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Variational analysis of driven-dissipative bosonic fields
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We present a method to perform a variational analysis of the quantum master equation for driven-disspative
bosonic fields with arbitrary large occupation numbers. Our approach combines the P representation of the
density matrix and the variational principle for open quantum system. We benchmark the method by comparing
it to wave-function Monte Carlo simulations and the solution of the Maxwell-Bloch equation for the Jaynes-
Cummings model. Furthermore, we study a model describing Rydberg polaritons in a cavity field and introduce
an additional set of variational parameters to describe correlations between different modes.
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I. INTRODUCTION

The theoretical analysis of driven-dissipative quantum
many-body systems is a very challenging task, as many
methods developed for closed quantum systems cannot be
applied. While important insights have been obtained using
the wave-function Monte Carlo (WFMC) method [1,2] or ten-
sor network approaches [3–6], the numerical study of bosonic
fields with large occupation numbers remains an outstanding
problem [7]. Here, we show that the variational principle
for open quantum systems [8] provides for a natural way to
represent arbitrarily large occupation numbers in terms of a
small set of variational parameters, thus providing a highly
efficient description of the system.

Driven-dissipative systems of bosons arise in many differ-
ent settings, ranging from semiconductor polaritonic systems
[9], to cavity quantum electrodynamics arrays [10], to Ryd-
berg polaritons in atomic quantum gases [11,12]. Especially
for the latter, the development of efficient numerical descrip-
tions is of great interest due to the applications of Rydberg
polaritons in the context of strongly correlated photon states
[13] and photonic quantum computing [14–16].

In this article, we present a variational treatment of the
steady state of driven-dissipative bosons. While the Lindblad
formalism allows one to calculate the steady state based on the
solution of a quantum master equation [17], a brute-force so-
lution becomes prohibitive for large Hilbert space dimensions.
Here, we apply the variational principle for open quantum
systems, which already proved to be a reliable method in the
context of spin- 1

2 particles [8,18,19]. However, a direct imple-
mentation of the variational principle for bosonic fields results
in a large amount of variational parameters to describe large
Hilbert space, which drastically reduces the efficiency of the
method and still relies on a cutoff of the Hilbert space. There-
fore, we turn to a different implementation of the variational
principle based on the Glauber-Sudarshan P representation.

*hweimer@itp.uni-hannover.de

Phase-space representations of the density matrix have
received considerable interest in recent years to classify the
nonclassical properties of quantum states [20–26]. For this,
the P representation by Glauber and Sudarshan [27,28] is
particularly useful, as negative values directly point to non-
classical behavior.

In the following, we want to use this representation of
the density matrix to expand the variational method for open
quantum systems to bosonic fields. We also show how the
formalism of the variational principle translates to the Heisen-
berg equations of motion and how this can be used to extend
the method to highly singular P distribution where an explicit
representation is not feasible. We benchmark our approach
by comparing to WFMC simulation [29,30] mean-field cal-
culations for the Jaynes-Cummings model [31–34]. We also
study a highly correlated model describing Rydberg polaritons
in a cavity field. There, we introduce additional variational
parameters to also implement the correlation between differ-
ent modes. Finally, we give an outlook on how to extend our
approach to incorporate other nonclassical states.

II. VARIATIONAL METHOD

Our method is based on the idea to use the P representation
of the density matrix operator to express a variational state for
a bosonic field for a minimization process. First, we want to
give a brief introduction to both concepts and then we show
how to combine them.

In the context of open quantum systems, states are com-
monly described in terms of their density operator ρ. The
Markovian dynamics of such open quantum systems can then
be described by the Lindblad master equation d

dt ρ = Lρ, with
the Liouvillian L being the generator of the dynamics for the
density matrix ρ [35], i.e.,

d

dt
ρ(t ) =L(ρ) = −i[H (t ), ρ(t )]

+
∑

i

(
ciρc†

i − 1

2
{c†

i ci, ρ}
)

. (1)
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At the same time, the equation of motions can also be
expressed in the Heisenberg picture, i.e., for any given ob-
servable An as

d

dt
〈Ân〉 (t ) ≡Ln(Ân) = i[H, Ân]

+
∑

i

(
ciÂnc†

i − 1

2
{c†

i ci, Ân}
)

, (2)

where we have introduced the generator Ln for the observable
An. In both equations, the jump operators ci correspond to
incoherent processes, e.g., dephasing or dissipation, between
the system and the bath.

