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One-sided destructive quantum interference from an exceptional-point-based metasurface

Hong Liang ,1,2 Kai Ming Lau ,1,2 Wai Chun Wong,1,2 Shengwang Du,3 Wing Yim Tam,1 and Jensen Li 1,2,*

1Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
2IAS Center for Quantum Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

3Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, USA

(Received 22 July 2021; revised 16 November 2021; accepted 7 December 2021; published 21 December 2021)

We propose the concept of one-sided destructive quantum interference based on lossy metasurfaces. It
corresponds to one-sided beam splitting with 50:25:0 in percentage ratio among the transmission and the two
reflection efficiencies, which can be realized by a metasurface with unidirectional zero reflection (UZR) from a
non-Hermitian exceptional point. When two identical photons enter both sides of the lossy metasurface, quantum
interference only occurs for the single-photon output state towards one side but not the other due to UZR. Such
one-sided quantum interference can be further made totally destructive. This effect along with UZR provides
more degrees of freedom in quantum interference control and entangled states construction.
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I. INTRODUCTION

Metasurface, a thin layer of nanostructures array, is useful
for miniaturizing conventional optical elements, with applica-
tions ranging from beam steering and lensing to vortex beam
structuring, holograms, and combinations of these functions
[1–3]. On the other hand, metasurfaces can also be used
as a flexible platform to study exotic phenomena, such as
topological photonics and non-Hermitian physics [4,5]. The
developments in the past decade in non-Hermitian photon-
ics have found that the material loss, in competition with
coupling between different parts of the system, can become
useful to generate an exceptional point: the coalesce of both
the eigenvalues and eigenvectors of the system Hamiltonian
or the response matrix [6,7]. It then gives rise to a series
of counterintuitive wave phenomena, as examples, in loss-
induced transmission [8], unidirectional zero reflection (UZR)
[9], enhanced sensing [10], and lasing-mode selection [11].
Recently, exceptional points have been demonstrated using
metamaterials [12,13] and metasurfaces at the optical fre-
quencies [14–16]. UZR can be used as a signature of a
non-Hermitian exceptional point of the scattering matrix of
metasurfaces [9,17,18].

In the quantum optics regime, tailor-made metasurfaces
have already been found useful in simplifying quantum to-
mography [19], and generating entanglement for spins and
orbital angular momenta [20–22], etc. While unitary opera-
tions in quantum optics are constructed conventionally from
a network of common optical components such as beam
splitters and wave plates [23–26], metasurfaces allow us to
design tailor-made unitary transformations for miniaturiza-
tion. For example, arbitrary U(2) operations and single-photon
two-qubit U(4) operations can be realized using dielectric
metasurfaces [27]. Furthermore, lossy metasurfaces, as a
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manifestation of non-Hermitian systems, also play an impor-
tant role to extend conventional quantum optical operations to
nonunitary transformations. For example, lossy metasurfaces
can tune quantum interference from destructive to construc-
tive [28]. It is interesting to note that while the concept of
a non-Hermitian exceptional point has an origin in quantum
theory [6,7], it was first realized in classical optical systems,
and then, in quantum optical systems recently [29–31]. To
further exploit the non-Hermitian properties of metasurfaces
in quantum optical operations, we would like to investigate
the role of exceptional points in manipulating two-photon
quantum interference.

In this work, by treating a metasurface as a two-port de-
vice, extending from a beam splitter in conventional quantum
operations, we propose a design of a lossy bianisotropic
metasurface exhibiting a one-sided two-photon quantum inter-
ference effect. When two indistinguishable photons enter both
sides of the metasurface capturing UZR, quantum interference
only exists for single-photon output state on one side but
not the other side. This asymmetric interference effect comes
from the broken mirror symmetry of the metasurface along
the light propagation which gives zero reflection coefficient on
one side but nonzero on the other. Furthermore, the quantum
interference can be further tuned to totally destructive by
controlling the transmission and reflection amplitudes of the
metasurface.

