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Manipulating single-photon transport in a waveguide-QED structure containing two giant atoms
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We investigate coherent single-photon transport in a waveguide-QED structure containing two giant atoms.
The unified analytical expressions of the single-photon scattering amplitudes applicable for different topological
configurations are derived. The spectroscopic characteristics in different parameter regimes, especially the
asymmetric Fano line shapes and the electromagnetically induced transparency (EIT)-like spectra, are analyzed
in detail. Specifically, we find that the appearance of Fano line shapes is influenced by not only the phase
delays between coupling points but also the topologies of system. We also summarize the general conditions
for appearance of EIT-like spectra by analyzing the master equation and verify these conditions by checking the
corresponding analytical expressions of the scattering spectra. These phenomena may provide powerful tools for
controlling and manipulating photon transport in future quantum networks.
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I. INTRODUCTION

The realization of light-matter interactions at the single-
photon level plays a central role in the fields of modern
quantum optics and quantum information processing. This
goal can be realized by strongly coupling a single atom or
multiple atoms to a one-dimensional (1D) waveguide, called
a waveguide quantum electrodynamics (wQED) system [1,2].
These kinds of structures exhibit high atom-waveguide cou-
pling efficiency, resulting in low leakage of photons into
unguided degrees of freedom [3,4]. This feature makes
the wQED systems become excellent platforms to ma-
nipulate transport of single or few photons [3–22]. Thus
quantum devices with high efficiency, including quantum
routers [4,10,23–26], single-photon transistors [9,27], and
quantum frequency converters [28–33], can be realized in
the wQED structures. In particular, when two or more atoms
are coupled to a 1D continuum, the interactions mediated
by the guided modes, as well as the interferences between
photons reemitted by different atoms, can enable a num-
ber of interesting effects, such as asymmetric Fano line
shapes [34–38], electromagnetically induced transparency
(EIT) without control field [39–41], waveguide-mediated
entanglement between distant atoms [42–45], generation
of photonic band gap [46,47], cavity QED with atomic
mirrors [48,49], creating and engineering superradiant and
subradiant states [50–53], and so on.

Recently, with the development of modern nanotechnol-
ogy, a new type of wQED structure containing the so-called
giant atoms has brought about widespread attention [54,55].
In these setups, artificial atoms (e.g., transmon qubits [56])
can couple to the bosonic modes (phonons or microwave pho-
tons) in a 1D waveguide at multiple points spaced wavelength
distances apart. Different from the usual wQED structures
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with pointlike small atoms, the multiple coupling points of a
single giant atom can provide additional interference effects,
resulting in some novel phenomena, such as frequency-
dependent decay rate and Lamb shift of a single atom [55,57–
59], and decoherence-free interaction between two braided
giant atoms [57,60]. By utilizing non-Markovianity originated
from the time delay between coupling points, a giant atom
can realize polynomial spontaneous decay [61,62], and create
bound states of bosons [63–65].

In this paper, we focus on the single-photon transport
properties in a 1D waveguide coupled by two giant atoms.
Utilizing a real-space scattering method [6], we obtain the
general analytical expressions of the single-photon scattering
amplitudes, which are available for three basic topologies [60]
of the double-giant-atom systems. It is shown that the scat-
tering spectra are determined by the following characteristic
quantities of the system: the Lamb shift, the individual de-
cay, the exchange interaction, and the collective decay. Then,
based on these general expressions, we further analyze two
important phenomena, asymmetric Fano line shape and EIT
without control field, which can be observed from the scatter-
ing spectra. These phenomena also exist in the wQED system
containing multiple small atoms [34–41], but their counter-
part in giant-atom systems will give rise to some different
features due to additional interference effects and diverse
configurations. Specifically, we find that the appearance of
Fano interferences is strongly influenced by both the phase
delay between coupling points and the topologies of system.
In addition, we show that the scattering spectrum is also
a powerful tool for characterizing the light-matter interac-
tions, e.g., the decoherence-free interactions, in giant-atom
structures. On the other hand, the phenomenon of EIT with-
out control field was also firstly investigated in the wQED
system containing two small atoms [39–41], and very re-
cently similar phenomenon in the double-giant-atom system
for some special cases was discussed in Ref. [66]. Com-
pared with the well-known EIT with natural atoms [67–70],

2469-9926/2021/104(6)/063712(14) 063712-1 ©2021 American Physical Society

https://orcid.org/0000-0003-3386-5222
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.063712&domain=pdf&date_stamp=2021-12-22
https://doi.org/10.1103/PhysRevA.104.063712


S. L. FENG AND W. Z. JIA PHYSICAL REVIEW A 104, 063712 (2021)

the control-field-free scheme may provide alternative ways
to produce EIT-type phenomenon in solid-state systems like
superconducting circuits, which are hard to use as standard
� systems. Here, by analyzing the master equation we obtain
the general conditions for EIT without a control field, which
are appropriate for all configurations of double giant atoms.
As a verification, we further derive the expressions of the
EIT-like spectra under these conditions from the scattering
method. Our analysis shows that in a wQED system with
two giant atoms, the bright and the dark states required by
EIT-like phenomenon can be either collective or single-atom
states if the parameters are properly chosen. The conditions
given in our paper may provide good guidance for future
experiments on EIT without control field and on-chip photon
manipulation.

The paper is organized as follows. In Sec. II we give
a theoretical model, including the system Hamiltonian and
corresponding equations of motion, and further obtain the
general expressions of single-photon scattering amplitudes. In
Sec. III we discuss the phase-dependent Fano line shapes in
giant-atom systems with different topological configurations.
In Sec. IV we provide the general conditions to realize EIT
without a control field in wQED systems containing two giant
atoms. Finally, further discussions and conclusions are given
in Sec. V.

II. MODEL AND SOLUTIONS

A. Hamiltonian and equations of motion

Here we focus on the wQED structures with two two-
level giant atoms, and each atom couples to a 1D waveguide
through two connection points. As summarized in Ref. [60],
there are three different topologies for double-giant-atom
wQED structures, called separate giant atoms, braided giant
atoms, and nested giant atoms, respectively. The correspond-
ing configurations are shown schematically in Figs. 1(a)–1(c).
The atom with the leftmost coupling point is labeled by a and
the other by b. The coordinates of the connecting points are
x jn, with j = a, b labeling the atom and n = 1, 2 denoting
the left and the right coupling points of each atom. Under the
rotating-wave approximation (RWA), the Hamiltonian of the
system can be written as (h̄ = 1)

Ĥ =
∫

dxĉ†
R(x)

(
−ivg

∂

∂x

)
ĉR(x)

+
∫

dxĉ†
L(x)

(
ivg

∂

∂x

)
ĉL(x) +

∑
j

ω j σ̂
+
j σ̂−

j

+
∑
s, j,n

∫
dx Vjnδ(x − x jn)[ĉ†

s (x)σ̂−
j + H.c.], (1)

where s = R, L, j = a, b, and n = 1, 2. ĉ†
R(x) [ĉR(x)] and

ĉ†
L(x) [ĉL(x)] are the field operators of creating (annihilating)

the right- and left-propagating photons at position x in the
waveguide. σ̂+

j (σ̂−
j ) is the raising (lowering) operator of

the atom j. vg is the group velocity of the photons in the
waveguide. ω j is the atomic transition frequency. Vjn is the
coupling strength at position x jn.

FIG. 1. Sketches of two giant atoms coupled to an open waveg-
uide for three distinct topologies: (a) two separate giant atoms,
(b) two braided giant atoms, and (c) two nested giant atoms.

