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Quantum router: Storing and redirecting light at the photon level
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We propose a method for spatially rerouting single photons or light in a coherent state with a small average
photon number by purely electronic means, i.e., without using mechanical devices such as micromirror arrays.
The method is based on mapping the quantum state of the incoming light onto a spin-wave in an atomic ensemble,
as is done in quantum memories of light. Then the wave vector of the spin-wave is modified in a controlled
way by an applied magnetic field gradient. Finally, by reapplying the same control beam as for storing, the
signal pulse is released in a new direction that depends on the deflected wave vector of the spin-wave. We show
by numerical simulation that efficiencies can be achieved for arbitrary deflection angles in the plane that are
comparable with simple photon storage and reemission in the forward direction, and we propose a method for
eliminating the stored momentum as a source of decoherence in the quantum memory. In a reasonable parameter
regime, the rerouting should be achievable on a timescale on the order of a few to ~100 microseconds, depending
on the deflection angle. The shifts in the wave vector that can be achieved using the Zeeman effect, with otherwise
minimal changes to the spin-wave, can also be used to complement existing ac-Stark spin-wave manipulation

methods.
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I. INTRODUCTION

Light is a natural carrier for information, both classical and
quantum, due to its large speed, relatively weak interaction
with matter, and the possibility to guide light through optical
fibers. On the other hand, the weak interaction motivates the
development of light-matter interfaces, such that quantum in-
formation can be stored and processed in other systems. It is
well known that the efficiency with which light can be stored
in matter can be increased by using an ensemble of atoms.
Therefore, the coupling constant relevant for the absorption of
a single photon increases oc /N with the number N of atoms.
It is nevertheless challenging to coherently absorb, store, and
release again a single photon with an ensemble of atoms. A
number of techniques have been developed to that end over
the years, such as electromagnetically induced transparency
(EIT), slow light (for a review, see [1]), controlled reversible
inhomogeneous broadening (CRIB) (Ref. [2], and Refs. 14
and 15 therein), and atomic frequency combs (AFCs). In the
latter, the distribution of atomic density over detuning has
a comblike structure, leading to multimode capacity. Even
photon pairs have been coherently stored and released again,
keeping part of their initial entanglement [3], as required
by the Duan-Lukin-Cirac-Zoller (DLCZ) protocol of entan-
glement swapping for long-distance quantum communication
[4]. A basic working principle of these memory schemes is
the storage of phase information of the incoming mode in a
collective atomic excitation, such as a spin-wave, where each
atom contributes part of the excitation with a well-defined
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phase. Ideally, the phase relations remain intact during the
storage time, a requirement that can be achieved to a high de-
gree by using hyperfine spin states that decohere very slowly.

Most of the previous work has focused on improving the
storage of the photon as measured by fidelity, bandwidth,
and storage time, or realizing quantum operations and mode
multiplexing. In the present work, we are interested in another
aspect: the control of directionality of the emitted pulse. As
was noted in [5], the phases of the individual atomic contribu-
tions in the spin wave are such that the signal is reemitted in
exactly the same direction as it was absorbed. This suggests
that the directionality for collective emission is encoded in
Hilbert-space phases and can be controlled by manipulating
these phases prior to emission. Indeed, from [5] it is clear that
if one created phases that correspond to those that would have
resulted from absorption from a different direction, reemis-
sion would be in that direction.

The importance of the phases during reemission has been
considered before: Chen et al. [6] demonstrated forward and
backward retrieval with EIT. Backward retrieval can lead to
higher fidelity due to reduced reabsorption and compensation
of the Doppler shift. In [2] it was noted that by suitably
changing the phases, the signal is reemitted in the backward
direction compared to the original incoming signal without the
need for additional control lasers. In [7,8], forward retrieval
and routing with a small “array” of possible control beams
was achieved. Reference [9] recognized phase matching and
the spin-wave wave vector « as important for directionality,
and proposed multimode storage by having an array of control
fields with sufficiently differing angles that any control beam
only affects its own spin wave. As noted in [10], imprinting
a position-dependent phase e*™ onto the atomic coherence
has, in k-space, the effect of a convolution of the original
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FIG. 1. The time line is divided into the stages of absorption, storage, and emission. For each stage, the relevant wave vectors for
phase matching are drawn above the axis, and a depiction of the system’s state at the beginning and end of each stage is shown below. A
“manipulation” (momentum change of the spin-wave) during the storage phase allows re-emission in a new direction.

spin-wave and the added phase factors. Due to the condition
of phase matching, the k-space contributions of the spin-wave
define whether and in which direction the signal will be
reemitted upon arrival of the next control pulse. Added phases
that are linear in position shift the wave vector stored in the
spin-wave [11], and periodic phases will coherently divide the
spin-wave into several contributions with shifted wave vec-
tors [10,12]. References [10—12] proposed and demonstrated
experimentally the use of an ac-Stark shift for manipulating
the spin-wave as described above, implementing temporal as
well as directional beam splitters, and observing the Hong-
Ou-Mandel effect. In [13], the ac-Stark effect is demonstrated
to allow for mimicking the effect of a cylindric lens by im-
printing phases o y> orthogonal to the emission direction.
The ac-Stark shift is thus a powerful tool for coherently ma-
nipulating spin-waves. Solely shifting the wave vector of the
spin-waves by a large amount, thus changing the emission
direction without splitting the spin-wave, is hard to achieve
using this method, as inducing a suitable energy shift linear in
space over the whole atomic cloud requires correspondingly
large absolute shifts at some part of the cloud. Reference
[10] reports an ac-Stark-induced energy shift on the order of
MHz for 0.1 W laser power, while a magnetic field creates
~10 MHz per G, such that the shift can reach the GHz
regime.

Here we extend these previous works to allow emission in
an arbitrary direction in the two-dimensional (2D) plane by
manipulating the spin-wave phases in a controlled way during
the storage phase (see Fig. 1 for a schematic description of
the pulse sequence). We show that in doped solids, where
the atoms carrying the spin-wave can be considered to sit at
fixed positions, this can be achieved by applying a magnetic-
field gradient and using the Zeeman effect for reasonable coil
parameters and power supplies. This allows for fast routing
of photons (a few to ~100 us with reasonable parameters,
depending on the deflection angle) without using any me-
chanical parts, i.e., the reemission direction is controlled by
purely electronic means. Even without optimizing the param-
eters of the control beam, efficiencies of the reemission in
any direction can be achieved that are comparable to those
of forward reemission. In cold atomic clouds or hot atomic

vapors, where atomic motion scrambles the phases of spin
waves that carry significant momentum, deflection angles up
to ~20 and ~0.2 mrad, respectively, should be achievable,
which still allow for fast photon routing.