II. THEORY AND RESULTS

A two-photon quantum interference effect for a two-port
device can be visualized by an input-output map in Fock
states, as shown in Fig. 1. Each square cell, labeled by its input
state (column) and output state (row), is colored red (solid
cell) for generally nonzero values, blue (horizontal lines) for
zero from destructive quantum interference, and white for
zero from conservation of energy. Each input or output Fock
state is represented by two indices with the first (second)
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FIG. 1. Quantum interference for a two-port device. (a) HOM
effect from a lossless 50:50 beam splitter: |11〉 input state is forbid-
den to transfer to |11〉 output due to destructive quantum interference
indicated as blue color (horizontal lines). The white color denotes
zero transfer probabilities due to conservation of energy while the
red color (solid cell) denotes generally nonzero values. (b) Apparent
nonlinear absorption from a lossy system: |11〉 input state is forbid-
den to transfer to the single-photon states |01〉 and |10〉, but not the
states with zero or two photons. (c) One-sided destructive quantum
interference from a metasurface. |11〉 input state is forbidden to
transfer to |01〉 state because of quantum destructive interference but
the single-photon output state |10〉 cannot be tuned as quantum in-
terference is missing due to a designed UZR. The UZR also induces
zero probabilities for processes where the number of photons in port
1 is increased, indicated by the yellow cells (vertical lines).

index indicating the number of photons in port 1(2). For the
Hong-Ou-Mandel (HOM) effect [32], the two ports are for
lossless 50:50 beam splitting, and the process |11〉 → |11〉 is
forbidden [blue horizontal lines in Fig. 1(a)], which results
from two-photon destructive quantum interference. In another
case, when loss is added to the system, Fig. 1(b) shows the
case of apparent nonlinear absorption enabled by a 25:25
beam splitter [33–37]. For a two-photon input state |11〉, the
probabilities for only one photon survives, |10〉 and |01〉, are
both zero, i.e., either both photons are absorbed or neither.
Such a loss-induced quantum interference effect has been
recently extended to plasmonic systems and metasurfaces
whose scattering matrix can now be tailor-made to achieve
constructive quantum interference [28,38].

Now, we discuss the proposed one-sided quantum inter-
ference effect, schematically illustrated in Fig. 1(c). For a
|11〉 input, we would like the quantum interference to oc-
cur only on one side to get a destructive interference at the
single-photon output state |01〉 (blue horizontal lines) while
the quantum interference is turned off at the output state |10〉.
Here, normal incidence from the front (back) side of a meta-
surface is defined as input port 1(2) while its transmitted light
is defined as the corresponding output port [see Fig. 2(a)]. As
we shall see, such one-sided quantum interference is enabled
by a proper design of metasurface with UZR so that the
backward reflection coefficient (rb) is zero. It is worthwhile to
note that an immediate consequence of the UZR is the zero
probabilities for |01〉 → |10〉 and other processes with the
number of photons in port 1 being increased [yellow vertical
lines in Fig. 1(c)] since the additional photons have to come
from input port 2 with nonzero backward reflection.

Figure 2(b) shows a unit cell of our proposed bianisotropic
metasurfaces located at z = 0. Each unit cell in a square lattice
consists of two vertical gold bars with separation h, lengths
l1 and l2, widths w1 and w2, and is driven into resonance
by incident light polarized along the y direction. Full-wave
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FIG. 2. (a) Proposed experiment with a bianisotropic metasur-
face. E1,in (E2,in) denotes the E field, polarized along y direction,
at input port 1(2). Subscript “out” is used for E fields at output
ports. (b) A square unit cell of metasurface with periodicity 300 nm
consists of two vertical gold bars (thickness 20 nm) with dimensions
l2 = 150 nm, and w2 = 50 nm while l1, w1, and separation h will
be swept in later designs. Drude model for the permittivity of gold:
ε = 9− f 2

p /( f 2 + iγp f ) with fp = 2180 THz, γp = 16.2 THz.

simulations (CST Studio Suite) are performed to obtain the
classical response at each frequency, as a 2 × 2 scattering ma-
trix S = (t f rb

r f tb
) where t f = tb = t for reciprocity and r f �= rb

for the broken mirror symmetry along the z direction. The
subscript “ f ” (“b”) stands for the forward (backward) inci-
dence. We scan l1 (length of the front bar) and h (separation
between the two bars) with other dimensions listed in the
caption of Fig. 3 and w1 (80 nm) is fixed. In Fig. 3(a), we
plot the positions of UZR, |rb| ∼= 0 at a resonance dip, as a
black curve in the parameter space. The UZR condition equiv-
alently means coalesce of both eigenvalues and eigenvectors
for S (termed as a non-Hermitian exceptional point hereafter).
When h decreases, l1 has to increase in obtaining a larger
loss contrast to balance the stronger coupling between the two
gold bars to get an exceptional point and thus UZR [18]. Fig-
ure 3(b) shows the |t |, |r f |, and |rb| frequency spectra for the
case (l1, h) = (191 nm, 16 nm), denoted by a star in Fig. 3(a),