We assume that initially a single photon with energy ω =
vgk is incident from the left, where k is the wave vector of
the photon. In the single-excitation subspace, the interacting
eigenstate of the system can be written as

|�〉 =
∑

s

∫
dx�s(x)ĉ†

s (x)|∅〉 +
∑

j

f j σ̂
+
j |∅〉, (2)

where |∅〉 is the vacuum state, which means that there are
no photons in the waveguide, and meanwhile the atoms are
in their ground states. �s(x) (s = R, L) is the single-photon
wave function in the s mode. f j ( j = a, b) is the excita-
tion amplitude of the atom j. Substituting Eq. (2) into the
eigenequation

Ĥ |�〉 = ω|�〉 (3)

yields the following equations of motion:

(
−ivg

∂

∂x
− ω

)
�R(x) +

∑
j,n

f jVjnδ(x − x jn) = 0, (4a)

(
ivg

∂

∂x
− ω

)
�L(x) +

∑
j,n

f jVjnδ(x − x jn) = 0, (4b)

(ω j − ω) f j +
∑
s,n

Vjn�s(x jn) = 0. (4c)
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B. General expressions of the scattering amplitudes

For a photon incident from the left, �R(x) and �L(x) take the form [66]

�R(x) = eikx

[
θ (x1 − x) +

3∑
m=1

tmθ (x − xm)θ (xm+1 − x) + tθ (x − x4)

]
, (5a)

�L(x) = e−ikx

[
rθ (x1 − x) +

4∑
m=2

rmθ (x − xm−1)θ (xm − x)

]
. (5b)

Here tm (rm) is the transmission (reflection) amplitude of the mth coupling point, t (r) is the transmission (reflection) amplitude
of the last (first) coupling point, and θ (x) denotes the Heaviside step function. xm represents the mth (from left to right) coupling
point of each configuration in Fig. 1.

Substituting Eqs. (5a) and (5b) into Eqs. (4a)–(4c), we can obtain the expressions of the single-photon transmission and
reflection amplitudes

t = −(
a − 
L,a)(
b − 
L,b) + 1
4 (�2

ab − �a�b) + g2
ab(

i
a − i
L,a − 1
2�a

)(
i
b − i
L,b − 1

2�b
) − (

1
2�ab + igab

)2 , (6a)

r =
{[

1
2�b

(
i
a − i
L,a − 1

2�a
)
ei

αb−αa
2 + (a ↔ b)

] + (
igab + 1

2�ab
)√

�a�b
}
ei

αa+αb
2(

i
a − i
L,a − 1
2�a

)(
i
b − i
L,b − 1

2�b
) − (

1
2�ab + igab

)2 , (6b)

where 
 j = ω − ω j is the detuning between the photon and
the atom j. One can see that the spectra are determined by
some characteristic quantities [60], including the Lamb shifts

L, j , the individual decays � j , the exchange interaction gab,
the collective decay �ab, and the phase factors α j , which can
be defined as


L, j = √
γ j1γ j2 sin |φ j2, j1|, (7a)

� j =
∑
n,n′

√
γ jnγ jn′ cos φ jn, jn′ , (7b)

gab = 1

2

∑
n,n′

√
γanγbn′ sin |φbn,an′ |, (7c)

�ab =
∑
n,n′

√
γanγbn′ cos φbn,an′ , (7d)

tan α j =
∑

n,n′
√

γ jnγ jn′ sin k(x jn + x jn′ )∑
n,n′

√
γ jnγ jn′ cos k(x jn + x jn′ )

, (7e)

respectively, where j = a, b and n, n′ = 1, 2. γ jn = 2V 2
jn/vg

is the decay rate through the coupling point at x jn. φ jn, j′n′ =
ωa(x jn − x j′n′ )/vg is the phase acquired by the photon trav-
eling from the connection point x j′n′ to x jn. In the above
derivation, we have assumed that the transition frequencies of
the two atoms ωa ≈ ωb and made the Markov approximation.
Thus the wave vector k in the definition of φ jn, j′n′ has been
replaced by ωa/vg. Note that Eqs. (6a) and (6b) are the most
general expressions for the scattering amplitudes, which are
available for all the three types of topological configurations.
One can further define the transmittance T = |t |2 and the re-
flectance R = |r|2. The conservation of photon number results
in T + R = 1.

Based on the general expressions of the scattering ampli-
tudes given above, in what follows we concentrate on two
kinds of important phenomena, Fano interferences and EIT

without control field, in a wQED system containing double
giant atoms.

III. FANO INTERFERENCES

It is known that when a chain of two-level atoms strongly
coupled to a waveguide, one can observe the emergence
of asymmetric Fano line shapes [34–38] due to interfer-
ence effects between the scattering amplitudes from different
atoms. This is an example of the Fano interference phe-
nomenon [71,72]. In addition, the appearance of Fano line
shapes is influenced by the relative phase picked up by the
propagating photon when it travels from one atom to the next.
Here, starting from the general expressions of the scattering
amplitudes Eqs. (6a) and (6b), we investigate the similar phe-
nomenon in wQED systems with double giant atoms. Note
that in addition to the phase delays, the Fano-like line shapes
in these systems are also dependent on the topological con-
figurations. Thus they exhibit features different from those in
wQED systems with two small atoms.

In this section, for simplicity we assume that the atoms
have the same frequency with 
 j = 
, and all the bare de-
cay rates are equal with γ jn = γ . We also assume that the
distances between neighboring points are equal with corre-
sponding phase delay φ. Without loss of generality, we set the
phase corresponding to the leftmost point to be 0 as reference.
Under the above assumptions, we discuss the spectral features,
especially the conditions for the occurrence of Fano-like line
shapes, for the following three different topological configu-
rations.

A. Two separate giant atoms

At first we consider the case of two separate gi-
ant atoms. From Eqs. (7a)–(7d), we can get the Lamb
shifts 
L,a = 
L,b = 
L = γ sin φ, the individual decays
�a = �b = 2γ (1 + cos φ), the exchange interaction gab =
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FIG. 2. (a) Reflectance R for two separate giant atoms as functions of detuning 
 and phase φ. The black dashed line is used to label the
locations of the reflection peaks. The white dashed lines are used to label the reflection minima. The curves in (b)–(i) show cross sections of
panel (a) at phases (b) φ = 0, (c) φ = 0.05π , (d) φ = π/4, (e) φ = 0.45π , (f) φ = π/2, (g) φ = 0.55π , (h) φ = 3π/4, and (i) φ = 0.92π .

γ (sin φ + 2 sin 2φ + sin 3φ)/2, and the collective decay
�ab = γ (cos φ + 2 cos 2φ + cos 3φ). Substituting these re-
sults into Eqs. (6a) and (6b), we can get the transmission and
reflection amplitudes of this topology:

t = −(
 − γ sin φ)2

[i
 − γ (1 + eiφ )]2 − [
γ

2 eiφ (1 + eiφ )2]2 , (8a)

r = 4ie3iφγ cos2
(

φ

2

)
[
 cos 2φ + γ (sin φ + sin 2φ)]

[i
 − γ (1 + eiφ )]2 − [
γ

2 eiφ (1 + eiφ )2]2 .

(8b)

Without loss of generality, in the following part we focus on
the reflectance R = |r|2 only, for the transmittance T and the
reflectance R are constrained by the relation T + R = 1.

In Fig. 2(a) we plot the reflectance R as functions of 


and φ. Note that the spectra changes periodically with φ, and
thus, without loss of generality, the range of φ is chosen as a
period φ ∈ [0, 2π ]. From Eqs. (8a) and (8b), we can obtain
that the reflection peaks with R = 1 appear at 
 = 
L =
γ sin φ [labeled by the black dashed line in Fig. 2(a)]. And
the reflection minima with R = 0 appear at 
 = −γ (sin φ +
sin 2φ)/ cos 2φ [labeled by the white dashed line in Fig. 2(a)].
In addition, for some φ ∈ [0, π ], we have relation R(
,φ) =
R(−
, 2π − φ). Thus, without loss of generality we show in
Figs. 2(b)–2(i) the cross sections at some typical phase delays
in the region φ ∈ [0, π ].