Given the role of the individual atomic phases and the
ability to shift « in the spin-wave, we also propose a way of
avoiding decoherence due to the interaction of diffusion and
the momentum stored in the spin-wave. This can contribute
to relaxing the necessity of using copropagating pulses in
implementations where the atoms move freely.

The dominant decoherence mechanism in Raman-type
quantum memories is ground-state decoherence. In vapor
cells, it results mostly from the drift of atoms in and out of
the laser beam, and in ultracold gases often from uncontrolled
magnetic fields [1]. In the latter case, an improvement can be
obtained by using atomic clock states [7,14] (i.e., states with
a transition frequency that is constant to first order in changes
to the magnetic field), while in the former an improvement
can be obtained by using optical lattices for limiting the
motion of the atoms. Using rubidium, storage times reaching
1/e lifetimes of 0.22 s [15] for single light quanta and 16 s
[16] for coherent states were reported. Using dopants in a
solid, Ref. [17] reports storage times over 1 h. Reviews over
different approaches to quantum memories can be found in
Refs. [1,18].

II. THE SYSTEM

The system consists of an atomic cloud with atomic density
n(r) and a total of N atoms inside of a geometrical volume
V with Vol(V) = V. Three internal states |g), |e), |s) in A-
configuration are taken into account, and the motional state
|[Yr) is given by a wave function ¥ (ry, ..., ry), which is a
product of single-particle wave packets. We assume the atoms
to be localized on a scale much smaller than the photonic
wavelengths. In experiment, this can be realized using warm
vapors, cold atomic clouds, or dopants inside a solid body.
With this, averaging over radius-€ spheres v, around position
r much smaller than the wavelengths and much bigger than
the atomic wave functions allows for introducing the atomic
density n(r) as the approximate eigenfunction of the atomic
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FIG. 2. The energy levels of the atoms and relevant notation.

density operator averaged over the spheres v;,:

N

1
ar) ) = ( |vr)i<vr|> [Y) = n@r)|¥), (1)
; Vol(v,)

where |v;); (v,| := [, a’r |r)r.

The atoms are treated as frozen in place for the absorption
and emission processes. The definitions and derivations are
parallel to the ones introduced in [19,20], and modified for
3D space with arbitrary signal and control directions, as well
as the quantized atomic motional state given above. Detailed
derivations and an outline of the numerical procedure are
given in [21]. Atomic transition operators for atom i are
denoted by 6;]) = |u);(v| (u, v € {e, s, g}) and couple to the
corresponding light modes via dipole transitions as depicted
in Fig. 2. The control field (index “c”) is described classically
by its positive frequency envelope 5" ¢(r,t). As in [22], the

control pulse’s influence on the atomic cloud is later described
by half the induced Rabi frequency 2(r,?), which will be
defined shortly:

E.(r,t) = feterkiigh 4 cc, 2

where E. is the electric field of the control pulse, €. is its
polarization, k. is its dominant wave vector, c¢ is the vacuum
speed of light, and c.c. stands for the complex conjugate. The
signal pulse (index “s”) is taken as fully quantized in 3D space
with an electric field operator,

E Bk ke ce*a, (k
=\ 2@y 260(271)3 ;2 /kem et e 0l

+Hec., 3)

where €y is the electric vacuum permittivity, h = 27 is
Planck’s constant, € ¢ is the polarization vector for polariza-
tion £ and wave vector k, and a,(k) is the continuous-mode
annihilation operator for polarization £ and wave vector k
with [a,(k), &Z, (K)) =8k — k') - 8¢.¢, and H.c. stands for the
Hermitian conjugate.

As with the control field, we define positive frequency
envelopes also for the signal field [E%(r, 1)), the g <> e co-
herence [Pk“(’ ) the “polarization”], and the g <> s coherence
[S%(r, 1), the “spin wave™],

_ 1k d-e g
Ek (r t) _ l(k r—clkg |t)/ 3k elk r&(k),
(2 @ry¢ keR3 ksl d - e,

Pk (r I) _ \/_Ze—z(k r—clks \t)Al |v’> r

n(r) %5 Nol(v,)”
N )
N
S5 1) = VN S it kor-ck g OO
T & % Nol(u,)’ Y
1
Qr,t) = Q%@ 1) = de eEX(r, 1),
and the corresponding interaction Hamiltonian
N
A== d; [E#)+E:# 1)
N hc 1
=D [ / PPN / &k Vlk|[d - ™5 a0k) + He ] + e - e CHTMDGLEGR ), 1) + H.c.:|
— keR?
~ —h f dr [VNgP* (r, n)E* (r, 1) + §“(r, )Qr, 1) + Hee.Ja(r). (5)
v

Here, g = /clks|/(2hepV )d - €, is the single-particle atom-
light coupling, d is the dipole moment of the g <> ¢ transition,
d. is the dipole moment of the s <> g transition, and « is the
wave-vector difference between the pulses. The signal and
control field polarizations are chosen to be e,, and the £-index
is discarded. We correspondingly consider all involved wave
vectors in the xy-plane. This allows for arbitrary deflection

(

angles in the plane without complications from a change in
polarization. As the use of opposite circular polarizations for
the probe and signal pulses in the A scheme can strongly sim-
plify distinguishing the two pulses for copropagating config-
urations, in many implementations it will be advantageous to
use a scheme with circular polarization instead. However, this
restricts the spin-wave manipulation to deflection angles that
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do not strongly depart from forward or backward emission, so
that the state overlap to the original polarization remains high.

The rotating-wave approximation is used, and it is assumed
that the signal pulse only couples to the g <> e transition and
similarly the control pulse with the s <> e transition.

Initially all atoms are in the ground state |g) and, as atomic
motion is frozen, also the Doppler effect is neglected. Inho-
mogeneous broadening in the context of photon storage in an
ensemble of atoms was considered in [23]. The signal pulse
is taken to be a weak coherent state with |«|> < N, with ||
the expectation value of the photon number.