(a) (b)

FIG. 3. Locations of UZR in the phase space l1-h as the black
curve in (a) with w1 fixed at 80 nm. The star indicates the case
with (l1, h) = (191 nm, 16 nm) with their frequency spectra for |t |,
|r f |, and |rb|, shown in (b). Symbols (solid lines) are the full-wave
simulation (coupled-mode theory) results. UZR occurs at around
293 THz.
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showing clearly the UZR occurs around a resonance dip at
293 THz in full-wave simulation result (symbols). By fitting
the simulation results, we have also adopted a coupled-mode
theory, shown as solid lines with excellent agreement. The
coupled-mode theory models the scattering of the metasurface
by the vertical gold bars as two resonating electric dipole
modes, with coupling controlled by h, resonating frequencies
controlled by wi and li, and resonating linewidth fine-tuned
by li. The various parameters of the coupled-mode model are
then obtained by fitting the scattering parameters in the whole
relevant phase space [Fig. 3(a)] (see Appendix D for details).
We note that there is another resonance dip at around 400
THz without the UZR effect, which serves as a comparison
in considering the quantum interference below.

The scattering matrix of a UZR metasurface S = (t 0
r t )

has to be nonunitary (r here means forward complex reflection
amplitude). Here, we adopt the ancilla-mode formulation in
which the 2 × 2 S matrix with material loss will need at
most 2 ancilla modes to expand it into a unitary one [39,40].
The two ancilla modes correspond to the two loss channels of
the metamaterial atoms. To achieve the proposed effect, we
find that only one loss channel is needed (see Appendix B for
details). It means an eigenvalue of S†S becomes one. This is
called the single ancilla-mode condition here and is found to
be

|t |2 = 1 − |r|. (1)

In this case, we expand S into a 3 × 3 unitary S′ matrix
with one ancilla mode (the third index for the loss channel) as

S′ =

⎛
⎜⎝

t 0 −r∗t2/(|t |2√|r|)
r t t

√|r|
t∗r/

√|r| −√|r| |t |2

⎞
⎟⎠, (2)

which is obtained through a singular value decomposition
with the compositing diagonal matrix being modified through
the extent of loss in each ancilla mode (see Appendix B for
details). Such kind of linear input-output relations can also be
deduced from the system-and-bath Hamiltonian if the full dy-
namics of the modes on the metasurfaces are known [41,42].
Now, we consider the quantum interference of a |11〉 input to
the metasurface (a pair of indistinguishable photons entering
each side). By using Eq. (2), we have

|11〉 = â†
1â†

2|0〉
→ (t b̂†

1 + rb̂†
2 + t∗|r|−1/2rb̂†

3)(t b̂†
2 − |r|1/2 b̂†

3)|0〉,
where â†

i (b̂†
i ) is the photon creation operation for port i at

input (output). For a clearer notation, we add a third index in
the “ket” to indicate the number of photon going into the loss
channel. After expanding out the product terms, we obtain the
final state as

|110〉 → (|t |2 − |r|)|r|−1/2r|011〉
−

√
2t∗r|002〉 − |r|1/2t |101〉 + t2|110〉 +

√
2tr|020〉.

The first term accounts for the quantum interference for
output |01〉 whereas we can see no interference in the third
term for |10〉 output. In fact, for the single-photon output
state |10〉, there is only one process (the photon from port 1

is transmitted and the photon from port 2 is absorbed) since
rb = 0 and thus no quantum interference occurs. On the other
hand, there are two processes that can contribute to the singe-
photon output state |01〉. In the first case, the photon from port
2 is transmitted (t) while the photon from port 1 is absorbed
(t∗|r|−1/2r). As for the second case the photon from port
1 is reflected (r) while the photon from port 2 is absorbed
(−|r|1/2). These two processes cannot be distinguished and
thus they can interfere with each other (with result ∝ |t |2 −
|r|). Furthermore, to obtain destructive quantum interference,
we solve |t |2 − |r| = 0, together with the single ancilla-mode
condition Eq. (1). The condition of one-sided destructive
quantum interference becomes

|t | = 1/
√

2, |r| = 1/2. (3)