Specifically, when φ = 0, φ = π/4, φ = π/2, and φ =
3π/4, the spectra are symmetric about 
 = 
L. In addi-
tion, when φ = 0 and φ = π/2, the reflection spectra exhibit
Lorentzian line shapes [see Figs. 2(b) and 2(f)]. And when
φ = π/4 and φ = 3π/4, the spectra exhibit super-Gaussian
line shapes [see Figs. 2(d) and 2(h)]. Note that this type
of line shape appears around the maximum reflection point
when φ takes the values other than 0 and π/2. In fact,
the reflection coefficients around the maximum reflection
point 
 = 
L can be approximated as R ≈ 1 − 
′4/(4g4

ab +
�2

abg2
ab) ≈ exp[−
′4/(4g4

ab + �2
abg2

ab)], where 
′ = 
 − 
L.
Therefore the line shapes exhibit a super-Gaussian character-

istic around the reflection peaks, as shown by Figs. 2(c)–2(e)
and Figs. 2(g)–2(i). This is different from the Lorentzian line
shape displayed in Figs. 2(a) and 2(f), which shows a Gaussian
distribution near the reflection peak.

When φ takes values other than φ = 0, φ = π/4, φ = π/2,
and φ = 3π/4, the spectra become asymmetric and there ap-
pear reflection minima at 
 = −γ (sin φ + sin 2φ)/ cos 2φ, as
shown in Figs. 2(c), 2(e), 2(g), and 2(i). Through the following
analysis one can find that in some regimes the spectra around
the reflection minima can be approximated as asymmetric
Fano line shapes. To this end, we rewrite the reflection am-
plitude Eq. (8b) as the superposition of two Lorentz spectra
r = r+ + r−, where

r± = ±e3iφ�±
i(
 − 
±) − �±

, (9)

with


± = γ sin φ
(
1 ± 2 cos φ ± 2 cos2 φ

)
, (10a)

�± = γ (1 + cos φ)(1 ± cos 2φ) (10b)

being the resonance points and the half-widths, respec-
tively. To obtain an asymmetric Fano-type spectrum, the
condition �+ 	 �− (or �− 	 �+) should be satisfied.
Here the mode with large width denotes a continuum while
the mode with small width represents a discrete level [35]. We
can prove that under the condition �± 	 �∓, the reflection
coefficient around 
∓ can be approximated as

R � F (q + ε)2

1 + ε2
, (11)

exhibiting a standard Fano line shape [71,72]. Here q =
(
± − 
∓)/�± is an asymmetry parameter, ε = (
 −

∓)/�∓ is a reduced detuning, and F = �2

±/[(
± − 
∓)2 +
�2

±]. Specifically, according to Eq. (10b), we find that when
the phase delay (restricted within a half period) is taken
as φ ∈ (0, 0.1π ) ∪ (0.9π, π ), the ratio �+/�− > 10. Thus
we can say that in this region �+ 	 �− is satisfied, and
the reflection spectra for this case exhibits Fano line shapes
around the reflection minima ε = −q, as shown in Figs. 2(c)
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FIG. 3. (a) Reflectance R for two braided giant atoms as func-
tions of detuning 
 and phase φ. The black dashed line is used to
label the locations of the reflection peaks. The white dashed lines
are used to label the reflection minima. The curves in (b)–(d) show
cross sections of panel (a) at phases (b) φ = 0, (c) φ = π/10, and
(d) φ = 0.47π .

and 2(i). Also, when φ ∈ (0.4π, π/2) ∪ (π/2, 0.6π ), we have
�−/�+ > 10. Thus we can say that �− 	 �+ in this region.
The corresponding reflection spectra containing Fano minima
are shown in Figs. 2(e) and 2(g).

Compared with the case of two small atoms [34–38], the
shapes of the spectra for the case of two separate giant atoms
(shown in Fig. 2) are similar. The main difference is that for
two small atoms, the reflection maxima are always located
at 
 = 0 [38], but for two separate giant atoms, the reflec-
tion maxima appear at 
 = γ sin φ. The reason is that two
separate giant atoms in a wQED structure can be looked on
as two small atoms with frequency shift γ sin φ, effective
decay 2γ (1 + cos φ), and phase delay 2φ (proportional to
effective distance between the atoms). However, for those
unique configurations of the multi-giant-atom systems, i.e.,
the topologies with two braided or nested giant atoms, there is
no similar analogy. Thus the spectra become more different.
We will discuss these cases in detail in the following sections.

B. Two braided giant atoms

Now we consider the case of two braided giant atoms.
From Eqs. (7a)–(7d), we can get the Lamb shifts 
L,a =

L,b = 
L = γ sin 2φ, the individual decays �a = �b =
2γ (1 + cos 2φ), the exchange interaction gab = γ (3 sin φ +
sin 3φ)/2, and the collective decay �ab = γ (3 cos φ +
cos 3φ). Thus the transmission and reflection amplitudes of
this configuration can be written as

t = −(
 − γ sin 2φ)2 + γ 2
(
sin2 2φ + sin2 φ

)
[i
 − γ (1 + e2iφ )]2 − [

γ

2 (3eiφ + e3iφ )
]2 , (12a)

r = 4ie3iφγ cos2 φ(
 cos φ + γ sin φ)

[i
 − γ (1 + e2iφ )]2 − [
γ

2 (3eiφ + e3iφ )
]2 . (12b)

We plot the reflectance R as functions of 
 and φ [see
Fig. 3(a)]. One can find that the period of the spec-

tra is π . Different from the case of two separate atoms,
there are two reflection peaks appearing at 
 = γ sin 2φ ±
γ
√

1 − cos φ cos 3φ, except for some special phases φ = nπ ,
as illustrated by the black dashed lines. And the reflection
minima with R = 0 appear at 
 = −γ tan φ, as shown by
the white dashed lines. Moreover, the two reflection peaks
are always located at the same side of the minimum point
[right when φ ∈ (0, π/2), and left when φ ∈ (π/2, π )]. Fi-
nally, for some φ ∈ [0, π/2], we have relation R(
,φ) =
R(−
,π − φ). Thus, without loss of generality, we show in
Figs. 3(b)–3(d) the cross sections at some typical phase delays
in the region φ ∈ [0, π/2].

Specifically, when φ = 0, the reflection spectrum has a
Lorentzian line shape centered at 
 = 0 with width 8γ , as
shown in Fig. 3(b). With φ increasing, the reflection peak
splits into two, and a reflection minimum appears at 
 =
−γ tan φ, as shown in Fig. 3(c) (with φ = π/10). Similar
to the case of two separate giant atoms, we can prove that
if the phase φ is appropriately chosen, the spectrum near
the reflection minimum exhibits a Fano line shape. Again, to
analyze the mechanism of Fano interference, we rewrite the
reflection amplitude Eq. (12b) as the sum of two Lorentz-type
amplitudes r = r+ + r−, where r± can also be expressed in
terms of Eq. (9), with


± = γ
(
sin 2φ ± 3

2 sin φ ± 1
2 sin 3φ

)
, (13a)

�± = γ (1 + cos 2φ)(1 ± cos φ). (13b)

And straightforwardly, under the condition �± 	 �∓, the
reflection spectrum around 
∓ can be fitted by a Fano line
shape described by Eq. (11). From Eq. (13b), we can see
that to obtain Fano line shapes the phase delay (restricted
within one period) should be taken as φ ∈ (0, 0.19π ) to en-
sure �+ 	 �−, or φ ∈ (0.81π, π ) to ensure �− 	 �+. Thus
the reflection spectrum shown in Fig. 3(c) (with φ = π/10,
leading to �+ 	 �−) exhibits Fano line shapes near the re-
flection minimum.