Solving Eq. (1) is often very challenging [7], i.e., typically
some approximations have to be made. Within the variational
principle for open quantum systems [8], the density matrix is
approximated by the usage of a variational ansatz. In case we
want to solve for the steady state of the system (ρ̇ = 0) we
need to minimize

‖ρ̇var‖ = ‖L(ρvar)‖ → min (3)

with ‖ρ̇‖ = Tr{|ρ̇|} ≡ ∑
i |λi| being the trace norm as ex-

pressed in terms of the eigenvalues λi of ρ̇. Here, we want
to define a similar approach in the Heisenberg picture, where
the steady state is defined as Ln(Ân) = 0 for all operators
Ân. Therefore, we determine the steady state by minimizing
a suitable norm for a small subset of operators given by

∑
n

∣∣∣∣ d

dt
〈Ân〉var

(t )

∣∣∣∣ =
∑

n

∣∣Ln(〈Ân〉var
)
∣∣ → min. (4)

with 〈Ân〉var
being the nth variational expectation value

Tr{ρvarÂn} = 〈Ân〉var
. In the next paragraph, we will discuss

how the P representation can be used to construct ρvar for
bosonic fields.

The most straightforward implementation of a variational
density matrix is to use each entry of the matrix as a varia-
tional parameter. This is, however, not feasible in most cases.
In the case of an infinite Hilbert space the number of vari-
ational parameters also goes to infinity. A solution for this
problem can be found in the P representation of the density
matrix [27]

ρ =
∫

d2α P(α) |α〉 〈α| . (5)

The nonorthogonality of coherent states form an overcomplete
basis set of states which we can use to represent the density
matrix if we combine them with an appropriate choice of
quasiprobability distribution P(α). Such a distribution can
theoretically be found for any kind of density matrix [36] if
we allow the class of generalized function in our distribution.
This excludes any interpretation as an analog to classical
distribution functions because P(α) can become negative or
more singular than a Dirac delta function δ(x).

A useful property of this specific representation is the way
expectation values of annihilation (creation) operators a (a†)
are calculated through c-number integrals

〈: a†paq :〉 = Tr{ρa†paq} =
∫

d2α P(α)α∗pαq, (6)

where 〈: a†paq :〉 indicates normal ordering of the operators.
We will drop the indicator for normal ordering and always
assume that the expectation values are in that order for the
rest of the article. Importantly, this expression allows one
to compute the variational norm of Eq. (4) directly from
the expection values without prior calculation of the density
matrix ρ.

We also want to consider the combination of different
quantum states to expand the variational manifold. The con-
struction of the corresponding P distribution is done by a
convolution

P(α) = (Pi ∗ Pj )(α) =
∫

dα′Pi(α
′)Pj (α − α′) (7)

of the original distributions Pi and Pj [37]. If we insert (7) into
(6) we obtain

〈a†paq〉 =
p∑
n

q∑
m

ξp,q 〈(a†)nam〉Pi
〈(a†)p−naq−m〉Pj

(8)

to compute expectation values of a convoluted P distribution
with ξn,m as the number of possible combinations of the given
expectation values from 〈a†nam〉. For example, if we assume
that one of the distributions is for the thermal state we regain
the same result as in [38]. We see that the calculation depends
on all expectation values up to the orders p, q of a, a† of the
original expectation value but are calculated for the single
P distributions Pi and Pj . This process can then be repeated
multiple times to combine multiple distributions. Figure 6
in Appendix A shows examples of the convolution of two
different states.