For general nonunitary scattering matrices (with only
losses) other than the above values, the probabilities for the
different single and two-photons output states can be evalu-
ated similarly with a formulation of two-ancilla modes:

PQ(0, 1) = PC (0, 1) − t∗
f t∗

b r f rb

− t f tbr∗
f r∗

b − 2|tb|2|r f |2, (4)

PQ(1, 0) = PC (1, 0) − t∗
f t∗

b r f rb

− t f tbr∗
f r∗

b − 2|t f |2|rb|2, (5)

PQ(0, 2) = PC (0, 2) + |tb|2|r f |2, (6)

PQ(1, 1) = PC (1, 1) + t∗
f t∗

b r f rb + t f tbr∗
f r∗

b , (7)

PQ(2, 0) = PC (2, 0) + |t f |2|rb|2. (8)

The first (second) slot for the probability functions indi-
cates the number of photons in port 1(2) and the subscript
“C” indicates the classical probabilities, which assumes the
input photons are distinguishable and undergo a proba-
bilistic process acting like bullets [43]. The difference to
their classical counterparts, e.g., PC (0, 1) = |tb|2A f + |r f |2Ab

and PC (1, 0) = |rb|2A f + |t f |2Ab for the single-photon output
states, where A f and Ab are absorption coefficients in the
forward and backward directions respectively, contributes to
quantum interference. When rb = 0, the quantum interference
in PQ(1, 0) is turned off and PQ(1, 0) is equal to its classical
counterpart while quantum interference still exists in PQ(0, 1).

From the spectra shown in Fig. 3(b), we calculate quantum
probabilities for different outputs from |11〉 input, as well as
the classical probabilities. Figure 4(a) shows the probabilities
for |10〉 and |01〉 outputs (symbols for results calculated from
full-wave simulation and lines from coupled mode model). At
the UZR point (dashed line at 293 THz), PQ(1, 0) is equal to
PC (1, 0) indicating the disappearance of quantum interference
on the reflectionless side [shown in Fig. 4(a) inset]. On the
other hand, PQ(0, 1) and PC (0, 1) differ a lot. For a system
with loss, PC (0, 1) for the |11〉 input state is nonzero. With the
quantum interference, PQ(0, 1) becomes smaller than PC (0, 1)
and the designed destructive quantum interference further
eliminates the |01〉 output with PQ(0, 1)/PC (0, 1) ≈ 0.058. It
is noted that the current example [in Fig. 3(b)] approaches the
one-sided destructive quantum interference condition Eq. (3)
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FIG. 4. The classical and quantum probabilities for output states
(a) with only one output photon and (b) with two output photons
from |11〉 input at different frequencies. Vertical dashed lines denote
the resonance frequencies shown in Fig. 3(b).

with zero rb. In essence, the design is achieved by choosing
appropriate values for w1 and h to satisfy Eq. (3) and l1 is then
chosen to have the appropriate level of loss contrast to match
the coupling between two gold bars to get an exceptional
point (UZR). On the contrary, at another resonance around
400 THz, Eq. (3) is not satisfied and the probabilities for |01〉
and |10〉, no matter quantum or classical, are in the similar
scale. Figure 4(b) shows the probabilities for output states |20〉
and |02〉 for the same input |11〉. At UZR, the probability for
output |20〉 reaches zero since the backward incident photon
cannot be reflected. On the other hand, the quantum probabil-
ity for |02〉 differs from its classical counterparts by exactly
a factor of 2, resulting from the quantum effect by mutual
stimulation of two photons in the same state [44].

In principle, the proposed one-sided destructive quantum
interference can be implemented with conventional optical
elements. Using singular value decomposition, we can de-
compose any scattering matrix satisfying Eq. (3) with zero rb:

S = 1
2 (

√
2eiφ1 0
eiφ2

√
2eiφ1

) with arbitrary φ1 and φ2 into two unitary

matrices and a diagonal matrix denoting loss (see Appendix C
for details). Such a decomposition corresponds to the imple-
mentation in Fig. 5, the beam splitter (BS) 1 and 3 are two
one-third BS corresponding to the two unitary matrices. The
BS 2 is a 25:75 BS to introduce loss by interfering with ancilla

BS1

BS2

BS3

FIG. 5. Simplifying one-sided destructive quantum interference
from the scheme using beam splitters (BSs) to our designed meta-
surfaces. BS 1 and 3 are one-third BS while BS 2 is a 25:75 BS to
introduce loss in channel 2 with vacuum mode 3.

vacuum state 3, while there is no loss in another channel thus
no BS in this arm. While this decomposition into conventional
optical elements can be used to realize the proposed one-sided
destructive quantum interference, the tailor-made metasurface
provides a more compact platform with subwavelength thick-
ness and greatly simplifies the setup.