When φ is close to π/2 (not equal), the spectra exhibit
line shapes like vacuum Rabi splitting, as shown in Fig. 3(d).
This kind of spectroscopic characteristics can be explained in
terms of a nearly decoherence-free interaction between two
braided giant atoms. Note that when φ = π/2, the atoms have
vanished individual decays �a = �b = 0 and meanwhile pre-
serve a nonzero exchange interaction gab = γ between them,
called a decoherence-free interaction [60]. However, if the
phase φ is exactly equal to π/2, this phenomenon cannot be
probed by the photon scattering spectra because the atoms
are decoupled from the waveguide. Thus, in Fig. 3(d) we
let the phase φ slightly deviate from π/2, which can ensure
that gab � γ , and at the same time �i (i = a, b) obtains a
small value, satisfying �i  gab. In this regime the incident
photon can interact with the system, and therefore the nearly
decoherence-free interaction can be probed. Moreover, in this
case the system works in the strong-coupling regime, with the
exchange interaction being much larger than the individual
decays of atoms. Thus it is not surprising that we can obtain
a vacuum Rabi-splitting-like spectrum in Fig. 3(d). To see
this more clearly, we set φ = π/2 + δ (with |δ|  1) and
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FIG. 4. (a) Reflectance R for two nested giant atoms as functions of detuning 
 and phase φ. The black dashed line is used to label the
locations of the reflection peaks. The white dashed lines are used to label the reflection minima. The curves in (b)–(g) show cross sections of
panel (a) at phases (b) φ = 0, (c) φ = π/10, (d) φ = π/3, (e) φ = 2π/3, (f) φ = 0.71π , and (g) φ = 4π/5.

write down the corresponding approximate expressions of the
scattering amplitudes:

t ≈ −(
 + 2γ δ)2 + γ 2

i(
 + 2γ δ)[i(
 + 2γ δ) − 4γ δ2] + γ 2
, (14a)

r ≈ 4γ 2δ2

i(
 + 2γ δ)[i(
 + 2γ δ) − 4γ δ2] + γ 2
. (14b)

Clearly, these expressions represent standard vacuum Rabi
splitting spectra with two peaks located at 
 = −2γ δ ± γ .
The distance between the two peaks is 2gab = 2γ , character-
izing the strength of the exchange interaction between atoms.
The width of each peak is (�a + �b)/2 = 4γ δ2. These results
are in accordance with the spectrum shown in Fig. 3(d), where
the phase is taken as φ = 0.47π . In summary, the spectra near

φ = π/2 can be used to sensitively probe the decoherence-
free interaction between two braided giant atoms. Moreover,
this result indicates that the system in this regime can be
regarded as an effective cavity QED structure and may have
potential applications in quantum information processing.

C. Two nested giant atoms

Finally, we consider the case of two nested giant atoms.
From Eqs. (7a)–(7d), we can get the Lamb shifts 
L,a =
γ sin 3φ, 
L,b = γ sin φ, the individual decays �a = 2γ (1 +
cos 3φ), �b = 2γ (1 + cos φ), the exchange interaction gab =
γ (sin φ + sin 2φ), and the collective decay �ab = 2γ (cos φ +
cos 2φ). Thus the transmission and reflection amplitudes of
this topology can be written as

t = −(
 − γ sin 3φ)(
 − γ sin φ) + γ 2(sin φ + sin 2φ)2

[i
 − γ (1 + e3iφ )][i
 − γ (1 + eiφ )] − [γ eiφ (1 + eiφ )]2
, (15a)

r = 4ie3iφγ cos2 φ

2 [
(2 − 2 cos φ + cos 2φ) − γ (sin φ − sin 2φ)]

[i
 − γ (1 + e3iφ )][i
 − γ (1 + eiφ )] − [γ eiφ (1 + eiφ )]2
. (15b)

We plot the reflectance R as function of 
 and φ [see
Fig. 4(a)]. The period of the spectra is 2π . The black dashed
lines are used to label the location of reflection peaks at


 = 1
2γ (sin 3φ + sin φ)

± γ

√
(sin φ + sin 2φ)2 + 1

4 (sin 3φ − sin φ)2,

while the white dashed line represents the reflection minima
at 
 = γ (sin φ − sin 2φ)/(2 − 2 cos φ + cos 2φ), except for
some special phases φ = nπ . Note that for some φ ∈ [0, π ],
we have the relation R(
,φ) = R(−
, 2π − φ). Thus, for
simplicity, we only consider the cross sections at some typical
phase delays in the region φ ∈ [0, π ], as shown in Figs. 4(b)–
4(g).

Specifically, when φ = 0, the reflection spectrum exhibits
a Lorentzian line shape centered at 
 = 0 with width 8γ , as

shown in Fig. 4(b). When 0 < φ < π , a reflection minimum
with R = 0 appears between two reflection peaks, as shown
in Figs. 4(c)–4(g). Note that this is different from the braided
atoms, where both reflection peaks are located at the same side
of the reflection minimum. The distribution of the reflection
peaks and dips for different phases is summarized in more
detail in what follows. When φ < π/3, both the left peak
and the reflection minimum appear at 
 < 0, and the right
peak is located at 
 > 0 [see Fig. 4(c)]. When φ = π/3, the
reflection minimum appears at 
 = 0 [see Fig. 4(d)]. When
π/3 < φ < 2π/3, the left peak is located at 
 < 0, and the
reflection minimum and the right peak appear at 
 > 0. When
φ = 2π/3, the left reflection peak is located at 
 = 0, and the
reflection minimum and the right peak appear at 
 > 0 [see
Fig. 4(e)]. When φ > 2π/3, all the reflection peaks and the
reflection minimum appear at 
 > 0 [see Figs. 4(f) and 4(g)],
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and particularly, when φ � 0.71π , the spectrum becomes
symmetric [see Fig. 4(f)].

Similar to the other two configurations, if the phase φ is
appropriately chosen, the spectrum near the reflection mini-
mum exhibits a Fano line shape. Also, to better understand
the Fano interference, we decompose the reflection amplitude
Eq. (15b) into the sum of two terms r = r+ + r−, where

r± = χ±�±
i(
 − 
±) − �±

(16)

are Lorentz-type amplitudes with


± = γ

[
1

2
(sin φ + sin 3φ) ∓

√
2A

∣∣∣∣cos
φ

2

∣∣∣∣ cos (2φ + ζ )

]
,

(17a)

�± = γ

[
1 + 1

2
cos φ + 1

2
cos 3φ

±
√

2A

∣∣∣∣cos
φ

2

∣∣∣∣ sin (2φ + ζ )

]
. (17b)

The expressions of coefficients χ± = χei(φ−ζ±ϑ ) and A are
given in Appendix A. Again, one can prove that un-
der the condition �± 	 �∓, the reflection spectra around

∓ can be fitted by a Fano line shapes described by
Eq. (11), where q = cos 2ϑ (
∓ − 
±)/�± ± sin 2ϑ , ε =
(
 − 
∓)/�∓, and F = χ2�2

±/[(
± − 
∓)2 + �2
±]. After

some calculations, we can find that when the phase delay
(restricted within half period) is chosen as φ ∈ (0, 0.23π ), the
ratio �+/�− > 10. Thus in this regime �+ 	 �− is satisfied.
The interference between modes r+ and r− results in a Fano
line shape around the reflection minimum [see Fig. 4(c)]. And
when φ ∈ (0.51π, π ), we have �−/�+ > 10. Thus �− 	
�+ is satisfied and the Fano line shape also appears [see
Figs. 4(e)–4(g)]. In particular, when φ � 0.71π , the asymmet-
ric factor q = 0, and the line shape becomes symmetric about

 � 0.59γ [see Figs. 4(f)].

It should be pointed out that the spectra in Figs. 4(c)–4(g)
look like EIT or Autler-Townes splitting (ATS) spectra, but
according to our analysis in the next section, only the curve
in Fig. 4(d) exhibits an asymmetric ATS spectrum with a
reflection minimum at 
 = 0. The curves in the other figures
are neither EIT nor ATS spectra. In the next section we will
provide general conditions to generate EIT or ATS spectra in
the systems consisting of two nested giant atoms.

IV. SINGLE-PHOTON EIT WITHOUT CONTROL FIELD

The control-field-free EIT phenomenon was firstly in-
vestigated in the wQED system containing double small
atoms [39–41]. Similar phenomenon in the double giant-atom
systems for some special cases, e.g., two braided giant atoms
with the phase delay between neighboring coupling points
being set as π , was also investigated [66]. Here we aim to
provide the general conditions to produce EIT without control
field in wQED systems containing double giant atoms. To
this end, in what follows we will first derive the conditions
for EIT through analyzing the master equation of the system,
and then obtain the expressions of the scattering amplitudes
under these conditions, based on the general results provided

in Sec. II B. We find that compared with small atoms, giant
atoms possess more working points to realize EIT-type phe-
nomenon. For example, for two small atoms, to obtain EIT,
detuning between the atoms is required, which plays the role
of control field [39–41]. But for double giant atoms, there are
more choices. Even if the atoms are with equal frequencies,
the effective control field can also be obtained by adjusting
the Lamb shifts (through changing the phase delays between
coupling points), which will be discussed in Sec. IV A.