With these initial conditions, the fields £(r,t), P(r,t),
and S(r,t) can be defined as the system state’s eigenvalues
to the corresponding operators: £ <> Eks (r,1), P < P& (r,1),
and S <> S¥(r, t). Given our initial conditions and the limit of
weak signal pulses, the system’s state remains an eigenstate
to these operators for all times, thus enabling our description
through the complex-numbered eigenvalues. Choosing o = 1,
all results for £, P, and S for a coherent signal pulse coincide
with the expectation values of the operators that would result
from using a one-photon Fock state as a signal pulse. There-
fore, one-photon Fock states can be described with the exact
same formalism.

The time evolution of the fields is given by the Heisenberg
equation of motion and results in

(8, + caeks)é' ~ i\/ﬁg]KVnP,

WP = —(y +iAP +iQS +ivV/NgE,  (6)
S = iQ*P,

where 9, is a spatial derivative in direction ey, := k/|ks],
the direction of propagation of the signal pulse. y is the
spontaneous emission rate of the excited state (which is added
heuristically to describe the most basic effect of spontaneous
emission), and A is the detuning.

The number of photons in the signal field is given by

A

(Npn) ~ é / d’rEX(r,HEr, 1), (7)

and the number of excitations stored in the atomic cloud is

A~

(Ngy) =~ l/ d3rn(r)S*(r,t)S(r,t), and (8)
N Jy

(Nioy) ~ L / &ra@)P (r, P, 1), 9)
N Jy

respectively. With these, the time evolution of our state (ne-
glecting atomic motion and decoherence) is fully described by
the complex-valued fields £, P, and S and their time evolution
(6), with a direct mapping to the corresponding quantum state
(for the atomic degrees of freedom):

P(r;, 1)

N
w5 @) = / N r @) ci (1g); + ek le);
hut VN
+ eiltbekori—c(k -1k ST D S>i>
VN
XY (ry, .. TN (10)

Here, ¢; &~ 1 are normalization factors.

N 501 ST

III. DYNAMICS AND DIRECTIONALITY

We partition the system dynamics into three stages as de-
picted in Fig. 1: From fy to f;, the absorption takes place.
There, the atoms start in the ground state and the incoming
signal and control pulses meet in the atomic cloud where a
fraction nyps Of the excitations of the probe pulse is converted
into the spin-wave. Between ¢, and 1,, the light remains stored
and we optionally manipulate the spin-wave using the Zeeman
effect. During this time, a slow decay of the spin-wave occurs,
but we neglect this in most of this work. During storage,
the control field is absent, Q(r, ) = 0. From time t, on, the
emission control pulse arrives and releases the excitations
stored in the spin-wave into a new signal pulse with a possibly
altered direction and remaining fraction of original excitations
1 = Nabs Nem-

We consider in the following a spherical sample with vol-
ume V = L? and constant density, and change to unit-free
coordinates by using L as a lengthscale, 1/y as a timescale,
and defining the atomic number density relative to the mean
density, 7i:

r . t n C
Fi=—,fi=—,fl:= ——, C:= —. (11D

L 1/y N/V yL
The simplifying assumption of a uniform atomic density
allows for numerically simple partial differential equations
(PDEs). A treatment of exact atomic positions can be found

in [24,25].
We define
- A L Q Ng .
Ai=—, Q:i=—,2 =Q, P:=aP, §:=aS, (12)
14 14 14

with & the dimensionless speed of light, A the dimensionless
two-mode detuning, € half the dimensionless Rabi frequency
induced by the control-pulse, and g the dimensionless en-
hanced coupling between the atoms and the signal pulse. The
normalized polarization P and the normalized spin-wave S are
zero outside of the atomic cloud, which allows for a more
direct interpretation of their numerical values when plotted.
We define the x-axis such that k; = kge,. The PDEs are then

(@ + CO)EF, T) = igP(F, 1),
HP(F, T) = — (1 +iMNPFE D)+ iQF DSF )
+ igh(FEF, 1),

9SG, 7)) = iy (7, [P, 7). (13)
The optical depth d as defined in [20] is given here by d =
8%/¢ when using L as a lengthscale. If the cloud diameter is
used as a lengthscale instead, and the cloud has a spherical
shape and constant density, we get d’ &~ 1.24 d. We consider
the ideal situation of no dephasing during the storage time.

In Sec. IV C we briefly discuss the dephasing-relevant aspects
connected to the wave vector stored in the spin-wave «.

A. Phase-matching conditions and directionality

For the absorption process, each excitation in the signal
pulse carries the wave vector kg and, if absorbed, leads to the
emission of a control field excitation with wave vector k. such
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FIG. 3. The phase-matching condition for the absorption (left)
and emission (right) process without a change of direction. The wave
vectors are represented by arrows.

that a spin-wave excitation with wave vector

K=k —k. (14)

remains due to the conservation of momentum.

If after absorption the wave vector of the spin-wave re-
mains unchanged during storage, ¥’ = k, and the same control
pulse direction k,, = k. is used (cf. Fig. 3), clearly the emitted
signal pulse retains its original direction k; = k; as the PDEs
from (6) keep applying. More generally, the wave vector «’
stored in the spin-wave and the wave vector k_ of the control
pulse are the only wave vectors that define the direction of ree-
mission. The wave vector of the emitted signal pulse becomes

k=« +k.. (15)
The regarded electric field envelope changes to £ with the
direction of motion ey and accordingly adjusted values in
(4—(6).

Equations (14) and (15) are called phase-matching condi-
tions, as they need to be fulfilled in order to get constructive
interference from the different participating atoms. This intro-
duces the spatial extent of the atomic cloud L as a parameter
that defines how closely the phase-matching conditions need
to be fulfilled in order to ensure purely constructive inter-
ference throughout the cloud. In Sec. IV C we explore these
conditions for our regarded system.

For the absorption and emission processes to be efficient,
energy and momentum both need to be conserved. Energy
conservation implies that two-wave resonance in the atomic
A-level system is necessary:

clks| — clke| = wg  for absorption,

clk,| — clk,| = wy  for emission. (16)

These relations allow for the possibility of manipulating the
emission direction of the signal pulse by changing either wave
vector on the right-hand side of (15). Using emission control
pulses in different directions was proposed in [7,26], but it
has the disadvantage of transferring the problem of control-
ling the direction of a light-field from the signal beam to
the control beam, i.e., one needs active optical elements or
different sources for the control beam. Here we study the pos-
sibility of changing the wave vector stored in the spin-wave,
kK — k' := Kk + § (defining § as “manipulation”), which can
be done with purely electronic means, as we will show below.
How this selects a new direction of the emitted signal pulse
is depicted in Fig. 4: The atomic spin-wave state starts with
the wave vector k, is changed by & to become k', a photon
of wave vector ké is absorbed, and a photon of wave vector
k; emitted. With this, the direction of emission of the signal
pulse k; can deviate from the original direction ks even when

FIG. 4. Left: The phase-matching condition for the emission pro-
cess, when the wave vector stored in the spin wave is changed by &
before emission. The blue segment of a circle marks the wave vectors
with |k| = |ks|. Right: Phase-matching condition for absorption,
manipulation §, and emission for k. = k/c, i.e., when the same control
beam is used for absorption and emission.

using the same control beam, k|, = k.. The angular change in
direction is denoted by ¢.