III. CONCLUSION

In conclusion, we have proposed one-sided destructive
quantum interference effect based on a lossy metasurface
with UZR at an exceptional point. When two indistin-
guishable photons enter both sides of the metasurface, the
quantum interference to the single photon output state on
the reflectionless side is turned off while the quantum inter-
ference to the single photon output state on the other side
can be tuned through two indistinguishable processes. Such
one-sided quantum interference can be further made totally
destructive with a 50:25:0 beam-splitting ratio in percentage
among the transmission and the two reflection efficiencies.
Our investigation allows metasurfaces to become a versatile
platform to control quantum interference with the additional
degrees of freedom from material loss and non-Hermitian
exceptional point. It also allows construction of entangled
states with elimination of certain states through both quantum
interference and UZR effect, indicating potential applications
in quantum state preparation and quantum information pro-
cessing with elements of subwavelength thickness.
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APPENDIX A: OUTPUT PROBABILITIES FOR |11〉 INPUT

For |11〉 input in a passive metasurface with scattering
matrix S = (t f rb

r f tb
), classical probabilities can be calculated

assuming that the two photons are distinguishable particles
and undergo independent probabilistic processes acting like
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bullets, the results are

PC (1, 1) = |t f |2|tb|2 + |r f |2|rb|2, (A1)

PC (0, 2) = |r f |2|tb|2, (A2)

PC (2, 0) = |t f |2|rb|2, (A3)

PC (0, 1) = |tb|2(1 − |t f |2 − |r f |2)

+ |r f |2(1 − |tb|2 − |rb|2), (A4)

PC (1, 0) = |rb|2(1 − |t f |2 − |r f |2)

+ |t f |2(1 − |tb|2 − |rb|2). (A5)

The quantum probabilities can be calculated from full an-
cilla mode method [40] or noise operator formalism [33,44].
The results are listed in terms of classical probabilities,

PQ(1, 1) = PC (1, 1) + t∗
f t∗

b r f rb + t f tbr∗
f r∗

b , (A6)

PQ(0, 1) = PC (0, 1) − t∗
f t∗

b r f rb

− t f tbr∗
f r∗

b − 2|tb|2|r f |2, (A7)

PQ(1, 0) = PC (1, 0) − t∗
f t∗

b r f rb

− t f tbr∗
f r∗

b − 2|t f |2|rb|2, (A8)

PQ(0, 2) = PC (0, 2) + |tb|2|r f |2, (A9)

PQ(2, 0) = PC (2, 0) + |t f |2|rb|2. (A10)

One can find these expressions in [44] by taking the overlap
integral to be 1, which assumes that the two photons are
indistinguishable.

APPENDIX B: ANCILLA MODE FORMALISM TO
INCLUDE ONE LOSS CHANNEL

For reciprocal metasurfaces with unidirectional zero back-
ward reflection, the scattering matrix can be written as

S =
(

t 0
r t

)
. (B1)

Since only loss occurs on the metasurface, we should have
that all eigenvalues of S†S are less than or equal to 1 [43]. We
take the larger eigenvalue λ1 = 1

4 (|r| +
√

|r|2 + 4|t |2)2 � 1,
and get

|r| + |t |2 � 1.

Furthermore, for the proposed one-sided destructive quan-
tum interference, we require PQ(0, 1) = 0. By taking t f =
tb = t , r f = r, and rb = 0 [in Eq. (A7)], we get the inequality
for PQ(0, 1),

PQ(0, 1) = |t |2 − |t |4 + |r|2(1 − 4|t |2)

� |t |2 − |t |4 + (1 − |t |2)2(1 − 4|t |2)

= (1 − 2|t |2)2(1 − |t |2).