By treating the incident single photon as a weak driving
field, and in a frame rotating with the drive frequency ω, the
master equation for double-giant-atom wQED structures can
be written as [60]

˙̂ρ = −i[Ĥdrive, ρ̂] +
∑

j

� jD[σ̂−
j ]ρ̂

+�ab

∑
j �= j′

(
σ̂−

j ρ̂σ̂+
j′ − 1

2
{σ̂+

j σ̂−
j′ , ρ̂}

)
, (18)

with

Ĥdrive = −
∑

j

(
 j − 
L, j )σ̂
+
j σ̂−

j + gab(σ̂+
a σ̂−

b + σ̂+
b σ̂−

a )

− i

2

∑
j

(� j σ̂
+
j − H.c.), (19)

where D[Ô]ρ̂ = Ôρ̂Ô† − {Ô†Ô, ρ̂}/2 is the Lindblad oper-
ator. The Rabi frequency of the atom j is defined as � j =
� j1eiφ j1,a1 + � j2eiφ j2,a1 , where � jn = √

2γ jnα is the Rabi fre-
quency at coupling points x jn, and |α|2 is the number of
photons per second coming from the coherent drive. The other
qualities are the same as those defined in defined in Sec. II B.

The key to obtain the EIT without a control field in wQED
systems with giant atoms is to generate dark (decoupled from
the waveguide) and bright (coupled to the waveguide) modes
and at the same time persist with the waveguide-induced in-
teractions between them. Specifically, the bright and the dark
states can be either collective or single-atom states, and we
will discuss these two cases in the following sections.

A. Realizing EIT using waveguide-mediated interactions
between atomic collective states

By writing the master equation (18) and the Hamilto-
nian (19) in the symmetric-antisymmetric (S-A) basis σ̂−

S,A =
(σ̂−

a ± σ̂−
b )/

√
2, we have

˙̂ρ = −i[Ĥdrive, ρ̂] +
∑

u

�uD[σ̂−
u ]ρ̂

+�SA

∑
u �=v

[
σ̂−

u ρ̂σ̂+
v − 1

2
(σ̂+

u σ̂−
v ρ̂ + ρ̂σ̂+

u σ̂−
v )

]
, (20)

with

Ĥdrive = −
∑

u


uσ̂
+
u σ̂−

u + gSA(σ̂+
S σ̂−

A + σ̂+
A σ̂−

S )

− i

2

∑
u

(�uσ̂
+
u − H.c.). (21)
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Here, u, v = S, A. The exchange interaction, the individual
decays, and the collective decay in the S-A basis are defined
as

gSA = − 1
2 (
a − 
L,a − 
b + 
L,b), (22a)

�S = 1
2 (�a + �b) + �ab, (22b)

�A = 1
2 (�a + �b) − �ab, (22c)

�SA = 1
2 (�a − �b). (22d)

The effective detuning and the Rabi frequency of the sym-
metric (or antisymmetric) mode are defined as 
S,A =∑

j=a,b(
 j − 
L, j )/2 ∓ gab and �S,A = (�a ± �b)/
√

2, re-
spectively.

To achieve a master equation that can describe EIT- or
ATS-type dynamics, the following conditions should be sat-
isfied: (i) One of the collective modes is coupled to the
waveguide, forming a bright state, and the other should be
decoupled from the waveguide, forming a dark state. (ii) The
collective decay should be zero. (iii) The exchange interaction
between the symmetric and the antisymmetric modes should
be nonzero and plays the role of a control field. For example,
we can choose the symmetric state |S〉 = σ̂+

S |gg〉 as a dark
state and the antisymmetric state |A〉 = σ̂+

A |gg〉 as a bright
state, i.e., �S = 0, �A �= 0, �SA = 0, and gSA �= 0. Then the
master equation (20) and the Hamiltonian (21) become

˙̂ρ = −i[Ĥ, ρ̂] + �AD[σ̂−
A ]ρ̂ (23)

and

Ĥ = −
∑

u


uσ̂
+
u σ̂−

u + gSA(σ̂+
S σ̂−

A + σ̂+
A σ̂−

S )

− i

2
(�Aσ̂+

A − H.c.), (24)

respectively. We can prove that Eqs. (23) and (24) can be
mapped to the equation of motion describing the dynamics
of a driven �-type atom [69] that can generate EIT- or ATS-
type scattering spectra. The role of the control field is played
by the exchange interaction gSA. Specifically, we consider a
three-level �-type atom with a ground sate |0〉, a metastable
state |1〉, and an excited state |2〉, and the transition |0〉 ↔ |2〉
(|1〉 ↔ |2〉) is coupled by a probe (control) field with Rabi
frequency �p (�c) to generate EIT phenomenon. After ana-
lyzing the master equation of this system (see Appendix B),
we can find the following analogies: |gg〉 ↔ |0〉, |S〉 ↔ |1〉,
|A〉 ↔ |2〉, σ̂−

S ↔ σ̂01, σ̂−
A ↔ σ̂02, gSA ↔ �c/2, �A ↔ �p,


S ↔ 
p − 
c, 
A ↔ 
p, �A ↔ �20.
To verify the above analysis, we simplify Eqs. (6a) and (6b)

under the conditions �S = 0, �A �= 0, �SA = 0, and gSA �= 0,
and obtain the following expressions of transmission and re-
flection amplitudes:

t = −
S
A + g2
SA

i
S
(
i
A − �A

2

) + g2
SA

, (25a)

r =
1
2 i�A
S

i
S
(
i
A − �A

2

) + g2
SA

, (25b)

which represent well-known EIT or ATS spectra, depending
on the strength of the “control field” gSA. When 
S ≈ 
A,

we replace them with Z and inspect the complex roots of the
denominator of the scattering amplitude [73,74],

Z± = −i
�A

4
± 1

4

√
16g2

SA − �2
A, (26)

which are purely imaginary for

|gSA| <
�A

4
. (27)

In this parameter regime, the transmission point located at

S = 0 is caused by destructive interference between two res-
onances. This regime is so called the EIT regime. Otherwise,
the system enters the ATS regime, in which the scattering
spectrum is made up of two peaks corresponding to the
dressed states, and the observed dip can be interpreted as a
gap between the two peaks.

Alternatively, one can also choose the state |A〉 as a dark
state and the state |S〉 as a bright state, i.e., �A = 0, �S �= 0,
�SA = 0, and gSA �= 0, to achieve the EIT phenomenon. All
the results for this case can be obtained from Eqs. (23)–(27)
by the index exchange S ↔ A.

As specific examples of the above general results, in what
follows we consider the maximum symmetric case, with equal
bare decay rates γ jn = γ , and equal phase delay φ between
neighboring points. Without loss of generality, we set the
phase corresponding to the leftmost coupling point as zero.
In Figs. 5(a)–5(c), we plot �S, �A, and �SA as the functions
of φ for three different topologies. We use the blue arrows to
indicate the points where EIT occurs with �S = 0, �A �= 0 (or
�S �= 0, �A = 0) and �SA = 0. The corresponding reflection
spectra are shown in the insets. In the following we will
discuss this issue in details for different configurations.

1. Two separate giant atoms

For two separate giant atoms, from Eqs. (22a)–(22d) we
can derive the exchange interaction and effective decay rates
for the maximum symmetric case

gSA = 1
2
ab, (28a)

�A = γ (2 + cos φ − 2 cos 2φ − cos 3φ), (28b)

�S = γ (2 + 3 cos φ + 2 cos 2φ + cos 3φ), (28c)

�SA = 0. (28d)

Here, 
ab = ωa − ωb is the frequency deference between two
atoms. Clearly, when φ = (n + 1/2)π (n ∈ N), the state |A〉
(|S〉) become a bright (dark) state, with �S = 0, �A = 4γ ,
�SA = 0, and 
S = 
A = (
a + 
b)/2 + (−1)n+1γ . The
corresponding transmission and reflection amplitudes can be
described by Eqs. (25a) and (25b). In addition, from (27) and
Eqs. (28a), we can see that 
ab plays the role of a control field,
and the EIT regime is 0 < |
ab| < 2γ . The corresponding re-
flection spectra as functions of 
a are shown in the two insets
on the left (with φ = 0.5π,
ab = γ and φ = 1.5π,
ab = γ ,
respectively) in Fig. 5(a), with transparency points located at

a = (−1)nγ − 
ab/2.

