magnitude of
uncertainty also greatly varies with β. Uncertainty improves
by a factor of more than 100 when 1000 modes are averaged

each with λ′ = 1. Unlike the number difference estimator,
regardless of the values of λ, the uncertainty in the mea-
surement for the optimized balanced absorption estimator is
SSN enhanced for γ < 1. This can be explained from the
fact that the contribution of the thermal noise at high λ in the
uncertainty of the measurement defined in Eq. (3) of Sec. II B
is less significant. Magnitude of uncertainty remains the same
for β → 0, i.e., when a large number of collected modes
are averaged to give the same λ as the β = 0.001 case. The
improvement in uncertainty due to photon subtraction also
comes only due to an increase in the mean number of photon
as the statistics for different m approximates to Poissonian as
per Fig. 4 (bottom). In the limiting case, the uncertainty of
the optimized balanced estimator for a different number of
subtracted number m can be expressed as follows: for γ → 0
(low absorption) and β → 0, the uncertainties in the new
absorption estimator for different m values scale as

�γ m=0
opt ≈

√
1 − η2

√
ηλ

,

�γ m=1
opt ≈

√
1 − η2

2
√

ηλ
,

�γ m=2
opt ≈

√
1 − η2

3
√

ηλ
. (18)

On the other limiting case of complete absorption (γ → 1)
and for β → 0, the uncertainty scales as

�γ m=0
opt ≈

√
1 − γ√
ηλ

,

�γ m=1
opt ≈

√
1 − γ

2
√

ηλ
,

�γ m=2
opt ≈

√
1 − γ

3
√

ηλ
. (19)

Uncertainty given by this set of equations for γ → 1 scales
much better than the standard SNL and it improves further
with the number of subtracted photon m. On the other side
of the limit γ → 0, apart from a factor

√
2, the improvement

in the SNL compared to the number difference measurement
comes from a factor 1 − η2 instead of 1 − η. Also, in this case,
there are factors of improvement due to photon subtraction,
i.e., m + 1 times improvement in m photon subtraction.

A plot of uncertainty in the ratio measurement is shown
in Fig. 8. It shows the SSN limit for any values of mean
number of photons λ as the uncertainty is unaffected by the
thermal noise contribution and only relies on the photon num-
ber nonclassical correlation as evident from Eq. (5). Photon
subtraction further improves the measurement uncertainty due
to increase in the mean photons for thermal case β = 1. We
witnessed a factor of improvement in the magnitude of un-
certainty similar to the other two estimators for β = 0.001.
Again, for fixed λ = 1000, we found the uncertainty for sub-
tracted states (m = 0–2) does not change at all as β changes
from 0.001 to 0 due to no dependence on photon statistics.
Another notable thing is the uncertainty reduction reaching
the SSN limit is maximum for low values of γ , which is simi-
lar to the case for all our considered absorption estimators. We
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FIG. 8. Plots of uncertainty in the ratio measurement versus ab-
sorption coefficient γ with η = 0.98 for different values of m: m = 0
(solid red line), m = 1 (solid blue line), and m = 2 (solid green
line). We set λ = 0.05, β = 1 (top), λ = 1000, β = 0.001 (middle),
and λ = 1000, β → 0 (bottom). Dotted lines are the uncertainties
evaluated using classical resources with average energies of the m
photon subtracted state.

checked that the uncertainty of the ratio measurement in the
limiting case for different numbers of subtracted photons m
resembles the uncertainty of the optimized balanced estimator
for γ → 1 except for γ → 0, where the uncertainty matches
the uncertainty of the number difference measurement.

We have plotted the uncertainties for different estimators
(in a realistic situation where at least 1000 collected modes
each with one mean number of photons λ′ = 1 are averaged)
showing a comparison among them in Fig. 9. The optimized
estimator outperforms the number difference for the full range
of absorption. Regardless of the values of γ , the optimized
estimator and ratio performs equally well for low detection
losses (high detection efficiency η). Nevertheless, in the limit
of low γ and at low detection efficiency η = 0.7, the opti-
mized estimator performs better than the ratio measurement
because of the detection efficiency dependent factor

√
1 − η2

instead of
√

1 − η as per Eq. (18). Photon subtraction shows
improvement of nearly more than three times compared to
the case of previously considered η = 0.98 (2% of detection
loss) in all these three estimators. Furthermore, the overall
magnitude of the uncertainty reduction for these three esti-
mators decreases at this high detection efficiency as they vary

FIG. 9. Comparison of uncertainties among absorption estima-
tors: number difference (dotted), ratio (dashed), and optimized
balanced (solid) versus γ for η = 0.7, β = 0.001, and λ =
1000. Different colors correspond to different numbers of photon
subtraction.

inversely with η, as evident from the uncertainty equations at
their asymptotic limits.