These ingredients are all that is required to formulate the
variational principle in terms of the P distribution. The equa-
tions of motion created by Eq. (2) for the expectation value Â
depend only on expectation values like

d

dt
〈Ân〉 (t ) = Fn({〈a†paq〉}p,q). (9)

This means that we can write Eq. (4) as

D =
∑

n

|Fn({〈a†paq〉p,q})| → min (10)

with Fn describing the right-hand side of Eq. (2), which de-
pends on the set of expectation values {〈a†paq〉}p,q. To see how
the P representation can be used to describe these expectation
values in terms of variational parameters, it is instructive to
have a look at some well-known cases for P(α). First, we
consider two classical states, a coherent and a thermal state,
represented by

Pcoherent(α) = δ(α − α0), (11)

Pthermal(α) = 1

πn0
exp

(
−|α|2

n0

)
. (12)

In addition, we can find an expression for a highly nonclas-
sical state in the form of the Fock states that look like

PFock = 1

l!
e|α|2 ∂2l

∂αl∂α∗l
δ(2)(α). (13)

The distribution includes derivatives of the delta distribu-
tion which are defined as

∫
dx δ(n)(x)ψ (x) = (−1)nψ (n)(0).
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We can immediately see that each distribution has one defin-
ing parameter, i.e., α0 ∈ C, n0 ∈ R, or l ∈ N. The convolution
of two P distributions results in a new P distribution that
depends on the set {β} = α0, n0, l . This allows us to formulate
Eq. (10) as

D =
∑

i

Fi({β}) → min. (14)

Upon inspection of Eq. (8) we can also see that we do not
need to know the complete form of the P distribution that cor-
responds to a specific state. Instead, it is enough to know how
all expectation values depend on the variational parameters β.
This is, for example, useful if it is difficult to find a complete
expression of the P distribution like in the case of the squeezed
coherent state. The state can be obtained by convolution of the
coherent state and the squeezed vacuum state where the distri-
bution is known [39] or by directly evaluating the expectation
values for this particular state. In this case we know that the
squeezing operator S(†)(r,�) with squeezing parameter r and
angle � changes the annihilation operator â like

S†âS = â cosh(r) − ei�â† sinh(r) (15)

which allows us to directly calculate how the expectation
values in Eq. (10) depend on the parameters r and �.

III. JAYNES-CUMMINGS MODEL

In order to benchmark our variational approach, let us turn
to a driven-dissipative variant of the Jaynes-Cummings model,
where we compare the variational method to WFMC simula-
tions using the QUTIP package [29,30]. The Jaynes-Cummings
model describes an atom interacting with a light field that is
trapped inside a cavity. The Hamiltonian is of the form

H = �ca†a + �aσ
+σ− + g(aσ+ + a†σ−) + p(a† + a).

(16)

The first two terms describe the detunings �c and �a for the
cavity and the atom, respectively, from the driving frequency.
The atom and the cavity are coupled with a strength g and we
pump the cavity with a driving amplitude p. Additionally, we
include cavity losses and spontaneous emission of the atoms
into other modes than the cavity via the jump operators cc =√

γ a and ca = √
κσ− with decay rate γ for the cavity mode

and κ for the atom, respectively.
We use a product ansatz for the atom and the cavity

ρ = ρcavity ⊗ ρatom (17)

in the variational approach and use the variational parameter
αi in

∑
i=0,x,y,z αiσi to describe the atomic part, while we

use the P representation to account for the cavity mode. As
our variational parameter set we use a convolution of coher-
ent, thermal, Fock, and squeezed states (see Appendix B for
details).

To show an immediate advantage of the variational ap-
proach, we also want to analyze the Maxwell-Bloch equations
of the Jaynes-Cummings model [32,34]. This set of equations
describes the time evolution of the lowest order of expectation
values. The atom and cavity decouples in a similar fashion
like in Eq. (17), but it also decouples the equation from
higher-order terms of the cavity field through the neglect of

FIG. 1. Results of the Maxwell-Bloch equations, the variational
approach, and the Monte Carlo wave-function method (MCWF) for
the Jaynes-Cummings model with g/γ = 3347, κ/γ = 6, �c/γ =
340, �a/γ = 23.5 × 103. The Maxwell-Bloch equations (orange)
show a region of bistability which can be solved by a variational
treatment of the equations which yields a prediction for the transition
between the two solutions at the gray line. For higher orders of
the variational approach (blue), the transition is shifted towards the
MCWF solution.

any correlation term of the second or higher order [40]. The
Maxwell-Bloch equations for the Jaynes-Cummings model
are given by

d

dt
〈a〉 = −(κ + iδc) 〈a〉 − ig 〈σ−〉 − ip, (18)

d

dt
〈σ−〉 = −

(γ

2
− i�a

)
〈σ−〉 + ig 〈a〉 〈σ z〉 , (19)

d

dt
〈σ z〉 = −γ (〈σ z〉 + 1) + 2ig(〈a†〉 〈σ−〉 − 〈a〉 〈σ+〉).