On the contrary, when φ = 2nπ (n ∈ N+), the state |S〉
(|A〉) becomes a bright (dark) state, with �A = 0, �S = 8γ ,
�SA = 0, and 
S = 
A = (
a + 
b)/2. Correspondingly,
the transmission and reflection amplitudes can be obtained
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(a)

(b)

(c)

FIG. 5. Individual decays �S (red solid lines), �A (black dashed
lines), and collective decay �SA (orange dot-dashed lines) as func-
tions of φ for three topologies: (a) two separate atoms, (b) two
braided atoms, and (c) two nested atoms. The insets are the reflection
spectra as functions of 
a (in unit of γ ) at the phase delay indicated
by the blue arrows, where EIT phenomena appear. The detunings
between two atoms are chosen as 
ab = −γ in the leftmost inset in
panel (c), and 
ab = γ in the other insets.

from Eqs. (25a) and (25b) by the index exchange S ↔ A.
Also, in this case 
ab plays the role of the control field, and the
EIT regime is 0 < |
ab| < 4γ . The corresponding reflection
spectra are shown in the right insets (with φ = 2π,
ab = γ )
in Fig. 5(a), with transparency point located at 
a = −
ab/2.

2. Two braided giant atoms

For two braided giant atoms with maximum symmetry,
from Eqs. (22b)–(22d) we have

gSA = 1
2
ab, (29a)

�A = γ (2 − 3 cos φ + 2 cos 2φ − cos 3φ), (29b)

�S = γ (2 + 3 cos φ + 2 cos 2φ + cos 3φ), (29c)

�SA = 0. (29d)

Obviously, when φ = (2n + 1)π (n ∈ N), the state |A〉 (|S〉)
is the bright (dark) state, with �S = 0, �A = 8γ . And when
φ = 2nπ (n ∈ N+), the state |S〉 (|A〉) is the bright (dark)
state, with �A = 0, �S = 8γ . Additionally, in both cases we
have 
S = 
A = (
a + 
b)/2 and �SA = 0. Thus the two
cases give rise to the same spectra. From Eqs. (27) and (29a),
we find that 
ab plays the role of control field, and the EIT
regime is 0 < |
ab| < 4γ . The corresponding reflection spec-
tra are shown in the insets (with φ = π,
ab = γ and φ =

2π,
ab = γ , respectively) in Fig. 5(b), with transparency
points located at 
a = −
ab/2.

3. Two nested giant atoms

For two nested giant atoms with maximum symmetry, from
Eqs. (22b)–(22d) we have

gSA = 1
2
ab + 1

2γ (sin φ − sin 3φ), (30a)

�A = γ (2 − cos φ − 2 cos 2φ + cos 3φ), (30b)

�S = γ (2 + 3 cos φ + 2 cos 2φ + cos 3φ), (30c)

�SA = γ (cos 3φ − cos φ). (30d)

Clearly, when φ = (n + 1/2)π (n ∈ N), the state |A〉 (|S〉)
couples to the waveguide and forms a bright (dark) state,
with �S = 0, �A = 4γ , �SA = 0, 
S,A = (
a + 
b)/2 ∓
(−1)nγ , and gSA = 
ab/2 + (−1)nγ . The corresponding
transmission and reflection amplitudes can be described by
Eqs. (25a) and (25b). In addition, from Eq. (27) we find that
when n is even, the EIT regime is −4γ < 
ab < 0 (
ab �=
−2γ ). On the other hand, when n is odd, the EIT regime is 0 <


ab < 4γ (
ab �= 2γ ). Note that in this case the EIT spectrum
is asymmetric because 
S �= 
A. The corresponding reflec-
tion spectra are shown in the two insets on the left (with
φ = 0.5π,
ab = −γ and φ = 1.5π,
ab = γ ) in Fig. 5(c),
with transparency points appearing at 
a = (−1)nγ − 
ab/2.

When φ = 2nπ (n ∈ N+), the state |S〉 (|A〉) couples to
the waveguide and forms a bright (dark) state, with �A =
0, �S = 8γ , �SA = 0, 
S = 
A = (
a + 
b)/2, and gSA =

ab/2. The corresponding transmission and reflection am-
plitudes can be obtained from Eqs. (25a) and (25b) by the
index exchange S ↔ A. The EIT regime is 0 < |
ab| < 4γ .
The corresponding reflection spectra are shown in the right
inset (with φ = 2π,
ab = γ ) in Fig. 5(c), with transparency
located at 
a = −
ab/2.

B. Realizing EIT using waveguide-mediated interactions
between single-atom states

In a previous section we discuss the EIT phenomena
caused by the waveguide-mediated interactions between
collective symmetric and antisymmetric states. Here we in-
vestigate a different way to achieve EIT by engineering the
waveguide-mediated interactions between single-atom states.
To this end, the following conditions should be satisfied: (i)
one of the atoms is coupled to the waveguide, and the other is
decoupled, their excitation states (|eg〉 or |ge〉) work as bright
and dark states, respectively; (ii) the collective decay �ab is
zero; (iii) the waveguide-mediated interaction gab between the
atoms is nonzero and plays a role of control field. For exam-
ple, if �a = 0, �b �= 0, �ab = 0, and gab �= 0, the equation of
motion Eq. (18) and the Hamiltonian Eq. (19) become

˙̂ρ = −i[Ĥdrive, ρ̂] + �bD[σ̂−
b ]ρ̂, (31)

with

Ĥdrive = −
∑

j

(
 j − 
L, j )σ̂
+
j σ̂−

j + gab(σ̂+
a σ̂−

b + σ̂+
b σ̂−

a )

− i

2
(�bσ̂

+
b − H.c.). (32)
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Here j = a, b. Similarly, we can prove that above equation of
motion can generate EIT or ATS-type scattering spectra by
mapping it to a driven �-type atom. And the corresponding
relations between the two systems can be summarized as
follows (see Appendix B): |gg〉 ↔ |0〉, |eg〉 ↔ |1〉, |ge〉 ↔ |2〉,
σ̂−

a ↔ σ̂01, σ̂−
b ↔ σ̂02, gab ↔ �c/2, �b ↔ �p, 
a − 
L,a ↔


p − 
c, 
b − 
L,b ↔ 
p, �b ↔ �20. Note that for this case
these mappings are accurate only in the single-photon sector,
as discussed in Sec. IV C and Appendix C.

These analysis can be verified by simplifying Eqs. (6a)
and (6b) under conditions �a = 0, �b �= 0, �ab = 0, and gab �=
0. The corresponding transmission and reflection amplitudes
can be expressed as

t = −(
a − 
L,a)(
b − 
L,b) + g2
ab

i(
a − 
L,a)
[
i(
b − 
L,b) − 1

2�b
] + g2

ab

, (33a)

r =
1
2 i�b(
a − 
L,a)

i(
a − 
L,a)
[
i(
b − 
L,b) − 1

2�b
] + g2

ab

. (33b)

By taking 
a − 
L,a � 
b − 
L,b and replacing them with
Z , we can inspect the complex roots of the denominator of
the scattering amplitudes

Z± = −i
�b

4
± 1

4

√
16g2

ab − �2
b, (34)

which are purely imaginary for

|gab| <
�b

4
. (35)

In this parameter regime, the transmission point located at

a = 
L,a is caused by quantum interference. This regime
is so-called EIT regime.

Alternatively, one can also let �a �= 0, �b = 0, �ab = 0,
and gab �= 0, to achieve EIT-like phenomenon. All the results
for this case can be obtained from Eqs. (31)–(35) by the index
exchange a ↔ b.