2. Fixed per photon exposure

In the meteorological perspective if energy increment is the
only consequence of photon subtraction, then it can be easily

FIG. 10. Plots of Fano factor as a function of λ with η = 0.98
(and γ = 0) for different values of m: m = 0 (solid red line), m = 1
(solid blue line), and m = 2 (solid green line). We set β = 1 (top),
β = 0.001 (middle), and β → 0 (bottom).
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FIG. 11. Plots of uncertainty in the number difference estimator
versus efficiency at fixed per photon exposure with γ = 0.5 for dif-
ferent values of m: m = 0 (solid red line), m = 1 (solid blue line), and
m = 2 (solid green line). We set β = 1, λ = 2 (top), β = 0.001, λ =
1000 (middle), and β → 0, λ = 10 000 (bottom). Dotted lines are
the SNL.

accomplished by increasing pump power in the SPDC pro-
cess. Photon subtraction not only increases the mean energy,
but it also improves individual photon statistics. This is why
we use the second method to compare equal incident photon
flux before and after subtraction. It is paramount to investigate
whether or not harnessing photon subtraction could bring any
improvement in photon statistics and correlation over classical
resources for a situation of general β which can be useful for
meteorological applications. In the following, we explore this
possibility in detail. Fixed per photon exposure analysis has
been carried out by balancing numerically the mean energies
of subtracted states so that mean energies for different m
are equal to the energy of the (m = 0) unsubtracted state.
Since there is a β dependence on mean energy, we further
consider the energy balancing at a fixed model parameter. For
completeness and generalization of our model, we include
very high values of λ = 10 000 for β ≈ 0, i.e., when very
large number of modes are averaged. Before presenting the
uncertainty result, we show the behavior of Fano factor (F ) in
this energy balancing scenario.

For the β = 1 (thermal) case, m = 2 remaining sub-
Poissonian until λ = 1, while for m = 1 and m = 0 Fano
factor remains super-Poissonian (Fig. 10). Photon subtraction
does not provide any advantage for the β = 0 (Poissonian)
case. On the other hand, for β = 0.001, the sub-Poissonian

FIG. 12. Plots of uncertainty in the optimized balanced estimator
versus detection efficiency in fixed per photon exposure with γ =
0.01 for different values of m: m = 0 (solid red line), m = 1 (solid
blue line), and m = 2 (solid green line). We set β = 1, λ = 2 (top),
β = 0.001, λ = 1000 (middle), and β → 0, λ = 10 000 (bottom).
Dotted lines are the SNL.

feature for m = 2 preserves up to certain values of λ. This
shows a shift in λ to a higher number, and also there is more
spacing between different m compared to the case of fixed
squeezing.

Uncertainties in the absorption coefficient γ for the number
difference measurement is shown in Fig. 11. Unlike the result
at fixed squeezing, we checked that the advantage due to pho-
ton subtraction is almost lost in the regime of low λ and γ for
β = 1 (thermal). Nevertheless, some advantage still remains
at relatively higher λ and γ compared to fixed squeezing. This
advantage at relatively high λ can be related to F and, looking
at the uncertainty expression in Eq. (1), the advantage at high
γ value can be understood from the fact that there must exist
a value of γ high enough and detection efficiency sufficiently
high to reduce the uncertainty below the SNL. For instance,
for values of γ = 0.5 and η ≈ 1, uncertainty using m = 0
is below SNL and m = 2 provides almost 20% advantage
compared to m = 0, although the advantage decreases at low η

as evident from Fig. 11 (top). At detection efficiency η = 0.5,
m = 2 provides an almost 10% advantage compared to m = 0.
For β = 0 (Poissonian), although the magnitude improves due
to high λ = 10 000, there is no advantage due to photon sub-
traction as expected. However, for intermediate β = 0.001,
m = 2 still outperforms m = 0 due to improvement in F .
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The magnitude of uncertainty reduction for different m comes
closer to m = 2 as shown in Fig. 11 (bottom). We expect that
as the subtraction parameter m increases the improvements
will saturate, converging to a limiting value under which there
is no effective gain compared to lower-order photon subtrac-
tions. This is clearly visible in the results of Fig. 11, where
improvement in measured absorption in fixed (per photon)
exposure experiments gets smaller for each increase in m.