During idealized manipulation, only k is changed to be-
come k' without otherwise affecting the spin-wave [see
Eq. (18)]. The exact values of the necessary spin-wave manip-
ulation for inducing a change in directionality ¢ in the emitted
signal pulse are easily obtained with

cos(p) — 1
sin(p) |,
0

§=k —ky =k lks| = Ikl (17)

For small angles ¢, the increase is linear, 8§ ~ pk,e,, and
for large angles it caps at |§] = 2|ks|. In Sec. IV C we study
the decrease in efficiency when (17) is not satisfied exactly.

B. Manipulation via Zeeman shift

The manipulation needed to reemit the light into a new
direction k. can be understood as the creation of a new
spin-wave state that would have resulted from signal and
control pulses of wave vectors k, and k, with unchanged
wave numbers |k;| = |ks], |k.| = |k|. This can be achieved by
introducing a position-dependent phase equivalent to a wave
vector &:

§r ) WE(6) = St 1) W ()

B Str.n) = 7S, 1) = 7S, 1y),  (18)

with the manipulation § leading to emission angles ¢ as given
in (17).

More generally, arbitrary phases ¢(r) imprinted on the
spin-wave such that S(r, 1,) = ¢?™S(r, t;) can be treated by
decomposing the resulting spin-wave into separate plane-
wave contributions and their envelopes, each of which can be
described individually by the PDEs using the corresponding
wave vector k. The added phases amount to a convolu-
tion in k-space of the original spin-wave with the added
phase factors e as can be seen from the mathemati-
cal relation F[e?S(r, ;)] o« F[e®®] x F[S(r,1;)], where
F denotes the Fourier transform to k-space, and « is the con-
volution operator. While added phases linear in space solely
shift the wave vector of the spin-wave, periodic phase patterns
will split the spin-wave into several contributions as described
and demonstrated in [10]. In our description, ¥’ = k, — k. and
k.| = |ks| must be fulfilled for the derivation of the PDEs
to be valid, such that other wave-vector contributions to the
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spin-wave, i.e., any mode-mismatch, need to be treated as part
of the envelope (see Sec. IV C).

A possible way of introducing the necessary phases is via
the Zeeman shift created by a magnetic field gradient. For this,
we introduce a classical magnetic field B(r, ) of which we
assume that it induces an energy shift in the atomic energy
levels that is linear in the magnetic field. In principle, for the
regarded cloud of rubidium atoms this regime can be reached
by applying a homogeneous magnetic field By & 5 kG e,
that pushes the atomic energy levels into the Paschen-Back
regime, such that the effect of an additional gradient field
leads to approximately linear responses [27,28]. However,
in rubidium this strength of By changes the level structure
such that our A scheme is not available. By using a weak
magnetic field for the storage and emission processes and
ramping up By for the duration of the manipulation scheme,
the Paschen-Back-regime could still be used to manipulate the
spin-wave: As we find in Appendix B, the adiabaticity condi-
tion remains fulfilled for realistic ramp-up speeds, such that
the ground states |g) = |F = 1, mp) and |s) = |F = 2, mp)
are mapped to the states |g) = |m; = mp + %, my = —%) and
|5) = |my = mp — %, mg = %). In practice, it might be simpler
to create the spatially linearly increasing shift of the energy
levels in a different way: with the use of a spatially nonlin-
early increasing magnetic field that accounts for the nonlinear
response of the atoms, the necessary effect can be induced
without the need for a fully linear response to additional
magnetic fields, as assumed here. This avoids the need to
change By before and after the spin-wave manipulation. For
an order-of-magnitude estimation, we nonetheless regard the
linear regime with the Hamiltonian

Ay == " B(ri. t)(ugbly + mebly + 11,6%). (19

with u, being the respective magnetic moment corresponding
to the atomic states x € {g, e, s}. The induced energy shifts
lead to a changed time evolution during the storage time,
which is solved by

S(# 1) = DS (F, 1), (20)

where 7] and 7, are the initial and final regarded moments in
rescaled time, and

Gt (F) := (g — ps)/ (v 1) / di B(F, T) 21

is the locally accumulated phase in the spin-wave due to
the magnetic field. Any global phase can be ignored. Thus,
the necessary property of the g and s levels for our Zeeman
manipulation to be applicable is that the two states differ in
their reaction to magnetic fields, i.e., (g # (i, in our notation.
This condition is indeed fulfilled for alkali-metal atoms with
hyperfine-split ground states and sufficiently weak magnetic
fields. For schemes using atomic clock states with a suitably
chosen value of B, to minimize the susceptibility of the spin-
wave to stray magnetic fields (i.e., u, = i), changing the
strength of By for the duration of the manipulation can still
allow for the Zeeman manipulation scheme to be applied,
while of course the spin-wave will be susceptible to stray

magnetic fields for that duration. Inserting (20) into (18) gives
Pt (F) = & - FL + const

5]
& / dt B(r,t) = + const. (22)
H

Mg — Hs

For simplicity, we regard the time needed for manipulation
using a fixed field gradient. The direction of the needed
gradient of the magnetic-field amplitude B is given by (17),
and we denote the contribution of r parallel to § with ry;.
With a field B(r) = By + 50 < ry5, duration T, and coupling
corresponding to an electronic spin transition [28],

(ig — 15)/ T ~ 2pupone /T ~ 17.6 rad/us/G.

For rubidium, this approximate value is reached both for weak
magnetic fields and in the regarded Paschen-Back-regime.
This gives
h |4 ||

T = = us, (23)
g — s 50 G/cm  88/mm

which leads to necessary manipulation times of the order of
T ~ 10~* s to achieve arbitrary angles ¢. A finite speed in
turning on and off the field gradient will increase the necessary
time correspondingly.