As specific examples, we consider the special case with
γa1 = γa2 = γa, γb1 = γb2 = γb. And without loss of gener-
ality, we let φa1 = 0. In the following we will discuss the
EIT-like spectra under the above assumptions for different
configurations.

First we consider the topology with two separate giant
atoms. As discussed before, to generate EIT requires that one
of the atoms is decoupled from the waveguide. Specifically,
if the atom a is decoupled with �a = 0, it can be seen from
Eq. (7b) that the condition φa2 − φa1 = (2n + 1)π (n ∈ N) is
required. By using Eq. (7c), one can further find that under
this condition, the exchange interaction gab = 0 (i.e., vanished
control field) always holds. Note that some detailed analysis
on the relation between the individual decay and the exchange
interaction can be found in Ref. [60]. Similarly, if �b = 0, we
can also obtain a vanished exchange interaction. Thus in this
topological configuration the EIT-like phenomenon cannot be
generated based on waveguide-mediated interactions between
single-atom states.

For two braided atoms, if we let the atom a decouple
from the waveguide, satisfying the condition φa2 − φa1 =
(2n + 1)π (n ∈ N), we can obtain from Eqs. (7a)–(7d)
that �a = �ab = 
L,a = 0, 
L,b = γb sin(φb2 − φb1), �b =
2γb[1 + cos(φb2 − φb1)], and gab = √

γaγb sin φb1, respec-
tively. Thus the corresponding transmission and reflection

amplitudes can be described by Eqs. (33a) and (33b). Note
that the parameters should be appropriately chosen to satisfy
�b �= 0 and the EIT condition Eq. (35). We plot the reflection
spectrum as a function of 
a with different 
ab in Figs. 6(a)–
6(c). When 
ab = 
L,b, the spectrum is symmetric about

a = 0, as shown in Fig. 6(b). Alternatively, similar EIT-like
spectra can be obtained when the atom b is decoupled from
the waveguide (not shown here).

For two nested atoms, only when the atom a (the outer
one) is decoupled to the waveguide with φa2 − φa1 = (2n +
1)π (n ∈ N) can one obtain the EIT spectra. And from
Eqs. (7a)–(7d), we can obtain �a = �ab = 
L,a = 0, 
L,b =
γb sin(φb2 − φb1), �b = 2γb[1 + cos(φb2 − φb1)], and gab =√

γaγb(sin φb1 + sin φb2), respectively. The corresponding
transmission and reflection amplitudes can be be described
by Eqs. (33a) and (33b). Also, the parameters should be ap-
propriately chosen to satisfy �b �= 0 and the EIT condition
Eq. (35). We plot the reflection coefficient as a function of 
a

with different 
ab, as shown in Figs. 6(d)–6(f). When 
ab =

L,b, the spectrum is symmetric about 
a = 0, as shown in
Fig. 6(e). Specifically, when φb1 = φb2 this system reduces to
the configuration with a giant atom containing a small atom,
which has been discussed in Ref. [66]. Similar phenomenon
can also be found in wQED systems with two small atoms
in front of a mirror [75], which is very close to the setup of
nested giant atoms.

C. Comparison between the two types of EIT-like effects

In previous sections, the expressions of EIT-type spectra
are obtained by solving the one-photon scattering problem.
Here, by using the method provided in Ref. [66], we make
a comparison between the two types of EIT-like effects and
determine whether the transparency is a genuine EIT effect or
not by checking the inelastic scattering property beyond the
one-photon sector.

For the case discussed in Sec. IV A, the dark state (|S〉
or |A〉 state, dependent on the parameters) is not coupled to
the doubly excited state |ee〉. Thus |ee〉 is not occupied in the
steady state [which is a dark steady state being a superposition
of |gg〉 and |S〉 (or |A〉)] when the system is driven at its EIT
frequency [66]. Thus the setup behaves like a proper � system
even with a multiple-photon-state incident. Consequently, the
fluorescence is fully quenched at the transparency point, and
the corresponding inelastic photon flux is zero. The trans-
parency can be explained as a genuine EIT effect. However,
for the case discussed in Sec. IV B, which is based on the
exchange interaction between single-atom states, the situation
is different. The obtained expressions of EIT-like spectra are
valid only when a single-photon Fock state is incident. But
if a photon state containing multiple-photon components is
incident, the steady-state occupation probability for the dou-
bly excited state |ee〉 is nonzero because the “dark” state
in the single-excitation regime (|ge〉 or |eg〉, dependent on
the parameters) is now coupled to |ee〉, making this setup
an effective N-type four-level system, not a standard � sys-
tem. Consequently, the fluorescence is not quenched at the
EIT frequency, and the corresponding inelastic photon flux is
nonzero. Thus for this case the EIT effect breaks down outside
the single-photon sector.
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(a) (b) (c)

(d) (e) (f)

FIG. 6. EIT-like spectra caused by waveguide-mediated interactions between single-atom states. (a)–(c) Two braided atoms with parame-
ters φa1 = 0, φa2 = π , φb1 = 0.25π , φb2 = 2.25π , and γa = γb = γ . The detunings between two atoms are (a) 
ab = 
L,b − 2.5γ , (b) 
ab =

L,b, and (c) 
ab = 
L,b + 2.5γ , respectively. (d)–(f) Two nested atoms with parameters φa1 = 0, φa2 = π , φb1 = 0.25π , φb2 = 0.75π ,
γa = γ , and γb = 10γ . The detunings between two atoms are (d) 
ab = 
L,b − 2.5γ , (e) 
ab = 
L,b, and (f) 
ab = 
L,b + 2.5γ , respectively.

To show these in more detail, we calculate numerically
the scattering coefficients and the total inelastic photon flux
for these two cases based on the master-equation method and
provide further discussions in Appendix C.

V. CONCLUSIONS AND DISCUSSIONS

In summary, we obtain the general analytical solutions
for the single-photon scattering problem in double-giant-atom
wQED systems. Our results are unified descriptions of the
scattering amplitudes for three basic topologies. Using the
analytical expressions of scattering spectra, we further inves-
tigate the phenomena of Fano interference and EIT without
control field in these systems. On one hand, we discuss in
detail the influences of the topological configurations and
the phase delays on the Fano-like line shapes. Typically, we

show that the scattering spectrum can be used to characterize
the decoherence-free interaction [60], which is a unique phe-
nomenon in the giant-atom structures. On the other hand, we
summarize the conditions for EIT without control field in the
wQED systems with two giant atoms and verify these condi-
tions by checking the corresponding scattering spectra. These
conditions may be useful references for future experiments
on EIT-like phenomenon in the giant-atom systems. These
phenomena may provide powerful tools for controlling and
manipulating photon transport in future quantum networks.
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APPENDIX A: DEFINITION OF THE COEFFICIENTS IN EQ. (16)

The moduli and the arguments of the coefficients χ± in Eq. (16) are

|χ±| = χ =
√{

γ

�+�−
[λ1(�+ − �−) + λ2(
+ − 
−)]

}2

+ λ2
3, (A1a)

arg [χ±] = φ − ζ ± ϑ, (A1b)

where

λ1 = − 1

4
√

2A

∣∣∣∣cos
φ

2

∣∣∣∣(5 sin 3φ − 2 sin 4φ + sin 5φ), (A2a)

λ2 =
√

2

A

∣∣∣∣cos
φ

2

∣∣∣∣
3

(2 cos φ − cos 2φ − 2)2, (A2b)

λ3 =
√

2

A

∣∣∣∣cos
φ

2

∣∣∣∣(2 cos φ − cos 2φ − 2), (A2c)

tan 2ζ = 2 sin φ

1 − 3 cos φ
, (A2d)

tan ϑ = λ3�+�−
[λ1(�+ − �−) + λ2(
+ − 
−)]γ

, (A2e)

A =
√

(1 − 3 cos φ)2 + 4 sin2 φ. (A2f)
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APPENDIX B: COMPARISON WITH A DRIVEN
�-TYPE ATOM