(20)

Figure 1 shows a comparison between the solution of the
Maxwell-Bloch equations, the Monte Carlo wave-function
solution, and the variational expectation value approach for
the cavity field 〈a†a〉. The mean-field solution (orange) shows
a large area of bistability between two solutions. A compar-
ison of the norms of the two solutions inserted in a set of
first-order equations of motion resolves the bistability and
indicates a jump between the solutions at the gray line. The
third line (blue) shows the solution of expanding the equations
of motion up to second order in the variational approach,
resulting in a clear improvement. We note that the numerical
solution including the higher-order terms becomes noisier in
the transition region due to the nonanalyticity of the varia-
tional norm. Figure 2 shows a reconstructed P distribution
from the variational expectation values through the usage of
the characteristic function

χ (z) =
∞∑

k,l=0

zk

k!

(−z∗)l

l!
〈a†kal〉 (21)

and

P(α, α∗) = 1

π2

∫ ∞

−∞
d2z χ (z)e−iz∗α∗

e−izα. (22)
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FIG. 2. P distribution of the Jaynes-Cummings model for g/γ =
3347, κ/γ = 6, �c/γ = 340, �a/γ = 23.5 × 103, and p/γ = 50.
The distribution shows regions of strong negativity which indicates
a nonclassical behavior of the model for the given parameters. The
distribution is obtained via the variational principle.

The nonclassicality of the steady state is clearly shown by
the negative values of P(α). The remaining difference with
the WFMC simulations can be attributed to the neglect of
correlations between the atom and the cavity mode due to our
product ansatz in Eq. (17).

IV. RYDBERG CAVITY POLARITONS

Let us now turn to a model where correlations beyond a sin-
gle mode are particularly important. For this, we investigate an
effective three-boson model to describe strongly interacting
Rydberg atoms inside a cavity [41,42], which describes the
nonlinear effects that arise from the interaction of the Rydberg
atoms (Fig. 3). Before turning to the variational analysis, we
briefly want to recapture the key pieces of the model.

Consider a cavity filled with N three-level atoms with
energy level g, e, r as the ground state |g〉, an intermediate
level |e〉, and a highly excited state which we denote as the
Rydberg level |r〉. The key idea is to restrict the dynamics to
three bosonic modes that describe the cavity mode and the

FIG. 3. Scheme of multiple Rydberg atoms trapped inside a cav-
ity. The atoms are described by a three-level ladder scheme with g as
the coupling constant between the cavity light field and the transition
between the ground state |g〉 and the intermediate state |e〉. A control
laser then couples the intermediate to the Rydberg state |r〉 with a
strength of ω. The one- and two-photon detunings of the atoms are
given by �e and �r . The rates γc, γe, and γr describe decay processes
of the cavity, the intermediate atomic state, and the Rydberg state.

symmetric subspaces of the atomic excitations. This restric-
tion of the atoms to their symmetric subspace is valid as long
as the total number of atomic excitations is small compared to
N [42].

We then can describe the system in terms of collective
operators describing the symmetric subspace with a be-
ing the annihilation operator for the cavity mode and b =

1√
N

∑N
n=1 σge and c = 1√

N

∑N
n=1 σgr as the collective operators

for the atomic transition modes σge and σgr . With that the
Hamiltonian reads as

H = − �ca†a + p(a + a†) − �eb†b − �rc†c

+ g
√

N (ab† + a†b) + ω

2
(bc† + b†c) + κr

2
c†c†cc (23)

and the jump operators are given by ce = √
γeb, cr = √

γrc
for the intermediate and Rydberg state and also for the cavity.
The nonlinear terms in the Hamiltonian arise from the van der
Waals force between atoms in the Rydberg state. The interac-
tion also couples the symmetric subspace to the antisymmetric
subspace which leads to an additional nonlinear dissipation
term cnl = √

κicc.
We now study the model by working in the eigenbasis of

the noninteracting Hamiltonian at κr = 0. The diagonalization
of Eq. (23) results in H = ∑

q∈+,0,− cq�
†
q�q. The new states

�q form polariton states. These are defined as a quasiparticle
consisting of both light and matter. For a three-level atomic
system we get two different types of polaritons. The ones
with q ∈ ± are bright state polaritons, while q = 0 is the dark
state polariton. The dark state polariton shows very different
behavior as it is decoupled from the intermediate atomic level,
which leads to long lifetimes in the cavity.