The decoherence timescale from thermal motion of freely
moving atoms at different temperatures and the corresponding
limitations to the reachable deflection angles are discussed
at the end of Sec. IV C. We find that deflection angles ¢ ~
20 mrad remain viable in cold atomic clouds, but arbitrary
deflection angles will likely require a different system. For
example, dopants in a solid body can act as a suitable atomic
ensemble [1,8] where diffusion does not occur.

To achieve arbitrary deflection angles ¢ on the order of us,
correspondingly the rather large field gradient of 50 G/cm
has to be created on a similar timescale. Using Maxwell coils
[29], a rise time of 5 us can be achieved with 63 turns, a coil
radius of 1 cm, and a maximum current of 1 A, while using
a current source delivering <40 V. With the focus on small
deflection angles, a smaller maximum gradient of 7 G/cm can
be chosen. Using the same current source, this allows for a
much faster rise time of 0.1 us, which allows deflection angles
of up to ~0.2 mrad at thermal velocities of room-temperature
vapors. A more detailed description of the coil parameters
can be found in Appendix A. In Appendix B we confirm
that adiabaticity remains fulfilled in the regarded parameter
regime such that, apart from the intended phases, the state of
the system is not significantly affected by the field gradient.

IV. NUMERICAL RESULTS

In the following, we provide results from solving (13) nu-
merically and optimizing the efficiency with which pulses can
be stored and reemitted in different directions. For simplicity,
we restrict the incoming signal and control pulse to Gaussian
shape with widths wg | and wgq, parallel to the respective
direction of propagation, and the corresponding orthogonal
beam widths we | and wgq ;. The signal pulse is chosen to
propagate along the x-axis, reaching the cloud’s center at
t = 0. The control pulse propagates at an angle 6 relative to
the signal pulse, and its timing and position are parametrized
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FIG. 5. Relevant parameters that define the incoming signal and
control pulses.

such that at time g, ¢ the position of its peak is (xq,0, yo.0) in
the xy-plane. Ag denotes the amplitude of Q2. The parameters
are drawn in Fig. 5. The results of [22] and [20] allow one to
get estimates of the scaling of the reachable efficiency with
optical depth. The achievable efficiencies are in general upper
bounded by efficiencies that can be reached with the help of a
cavity that restricts the electric field to a single relevant spatial
mode [22],

2
max max 2 1
nca?/ity < (nabz, cavity) = (1 - m) ’ (24)

which hence provides an important benchmark.
For high optical depths, the reachable efficiency in free
space can be approximated by

2 d— 2.9\?
< () R (1 - 7) : (25)
‘We choose
2
nref — 1 _ ; (26)
14+d/29

as reference for our results as it has an optical depth-
dependence similar to (24) and becomes an approximate
upper bound for d — oco. As the chosen numerical method
matches the discretized coordinates ¥ and ¢ in order to
achieve a simple propagation of £ in (13), the length of the
regarded incoming signal pulses is limited due to computa-
tional constraints. Thus, the regarded signal pulses are of high
bandwidth Aws > y with
Awy ¢

=—_—. 27
4 We |

We expect high values of &/ig | to negatively affect the
reachable efficiency as increasingly short pulses make higher
optical depths necessary in order to reach optimal efficiency
[20].

We use parameters corresponding to a uniform, spherical
cloud of 3Rb with volume V = L3 = (10 mm)? and & = 850.
Unless explicitly stated otherwise, parameter values for the
signal pulse are A =0.0, e, = 100, e, | = 0.2, while the
control parameters (i.e., width wq |, length wg , amplitude
Ag, timing tq o, and displacement xg, ) are optimized to give

high efficiencies. This corresponds to a high-frequency band-
width of the signal pulse Aws =~ 0.3 GHz, which makes the
parameter regime comparable to the Autler-Townes storage
scheme in [30] except that control pulses with similar di-
mensions to the signal pulse are used. Note that although
the limitations for higher signal bandwidths are not visible in
the PDEs, for rubidium there are limitations as higher signal
bandwidths will require changes to the A-system as the hyper-
fine coupling is no longer stronger than the necessary coupling
to the light fields, and additionally there arises significant
overlap in the spectrum of the control and signal field. The
choice of A = 0 is made for numerical simplicity.

Before regarding the full process consisting of absorption,
storage and reprogramming of direction, and emission, we
study the absorption processes separately, in particular with
respect to the achievable absorption efficiencies as a function
of the angle 8 between signal and control beam.

A. The absorption process

For testing the achievable storage efficiencies, a simple
optimization of control pulse parameters for varying values
of d and 6 was done. The results are given in Fig. 6. Fig-
ure 6(a) shows that efficiencies comparable to our reference
curve from (25) are already reached for d ~ 5, while the angle
between signal and control pulse 6 does not affect the reached
efficiency. For d = 20, an absorption efficiency of about 90%
should be achievable for g ; = 100, ¢ = 850. In Fig. 6(b) the
reached efficiencies for different values for é = c¢/(yL) are
shown, which corresponds to altering the size of the atomic
cloud, and Fig. 6(c) shows the corresponding results for dif-
ferent signal pulse lengths W¢ | and thus bandwidths.

Together, Figs. 6(b) and 6(c) confirm that high values of
¢/e, make higher optical depths necessary in order to reach
high efficiencies. Figure 6(d) shows the very smooth depen-
dence of the resulting storage efficiency on single-parameter
variation. As reference parameters, the optimized values cor-
responding to Fig. 6(a) at the point 8 = 0, d = 6 were used.

B. Absorption, storage, and reemission

We now consider the full process of absorption, storage,
and reemission. For calculating the total efficiency 1, the num-
ber of reemitted excitations up to a certain time after arrival of
the emission control pulse was used, such that an altered shape
of the reemitted pulse does not affect the calculated efficiency.
Figure 7 shows the achieved total efficiencies as a function of
¢ when using control pulses optimized for ¢ = 0. For an opti-
cal depth d = 17, efficiencies varying between about 45% and
70% can be realized, with a maximum efficiency for backward
reemission (¢ = 180°). Optimizing the parameters separately
for each angle can still increase the efficiencies, in particular
for high reemission angles close to backward emission, as can
be seen when comparing Figs. 7(b) and 7(d). As the shape of
the signal pulse orthogonal to its direction of propagation is
preserved during absorption, departing from Gaussian beam
profiles can improve the achievable emission and thus total
efficiencies for intermediate values of ¢ as the pulse shape
originally in the direction orthogonal to propagation now con-
tributes to the longitudinal shape of the spin-wave when taking
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FIG. 6. Maximum absorption efficiencies as a function of different parameters. (a) 7.,s achieved for various values of optical depth d and
signal-to-control angle 6 for Gaussian pulses. The achievable efficiency (in the cavity case) is shown in red (dark gray), while the free-space
reference curve is plotted in pink (light gray). (b) Influence of cloud size on reachable absorption efficiencies. (c) Influence of signal pulse
length on reachable absorption efficiencies. (d) Robustness of efficiency to single-parameter variation using values from (a) as reference, with

d=6and 6 = 0.