Here we consider a three-level �-type atom with a ground
state |0〉, a metastable state |1〉, and an excited state |2〉.
Only the transitions |0〉 ↔ |2〉 and |1〉 ↔ |2〉 are allowed, with
transition frequencies ω20 and ω21, respectively. To generate
the EIT effect, the transition |0〉 ↔ |2〉 is coupled by a probe
field with amplitude �p and frequency ωp, and the transition
|1〉 ↔ |2〉 is coupled by a control field with amplitude �c and
frequency ωc, respectively. The master equation describing
the system dynamics can be written as [69]

˙̂ρ = −i[Ĥ, ρ̂] + �20D[σ̂02]ρ̂ + �21D[σ̂12]ρ̂, (B1)

where σ̂i j = |i〉〈 j| is the atomic transition operator. �i j is the
decay rate from state |i〉 to state | j〉. In order to keep the
physics transparent, we have ignored the pure dephasings. In a
rotating frame and under RWA, the Hamiltonian of the system
can be written as (h̄ = 1)

Ĥ = −
pσ̂22 − (
p − 
c)σ̂11 − 1
2 i(�pσ̂20 + �cσ̂21 − H.c.),

(B2)
where 
p = ωp − ω20 and 
c = ωc − ω21 are the detunings
of the probe and the control fields, respectively. If the driving
fields are applied through a wQED structure, the transmission
and reflection amplitudes under the weak-probe limit �p 
�c, �20 can be expressed as

t = i(
p − 
c)
(
i
p − 1

2�21
) + 1

4�2
c

i(
p − 
c)
[
i
p − 1

2 (�20 + �21)
] + 1

4�2
c

, (B3a)

r =
1
2 i�20(
p − 
c)

i(
p − 
c)
[
i
p − 1

2 (�20 + �21)
] + 1

4�2
c

. (B3b)

By comparing above results with the master equation (23),
the Hamiltonian (24), and the scattering amplitudes (25a)
and (25b) [where the state |S〉 (|A〉) plays the role of the
dark (bright) state], and assuming �21 = 0, we can make the
identifications |gg〉 ↔ |0〉, |S〉 ↔ |1〉, |A〉 ↔ |2〉, σ̂−

S ↔ σ̂01,
σ̂−

A ↔ σ̂02, gSA ↔ �c/2, �A ↔ �p, 
S ↔ 
p − 
c, 
A ↔

p, and �A ↔ �20. Straightforwardly, for the case that the
state |A〉 (|S〉) plays the role of the dark (bright) state, the
mappings can be obtained from above results by exchanging
A and S.

Similarly, for the case described by the master equa-
tion (31) and the Hamiltonian (32) [where the state |eg〉 (|ge〉)
plays the role of the dark (bright) state], we can make the
following identifications: |gg〉 ↔ |0〉, |eg〉 ↔ |1〉, |ge〉 ↔ |2〉,
σ̂−

a ↔ σ̂01, σ̂−
b ↔ σ̂02, gab ↔ �c/2, �b ↔ �p, 
a − 
L,a ↔


p − 
c, 
b − 
L,b ↔ 
p, and �b ↔ �20. For the case that
the atom b is decoupled, the mappings can be obtained by
exchanging a and b.

Note that the above mappings are accurate only in the
single-excitation subspace, where the state |ee〉 is excluded.
For situations beyond the one-photon sector, we should check
if there exists a fluorescence quench to determine whether the
transparency is a genuine EIT effect or not. We discuss this
issue in Sec. IV C and Appendix C.

APPENDIX C: INELASTIC SCATTERING PROPERTIES
UNDER THE EIT CONDITIONS

In this Appendix we calculate numerically the scattering
coefficients and the total inelastic photon flux for all the cases
in Sec. IV. In our simulation we use a weak coherent field as
a probe. By checking if there exists a fluorescence quench,
we can verify that for the case discussed in Sec. IV A, the
transparency can be explained as a genuine EIT effect, but for
the case in Sec. IV B, the EIT effect breaks down outside the
single-photon sector.

Using input-output theory, the output operators describing
the transmission and reflection bosonic fields can be written
as [60,66]

b̂(t)
out = αeiφN ′ ,a1 +

∑
jn

eiφN ′ , jn

√
γ jn

2
σ̂−

j , (C1a)

b̂(r)
out =

∑
jn

eiφ jn,a1

√
γ jn

2
σ̂−

j , (C1b)

(a)

(b)

(c)

FIG. 7. Transmission coefficient (solid lines), reflection coeffi-
cient (dashed lines), and inelastic photon flux (dotted lines) as a
function of probe detuning 
a for three different configurations.
All systems are in the parameter regime where they fulfill the EIT
criteria given in Sec. IV A. (a) Two separate giant atoms; the system
parameters are the same as those used in the left inset in Fig. 5(a),
the coherent drive amplitude is |α|2 = 0.04γ . (b) Two braided giant
atoms; the system parameters are the same as those used in the
left inset in Fig. 5(b), the coherent drive amplitude is |α|2 = 0.04γ .
(c) Two nested giant atoms; the system parameters are the same as
those used in the left inset in Fig. 5(c), the coherent drive amplitude
is |α|2 = 0.01γ .
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where j = a, b and n = 1, 2. N ′ is used to label the rightmost
coupling point. The transmission and reflection amplitudes
can be further defined as

t = 〈b̂(t)
out〉
α

= eiφN ′ ,a1 + 1

α

∑
jn

eiφN ′ , jn

√
γ jn

2
〈σ̂−

j 〉, (C2a)

r = 〈b̂(r)
out〉
α

= 1

α

∑
jn

eiφ jn,a1

√
γ jn

2
〈σ̂−

j 〉, (C2b)

where 〈σ̂−
j 〉 = Tr[ρ̂σ̂−

j ] is the steady-state expectation value
of lower operator σ̂−

j , which can be obtained by numerically
solving the master equation (18). The corresponding transmis-
sion and reflection coefficients are T = |t |2 and R = |r|2.

To study the inelastic scattering properties, we define the
total inelastic photon flux [46]

F (ω) =
∑
i=t,r

∫
S(i)

ω (ν)dν, (C3)

where

S(i)
ω (ν) =

∫
e−iνt

〈
b̂(i)†

out (t )b̂(i)
out (0)

〉
dt (C4)

(i = t, r) is the inelastic power spectrum when the system is
driven by a coherent field with frequency ω. The steady-state
correlation function 〈b̂(i)†

out (t )b̂(i)
out (0)〉 can be calculated using

the solution to the master equation (18).
We plot the transmittance T , the reflectance R, and the flux

F as a function of probe detuning 
a in the EIT regime in
Figs. 7 and 8. The results show that these quantities satisfy the
relation F/|α|2 = 1 − T − R, showing that photon-number
conservation is preserved. For EIT based on atomic collective
states (the case discussed in Sec. IV A), we can find that for
each configuration, the inelastic photon flux F is zero (i.e.,
the fluorescence is quenched) and the total transparency is
preserved at the EIT frequency [Figs. 7(a)–7(c)]. Thus the

(a)

(b)

FIG. 8. Transmission coefficient (solid lines), reflection coeffi-
cient (dashed lines), and inelastic photon flux (dotted lines) as a
function of probe detuning 
a for the braised and the nested con-
figurations. All systems are in the parameter regime where they
fulfill the EIT criteria given in Sec. IV B. (a) Two braided giant
atoms; the system parameters are the same as those used in Fig. 6(b),
the coherent drive amplitude is |α|2 = 0.01γ . (b) Two nested giant
atoms; the system parameters are the same as those used in Fig. 6(e),
the coherent drive amplitude is |α|2 = 0.04γ .

transparency in this case can be explained as a genuine EIT
effect. On the contrary, for EIT-like phenomenon based on
single-atom states (the case discussed in Sec. IV B), the flux F
is nonzero at the transparency frequency (i.e., the fluorescence
is not quenched), which means that the inelastic scattering
occurs [Figs. 8(a) and 8(b)]. Thus for this case the EIT effect
breaks down when the system is driven by a coherent field
containing multiphoton components.
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