The previously neglected interaction between the polariton
leads to a strongly correlated many-body system which pro-
vides a difficult task for numerical calculation especially for
large atom numbers [43].

To also be able to capture correlations between the modes
we need additional variational parameters (see Appendix B).
If we look at the lowest-order expectation values between
different modes we get

〈ab〉 = 〈a〉 〈b〉 + δ(ab) (24)

with δ(ab) as the correlation function between modes a and
b. These kind of factorizations for expectation values can be
done for all orders and provide us with the needed variational
parameter in the form of the correlation functions δ(anbm)
[44–46].

Figure 4 shows the occupation number of the different
modes and their squeezing strength as the parameter r. The
photons are getting absorbed by the different photon modes.
The bright state polaritons show for the off-resonant param-
eters we have chosen here an uneven population. All modes
reach a saturation around p ≈ 5γe. If we look at the squeezing
parameter we can see that this is the only mode that experi-
ences strong nonlinear effects while the squeezing is mostly
suppressed for the other two.

Our results also demonstrate the importance of including
correlations between the modes. Without them, we find that
the occupation numbers can become very large (e.g., up to
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FIG. 4. Intensity (top) and squeezing parameter r (buttom) of
the effective three-boson model in the polariton picture for param-
eters γr = 0.1γe, γc = 0.3γe, �c = 0, �e = −10γe, �r = 0, κr =
−1.2γe, κi = 0.42γe, g = 4.2γe, N = 104. The intensity of all po-
lariton modes increases with the pumping strength and reaches a
saturation at around p ≈ 5γe. However, only the dark state polari-
ton mode displays squeezing. For both bright state polaritons, the
squeezing parameter essentially vanishes and the two curves are
indistinguishable.

n = 200), which correspond to states with very large (and
hence unphysical) van der Waals interaction energies.

V. POSSIBLE EXTENSIONS

In all of our previous calculations, we worked with only
a handful of different convoluted states to successfully con-
struct our variational manifold. However, we would like to
point out that it is possible to extend our approach to even
broader classes of quantum states. As already mentioned, it
is not necessary to know the full P distribution function as
it is sufficient to be able to calculate expectation values of
the given state, which gives us access to a great variety of
nonclassical states.

In the previous sections we already discussed the coherent
squeezed states as the most prominent candidate for squeezing
but there are similar definitions for squeezed Fock state |l〉sf
and squeezed thermal states |n〉sth [47–49]:

|l〉sf = S(r, φ) |l〉 , (25)

|n〉sth = S(r, φ) |n〉 . (26)

Both classes of states have already been investigated in some
detail, with explicit expression for expectation values of all or-
ders being known [38,50]. Hence, these squeezed Fock states
can also be readily integrated into our variational approach.

Furthermore, it is also possible to employ highly entangled
Schrödinger cat states given by

|ψ〉 = A(|α1〉 + � |α2〉), (27)

with |α1〉 and |α2〉 being two different coherent states. The
expectation values for this state can be calculated via the
explicit P distribution [51].

FIG. 5. Wigner function for different nonclassical states.
(a) Squeezed thermal state, (b) squeezed Fock state, and
(c) Schrödinger cat state.