the new direction as reference. The amplitudes of the fields &£,
P, S, and 2 as a function of space and time that result from the
optimization of the overall efficiency are shown for a typical
example [d = 6 and ¢ = 0 from Fig. 6(a)] in Fig. 8, both for
the absorption and emission part. One sees directly how the
photon is transferred to a spin-wave excitation during absorp-
tion, whereas the excited state |e) is only excited very slightly
and only for a relatively short time. In emission, the process is
inverted, and the excitation of the spin wave reconverted into
an optical excitation. We also see that the spin-wave envelope
S has essentially the same phase over the cross section of the
sample as in the center of the sample, and the same is true for
the signal pulse that is reemitted.

C. Imperfections

For all previous considerations, exact two-wave resonance
was assumed, namely

C|ks| - C|kc| = Wge — Wye- (28)

Now we examine the influence of a slightly detuned sig-
nal field with a changed frequency clks| = wge — A + ckmis,
where ky,;s is the mode mismatch. The control field frequency
remains clk.| = wg, — A. A visualization of a mismatched
incoming probe pulse and the resulting spin-wave is shown

in Fig. 9. With the spontaneous emission rate of the excited
state y/c as reference, and assuming all other parameters
as constant, we find Gaussian suppression of the absorption
efficiency (see Fig. 10),

krznis
— ], 29
(11.4 y /c)? 29)

Nabs (kmis) ~ Mabs(0) €xp < -
Adjusted control parameters can largely compensate the ex-
ponential suppression of efficiency in the regarded range of
mode mismatch (see the orange pluses in Fig. 10).

When reemitting the excitation stored in the spin-wave,
there might also be a mode mismatch from a mismatch re-
maining from the absorption process or through nonoptimal
manipulation §. If a mode mismatch is present, the momentum
and energy conservation conditions from (15) and (16) can-
not be fulfilled, and the efficiency diminishes as destructive
interference occurs. Figure 11 shows the decrease of total
efficiency if a mode mismatch ks is introduced to the stored
spin-wave according to

S@r) — e *nse)TS(p). (30)
Not changing any other parameters (and using the parameters
from Fig. 8), the resulting efficiency for forward retrieval
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FIG. 9. The incoming signal field envelope (a) and resulting spin-wave (b) for parameters from Fig. 6(a) with 6 = 0, d = 6, and mode
mismatch ks = 30 y /c. While the mode mismatch leads to a large range of phases over the extent of the incoming signal pulse, the resulting

spin-wave has almost constant phase.

shows an approximately Gaussian dependence on ky;s,

krznis
1 (kmis) ~ 1n(0) exp <_W) 31

As |ki| x L ~ 10° with the parameters used, the phase-
matching condition needs to be fulfilled with relatively high
precision (see Fig. 12). Similarly to the absorption process,
we expect that the reduction in achievable emission efficiency
can be alleviated by adjusting the control parameters.

As the spin-wave contains phases corresponding to the
wave vector k [see (10)], atomic motion scrambling the phases
[31,32] and separating the wave functions [33] of the different
hyperfine states during storage can be a major limiting factor
of storage time (see also [18]).

After the signal pulse absorption, depending on the angle 0
between signal and control pulse, the wave vector stored in the
spin-wave ranges from |k.| — |kg| = ng ~ 1/mm to |k.|+
|ks] ~ 10/ um with a corresponding phase grating in the
atomic state which can be scrambled by atomic motion even
with individual atoms retaining their phase. Figure 13 shows
the resulting decoherence timescales when assuming thermal
motion to be ballistic. As the use of a buffer gas can restrict
the ballistic motion of the atoms [34], it is possible to soften
this limitation of the achievable deflection angle ¢ in rubidium

\gs/
IR
0.6 I\
% Gaussian fit with o= 11.4
2 0.4 1 |
= X fixed parameters
adjusted parameters
0.2 1
0.0

T T T T T
—40 -20 0 20 40
Mode mismatch (units of )
FIG. 10. The dependence of the resulting absorption efficiency

of the signal field mode mismatch. The corresponding frequency shift
is measured in multiples of the spontaneous emission rate y .

vapors. Also, this wave vector corresponds to an additional
momentum in the wave function of the |s) states leading to
added velocities ranging from #|k|/mgp, =~ 0.1 nm/(ms) to
10 um/(ms) in rubidium. To maximize storage time, it might
be advisable to start with a manipulation §; = —« right after
the absorption process, thus removing the phase grating and
stored momentum mentioned above. In setups where almost
parallel signal and control pulses must be chosen to avoid
large stored momenta x, our method of manipulation could be
chosen to relax this constraint. Directly before the emission
process, the wave vector can be reintroduced to the spin-wave
together with the intended total manipulation §, thus mini-
mizing the influence of atomic motion: §, = —&; + 8 = «’.
For estimating the temperature regimes at which different
wave vectors can be created or compensated by the pro-
posed method, the color coding in Fig. 13 indicates how the
timescale for manipulation compares to the decoherence from
ballistic thermal motion. As manipulation time 7, the values
shown in Fig. 12 are used, while accounting for the finite rise
time of the coil by an additional fixed duration 2z, = 10 us.
The timescale for decoherence (cf. [31]) #4econ 1S €stimated by
the time it takes an atom at thermal velocity vy, to traverse a
significant fraction of the spin-wave phase grating given by

K: tgecoh = 1/(vk), where vy, = /kgTry /MRy, With kg being

0.4
0.3
o — Gaussian Vfit with o = 2438
0.2 - .
: X numerical results
0.1 1
0.0

—2000 0 2000
Mode mismatch (units of +)

—4000 4000

FIG. 11. The dependence of the resulting total storage efficiency
on the spin-wave phase error, e.g., stemming from nonoptimal
manipulation. The corresponding frequency shift is measured in mul-
tiples of the spontaneous emission rate .
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to one standard deviation in the Gaussian (31) (dotted line for the
error || 8, dashed line for the error L §)].