Uncertainty for an optimized balanced estimator is plotted
in Fig. 12. Like the number difference estimator, the advan-
tage is almost lost for low λ, but still photon subtraction gives
a small advantage in the uncertainty reduction for high λ and
low γ , and the advantage is more at high detection losses
unlike the number difference measurement for β = 1. For
instance, at η = 0.5, about 10% advantage can be obtained
for m = 2 compared to m = 0. This can be inferred from the
uncertainty in Eq. (3), as the uncertainty reduction is more at
low detection efficiency η. Though there is an improvement in
magnitude, the advantage due to different m is very little and
it is not very different compared to m = 0 for intermediate
β = 0.001. Similar to the number difference estimator, in this
case, the magnitude of the uncertainty reduction for m = 0, 1
comes closer to m = 2. No improvement is obtained at differ-
ent m for β = 0 (Poissonian) for obvious reasons. Since the
uncertainty in the ratio estimator in Eq. (5) does not depend
on the photon statistics and only depends on photon number
correlation, we check that for both β = 1 and β = 0.001,
unlike the last two estimators, photon subtraction does not
provide any advantage in the fixed per photon exposure to the
absorption sample including β = 0 (Poissonian case).

IV. CONCLUSIONS

In summary, we have successfully modeled TBS whose
individual beam photon statistics vary between thermal and
Poissonian controlled by a “modal averaging parameter” β,
and demonstrated their usefulness for loss estimations. We
have considered three different ways of measuring the ab-
sorption and found the best estimator among them in terms
of measured uncertainty reduction accounting for general β,
which is relevant for all realistic experimental situations. We
established a clear connection between the uncertainty re-
duction for the three estimators with photon statistics of the
individual mode of the TBS and their correlation by two
factors, namely Fano factor (F ) and noise reduction factor
(σ ); nonclassicality in these two factors allows sub-shot-noise
loss estimations. Furthermore, uncertainties from using the
number difference and optimized balanced estimator depends
on Fano factor and σ , while, in the ratio measurement, it only
depends on the mode correlation σ .

We have then incorporated photon subtraction operation
into the model which increases the mean number of pho-
tons, and brings further improvement in photon statistics for
certain values of the modal averaging parameter β. Corre-
lation remains the same and independent of β, whereas F
changes from super-Poissonian to Poissonian when β is var-
ied from one to zero. Photon subtraction improves statistics
from super-Poissonian to sub-Poissonian for a single collected

mode which further improves with the number of subtracted
photons m. In contrast to when a very large number of modes
are collected, i.e., for β → 0, photon statistics turns to Pois-
sonian and no further improvement is obtained due to photon
subtraction. Nevertheless, we have demonstrated for an inter-
mediate value of β = 0.001 that the sub-Poissonian statistics
is preserved up to certain λ.

All the improvements in photon statistics in terms of Fano
factor are reflected in the measured uncertainties of the re-
spective estimators. We have analyzed them with respect to
different numbers of subtracted photons m by fixing both
squeezing parameter and per photon exposure. The last case
balances the increased mean number of photons due to pho-
ton subtraction. At fixed squeezing, uncertainties in all three
absorption estimators scale SSN and maximum uncertainty
reduction advantage of three times is obtained for m = 2
with respect to m = 0 for β = 1 (thermal case) at very low
absorption. The optimized balanced and ratio estimator out-
perform the number difference estimator. Although the ratio
and optimized balanced estimators perform equally well at
high detection efficiency, at lower η the latter estimator is
slightly better compared to the former. We notice changes in
the magnitude of uncertainties with λ and also when more
collected modes are averaged. Furthermore, we have explic-
itly computed the uncertainties at the asymptotic absorption
limits (γ = 0, 1), which confirm all the discussed quantum
enhancements in loss estimations due to photon subtraction
and show the best absorption estimator as well.

For β = 1, in the per photon exposure analysis, i.e., when
the average photons for different m are held fixed before
entering the sample, the advantage due to photon subtraction
almost subsides in the low γ and low λ. Nevertheless, for
relatively high λ, some advantage of about 20% is preserved
for the number difference at high detection efficiency η ≈ 1,
and nearly 10% advantage is retained for the optimized bal-
anced estimator at η = 0.5. Ratio measurement does not give
any advantage in the context of photon subtraction at per
photon exposure. Photon subtraction retains the advantage for
intermediate values of β. Another important remark is that,
when very large numbers of modes are averaged, performance
of photon subtraction is lost in comparison to unsubtracted
states as all of their photon statistics turn to Poissonian in
such a scenario. Therefore, photon subtraction in a twin-beam
state is advantageous for loss estimation with the single mode
thermal case and also when some thermal modes are averaged,
but it brings no advantage when very large numbers of modes
are averaged, resulting in Poissonian photon statistics.

This work assumes balanced detection efficiency in two
beams of the TBS; however, for the unbalancing scenario, the
improvement in correlation and statistics may vary and finding
the best estimator becomes a potentially challenging task that
we will address in future work.
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