Figure 5 shows the Wigner distribution of all three states.
The Wigner distribution is more suitable for a visual rep-
resentation because it does not have singularities for highly
nonclassical states that are found in the P distribution. The
transformation

W (α) = 2

π

∫
d2α′e−2|α−α′ |2 P(α′) (28)

connects both distributions.
We also want to make a clear distinction between the

squeezed thermal (Fock) state and the convoluted distribution
of a squeezed coherent state with a thermal (Fock) state. Espe-
cially in the case of the thermal state, it is not straightforward
to see from their Wigner functions that the two results are
actually different. Therefore, it is instructive to look at the
difference of their intensities, which is given by

〈a†a〉sth − 〈a†a〉s+th = 2n0 sinh2 r. (29)

The difference is even enhanced for higher-order expectation
values, which can significantly change the result of the mini-
mization in Eq. (14).

In the case of the cat state the situation is reversed.
Although the visual representation in Fig. 5 is clearly distin-
guishable from a simple coherent state, the difference enters
only in higher orders, as the lowest order is given by 〈a〉cat =
α1 + α2 = α̃. Only the scaling with higher-order expectation
values can reveal the true nature of this state and shows the
importance of incorporating as many orders as possible for
the equations of motion.

Finally, we would like to mention two additional classes of
states that could be included in the variational analysis. Both
the single-variable Hermite polynomial states [26,52–54] and
the photon-added (subtracted) coherent states [24,55] appear
to be good candidates for a further expansion of the variational
approach.

063711-5



TIM PISTORIUS AND HENDRIK WEIMER PHYSICAL REVIEW A 104, 063711 (2021)

FIG. 6. Convoluted Wigner functions of the coherent, squeezed coherent, thermal, and Fock states with different parameters.

VI. SUMMARY

In summary, we have extended the variational principle for
open quantum systems through the usage of the P distribution
of the density matrix. Despite its simplicity, we find that our
method yields even quantitatively reasonable results for the
driven-dissipative Jaynes-Cummings model. Furthermore, we
have successfully applied our approach to an effective model
to describe a many-body system of Rydberg atoms in a cav-
ity, where we can identify strong squeezing of a dark state
polariton mode. Our approach could be especially fruitful
for applications where strong nonclassical correlations play
an important role, such as gravitational wave detection us-
ing squeezed light [56–58] or the preparation of nonclassical
states of light in photonic condensates [59]. Finally, we have
presented several directions for how the class of variational
states could be extended further.
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APPENDIX A: CONVOLUTED P DISTRIBUTIONS

Figure 6 shows examples of convolutions of two P distri-
butions used in the main text.

APPENDIX B: VARIATIONAL QUANTUM STATES

1. Driven-dissipative Jaynes-Cummings model

For the analysis of the driven-dissipative Jaynes-
Cummings model, we use a product state for the combined
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atom-cavity system, i.e.,

ρ = ρcavity ⊗ ρatom. (B1)

The atomic part ρatom describing a two-level system can be
fully parametrized using Pauli matrices σi, i.e.,

ρatom = 1
2 (1 + αxσx + αyσy + αzσz ), (B2)

with the αi being the variational parameters. The cavity field
is described in terms of its P distribution function, i.e.,

ρcavity =
∫

d2α P(α) |α〉 〈α| . (B3)

The P distribution function of the cavity field P(α) is ex-
pressed as a series of convolution integrals, for which we use

P(α) = Pcoherent ∗ Pthermal ∗ PFock ∗ Psqueezed, (B4)

where the individual P distributions are given by Eqs. (11)–
(13) and (15), containing the five variational parameters α0,
n0, l , r, and �.

2. Rydberg cavity polaritons

For the analysis of the Rydberg cavity polariton system, we
use a product state ansatz for all three polariton fields, i.e.,

ρ = ρd ⊗ ρb+ ⊗ ρb−, (B5)

where ρd and ρb± refer to the states of the dark and bright state
polariton fields, respectively, as defined by the noninteracting
limit of Eq. (23). For each of these three fields, we use the
same variational ansatz as in Eq. (B4), which results in 15 in-
dependent variational parameters. On top of these parameters,
we also include correlation terms of the form

〈ad ab+〉 = 〈ad〉 〈ab+〉 + δdb+, (B6)

〈ad ab−〉 = 〈ad〉 〈ab−〉 + δdb−, (B7)

〈ab−ab+〉 = 〈ab−〉 〈ab+〉 + δb−b+, (B8)

where the indices refer to the respective polariton fields. Do-
ing so provides three more variational parameters δdb+, δdb−,
and δb−b+.
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