Boltzmann’s constant, Tgy, is the temperature of the rubidium
ensemble, and mgy, is the atomic mass of rubidium.

When using dopants in solid bodies as an active atomic
ensemble, the decoherence due to ballistic motion is
eliminated, such that even antiparallel control and signal
pulses (8 = 180°) do not negatively affect the storage time
(cf. [35]). The solid medium will rescale the wave vectors
involved, but the new timescales for shifting the spin-wave
wave vector will remain of the order of magnitude of a few
to 102 us, such that shifting the emission direction to arbi-
trary angles becomes possible. The condition for our Zeeman
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FIG. 13. The values printed inside the heat plot are the timescale
[log,(fdecon/s)] for spin-wave decoherence due to ballistic thermal
motion scrambling the phases. The values are given for different
temperatures of the Rb atoms as well as wave numbers carried by the
spin-wave. The color coding indicates whether this motional deco-
herence leaves sufficient time for our proposed Zeeman manipulation
method to imprint or remove wave vectors of the corresponding
magnitude using a coil as described in Sec. III B.

FIG. 14. Drawing of the phase-matching condition when prepar-
ing multiple possible control pulses and a moderate manipulation
|8] < |ks|. The thick blue circle segment indicates the reachable
emission directions for the signal pulse.

manipulation scheme to be applicable is a relative change
in energy between the ground and storage states g, e when
applying an additional magnetic field. The estimated manip-
ulation times assume a magnetic susceptibility corresponding
to an electronic spin transition. Although the motional state
of Bose-Einstein condensates is outside the scope of our
ansatz (1), existing experiments [33,36] indicate that photon
storage can be described in a similar manner, and that due
to the lack of thermal motion, the decoherence time of the
spin-wave is also less susceptible to its wave vector. This lets
us expect that in BECs also, arbitrary deflection angles are
achievable. In systems where only finite deflection angles can
be achieved, the covered range of possible deflection angles
can be increased by combining a fixed number of possible
directions for the control pulse in emission with our proposed
manipulation scheme as indicated in Fig. 14.

V. SUMMARY

Using a fully three-dimensional treatment, we regarded the
possibilities of storing weak coherent or single-photon signal
pulses in an atomic cloud of three-level atoms and reemitting
them in a controlled way in a new direction. The absorption of
a photon in an ensemble of atoms results in a spin-wave with
well-defined wave vector « and envelope S(r). The envelope
influences emission efficiency and the shape of the reemitted
pulse, whereas the wave vector reflects the momentum and
energy balance of two-photon absorption, with one photon
from the signal beam and one from the control beam. We have
shown that during storage, the wave vector of the spin-wave
can be modified by, e.g., applying a magnetic field gradient,
without otherwise affecting the spin-wave. This modifies the
momentum balance when the control beam is switched back
on for reemitting the signal pulse in such a way that even with-
out changing the control beam, a new emission direction can
be selected. In solid-state-based quantum memories, arbitrary
in-plane deflection angles can be achieved with reasonable
coils and power supplies. We expect that BECs, too, allow
for arbitrary deflection angles. In cold atomic clouds or hot
atomic vapors, due to atomic motion scrambling the phases of
spin waves that carry a significant wave vector, the resulting
decoherence times are shortened, and correspondingly with
the same coils and power supplies deflection angles are re-
stricted to ~20 and ~0.2 mrad, respectively. This limitation
can be softened by restricting the thermal motion of the vapor
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with the use of a buffer gas. This still allows for fast and
efficient routing of photons into different beams or optical
fibers. Our numerical simulations show that the efficiency of
the whole process as measured by the ratio of the emitted
energy compared to the energy in the incoming signal pulse is
only moderately reduced for a beam emitted in an arbitrary di-
rection compared to the beam reemitted in the direction of the
incoming pulse, even without adjusting any other parameters.
Here, the envelope of the spin-wave with regard to the new
emission direction is the limiting property for the efficiency.
Alternatively, one can also change the direction of the control
beam in order to send out the stored excitation in another
direction, or both methods can be combined.

The phases of the spin-wave are defined in Hilbert space,
i.e., they control the coherent superposition of many-particle
states with excitations localized at different positions in the
atomic cloud whose phase they define relative to the corre-
sponding atomic ground states. The effect that we described
here is hence another remarkable example of the phenomenon
that phases in Hilbert space have an impact on the interference
and propagation of photons in real configuration space, of
which quantum optics is full (see [37] for a recent review).
Using the same control beam for emission as for absorp-
tion has the charm of needing no movable elements such as
micromirrors for deflecting the signal beam, and allows for
fast all-electronic control (on a timescale on the order of a
few to ~100 microseconds with reasonable magnetic field
gradients, depending on the deflection angle) of the emis-
sion direction, opening the path for numerous applications of
single-photon routing, such as photon-multiplexing, quantum
communication to several parties, etc. Due to the linearity
of the dynamics, we expect that quantum superpositions of
photons in different modes (e.g., in different time bins, as
commonly used in quantum memories) will be propagated
and redirected with comparable efficiency to the pulses in a
single mode considered here, but more work will be required
to prove this.

The possibility of purely shifting the momentum stored in
the spin-wave also in the emission direction promises the pos-
sibility to assist the existing ac-Stark effect based spin-wave
manipulation methods by allowing spin-wave multiplexing
without any intrinsic loss introduced by nonlinear phase
factors.
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FIG. 15. Numerical results for the final state after B; has been
swept from zero to its full value [B;(r) = 250 G] in time t. The
initial state is taken as |+) and the parameters are taken from (B3).

The scheme studied here focuses on deflection in the xy-
plane. Slight deviations of the wave vector of the emitted light
from the xy-plane should also be achievable, but deflection
into arbitrary directions in the 47 spatial angle would need
a rotation of the polarization vector as well. Alternatively,
one might envisage a two-step deflection with the one in the
xy-plane followed by another one in a plane perpendicular
to it containing the wave vector after the first deflection. In
future works, it might be of interest to explore the proposed
manipulation scheme in situations with further effects such
as inhomogeneous broadening [23], exact atomic positions
[24,25], and atomic interactions [38].

APPENDIX A: COIL PROPERTIES

Goal parameters. As example parameters for our atomic
cloud, we assume a spherical volume with V = L?> =1 cm?,
implying a radius of r &~ 0.6 cm. For the magnetic gradient
coils, we assumed a magnetic gradient with 50 G/cm that can
be ramped up or down in the order of 5 us that extends over
the whole of the atomic cloud.

Corresponding coil parameters. For a simple estimation of
the necessary experimental current source and coil parame-
ters, we assume the gradient coil to be a Maxwell coil pair
with coil radius a. The rise time t of the gradient coil is

10* | m
., 10 Rk
3 o 1| <+[p(t)>]
Q
S 107 4 | <=l(t) >
& 1010 - L— | <g()|(t) > ?
10712 - \
107 10+ 1073 102
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FIG. 16. Numerical results for the final state after B, has been
swept from zero to its full value [B(r) = 250G] in time 7. The
initial state is taken as |+) and the parameters are taken from (B4),
while the lower plot additionally sets By to zero to check whether this
offset field is necessary for adiabaticity.
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calculated as [29]

L Vvesrr Lol
N - =5us,

T =
Ve —RI Ve
where L. is the inductance of the gradient coil, R is its Ohmic
resistance, and / is the equilibrium current flowing through the
coil at applied voltage V..
The gradient created is given by

G = nl = 50 G/em,

(AL)

N,
n~ 0.64M00—§, (A2)

where 7 is the gradient coil efficiency, p is the magnetic
vacuum permittivity, and N, is the winding number of each
coil.

The inductance of Maxwell coils is approximated as

Le S2N2mwa* /(L + a/1.1) ~ wN2apuy, (A3)

where the individual coil length / was assumed tobe / = (1 +
0.1/1.1)a.

Using a coil radius of a = 1 cm, we can solve (A2) for N./,
giving

50 Glem = 0.64j10N.I /a?

= N = a?/(0.6410) G ~ 62.2 A. (A4)
J
3/4 0 0

0 -3/4 3,2

0 32 1/4

L. 0 0 0
Aprsl - 8/ = Apps 0 0 0
0 0 0
0 0 0
0 0 0

Inserting (A3) into (A1), we get

5us = 2 N Naao Ve = . @NG
Ve 0.64 V.
| G 7'L’a3
= V= ?mNC ~ N, x 049 V. (A5)
Choosing N, = 63 gives
Ve~31V and I~1A

as solutions. The actual voltage needs to be increased by RI to
compensate for the coil’s resistance.

APPENDIX B: TIMESCALE FOR ADIABATICITY

For the regarded Rb-87, the Hamiltonian of the ground-
state spin manifold under an external magnetic field B is given
by
M Bohr

i

where Apps &~ h 3.42 GHz is the hyperfine coupling, ipohr
is the Bohr-magneton, gg ~ 2 is the electron g-factor, g; ~
—0.001 is the nuclear g-factor, and B = [By + B;(t)]e; is the
applied magnetic field. In our case, we have L =0,J = § =
1/2, and I = 3/2. In the |m;), ® |ms),-basis, the magnetic
coupling is diagonal and the hyperfine coupling takes the form

H = Apps /T - J + (gsS+g.L)- B, (B1)

such that any state decay due to fluctuating magnetic fields only affects the two-dimensional state subspaces described by

Imy = +3/2) ® Ims = —1/2) < lm; = +1/2) ® Ims = +1/2),
my = +1/2) ® [ms = —1/2) < Im; = —1/2) ® [ms = +1/2),

my = —1/2) ® Ims = —1/2) < Im; = —3/2) ® lms = +1/2).

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
—1/4 1 0 0 0
1 —1/4 0 o o | (B2)
0 0 1/4 V32 0
0 0 V3/2 =3/4 0
0 0 0 0 3/4
(B3)
(B4)
(BS)

Thus the question of adiabaticity for ramping up the B1-field can be regarded separately for the two-level subsystems.
The corresponding two-level Hamiltonians (up to a two-level-global energy shift for zero-averaged eigenvalues) become

A —-1/2 3/2 S5 81 0
@3 o i =aus( 0 ) (U )10+ B (B6)
2
. 0 1 —8s+t8&r 0
(B4) <> H = Agrs (1 0) + MBohr( (2) gggl)[BO + Bi(1)], (B7)
2
; 12 /3)2 —gste
(35)<—>H=AHFS( ) + UBoh ( 2 —g |[Bo+ Bi(®)], (B8)
V32 =12 o\ 0 -8
which, assuming B (t) = Bj t/t to be linear in time, all have the form
H = hvé, + li(e + bt)é., (B9)
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with the corresponding values

V/3/2Axs, —Anrs /2 + £55 By, WBohr ¥5% By /T for (B3),
hv = { Anrs, he = ﬂSTJrngo, lib = { Bohr 7g‘2+g'Bl/T for (B4), (B10)
V3/2Augs. Anrs/2 + =554 By, 1Boe S5 By /T for (BS).

The actual situation is described by ¢ € [0, 7], but ex-
tending this to oo allows for an analytical solution of the
transition probability p using the Landau-Zener formula [39]

_ P

= —, Bl11
z 2] (B11)
where z is the Landau-Zener parameter. With B; < 500 G

throughout our atomic ensemble and t 2 1 us, we have

21 ps

8s _ngl/T| ~ SOL S,
1 ns

2 > (Anrs)*/12hitBonr

(B12)

such that state-transitions due to ramping up the B1-field can
be neglected.

Finite times. As the assumption of ¢ € (—00, 00) is not ful-
filled in experiment, we do a numerical integration of the time
evolution in order to make sure that T > 1 us is a safe regime
with regard to negligible disturbance of the state. We choose

(

the two-level Hamiltonians as introduced above in (B9). As
(B3) and (B5) are equivalent except for exchanging the two
basis states, only the parameters for (B3) and (B4) are re-
garded separately. The numerical integration evolves the state
from t = 0 to t = 7, using the instantaneous eigenbasis, and
|[+) := (1, 0)7 as the initial state. A third calculation is made
with parameters from (B4), but with By = 0, to test whether
the background field that was introduced for approximately
linearizing the response to B is also necessary to achieve
adiabaticity. Figures 15 and 16 show the results, which clearly
indicate that adiabaticity remains a good approximation for t
in the us regime even in the case of ¢ € [0, t]. Comparing
these results with those of Appendix A, we find that the speed
with which the magnetic field can be altered is in practice
limited by technical limitations while the fundamental limi-
tations from the adiabaticity condition become relevant only
at timescales that are more comparable to the hyperfine inter-
action as indicated by the Landau-Zener parameter calculated
in (B12).
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