From this inequality, PQ(0, 1) = 0 only happens when

|r| + |t |2 = 1, (B2)

1 − 2|t |2 = 0 (B3)

(apart from the trivial vacuum case |t | = 1 and |r| = 0).
The scattering matrix for one-sided destructive quantum

interference is obtained as

|t | = 1/
√

2, |r| = 1/2.

It is noted that when Eq. (B2) is fulfilled, an eigenvalue
of S†S becomes 1. This is called the single ancilla mode
condition here since there exists a coherent input with no
absorption. We note that the single ancilla mode condition
is necessarily true at one-sided quantum destructive interfer-
ence.

To further explore the quantum interference effect with
loss, we adopt the ancilla-mode formalism with single ancilla
mode condition to find the state transformation [40]. We use
singular value decomposition to decompose the S = UDW , in
which

U =
⎛
⎝

t2r∗

|r||t |
√

1+|t |2
− t2r∗

|r||t |2
√

1+|t |2
t

|t |
√

1+|t |2
t√

1+|t |2

⎞
⎠, (B4)

D =
(

1 0
0 |t |2

)
, (B5)

W =
⎛
⎝

t∗r

|t ||r|
√

1+|t |2
|t |√

1+|t |2
− t∗r

|r|
√

1+|t |2
1√

1+|t |2

⎞
⎠, (B6)

where matrix U and W are unitary matrix and D is a diago-
nal matrix with singular value, characterizing the loss in the
channels. One can easily check that

UDW =
(

t 0
r(1−|t |2 )

|r| t

)
.

Then, with single ancilla-mode condition Eq. (A2), the
above matrix returns to the original S [Eq. (A1)].

According to the recipe in the ancilla-mode formulation,
we expand the D matrix with beam-splitter-like transforma-
tion to include the loss channels (at most two channels), while
the U and W matrices can be expanded appropriately with
identity matrix as a subblock,

U ′ =

⎛
⎜⎜⎜⎜⎝

t2r∗

|r||t |
√

1+|t |2
− t2r∗

|r||t |2
√

1+|t |2
0 0

t

|t |
√

1+|t |2
t√

1+|t |2
0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎠, (B7)

D′ =

⎛
⎜⎜⎝

1 0 0 0
0 |t |2

√
1 − |t |4 0

0 −
√

1 − |t |4 |t |2 0
0 0 0 1

⎞
⎟⎟⎠, (B8)

W ′ =

⎛
⎜⎜⎜⎜⎝

t∗r

|t ||r|
√

1+|t |2
|t |√

1+|t |2
0 0

− t∗r

|r|
√

1+|t |2
1√

1+|t |2
0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎠. (B9)
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Then the expanded S′ = U ′D′W ′ matrix becomes unitary,
with the third and fourth index now representing the loss
channels,

S′ =U ′D′W ′ =

⎛
⎜⎜⎝

t 0 −r∗t2/(|t |2√|r|) 0
r t t

√|r| 0
t∗r/

√|r| −√|r| |t |2 0
0 0 0 1

⎞
⎟⎟⎠.

(B10)

It is noted that although two loss channels are included
in the formulation, only one is coupled to the input modes
while the other one is not. It is actually resulting from the
presence of a unit singular value in Eq. (B5). It also means an
eigenvalue of S†S becomes 1 and then there is a coherent input
wave (φ = (|r|, t∗r)T ) with no absorption for the system, i.e.,
φ†S†Sφ = φ†φ. We can rewrite the matrix by removing the
decoupled loss channel, giving the matrix used in text,

S′ =
⎛
⎝ t 0 −r∗t2/(|t |2√|r|)

r t t
√|r|

t∗r/
√|r| −√|r| |t |2

⎞
⎠. (B11)

The input modes operators (â†
i ) can be written as combi-

nation of output operators (b̂†
i ), â†

i → ∑
i j S

′T
i j b̂†

j . With this
relation, we can find the output state for input state |11〉

|11〉 = â†
1â†

2|0〉
→ (t b̂†

1 + rb̂†
2 + t∗|r|−1/2rb̂†

3)(t b̂†
2 − |r|1/2 b̂†

3)|0〉.
We can add a third index in the ket to indicate the number

of photons in the loss channel, giving the transformation in
Fock state,

|110〉 → (|t |2 − |r|)|r|−1/2r|011〉 −
√

2t∗r|002〉
− |r|1/2t |101〉 + t2|110〉 +

√
2tr|020〉.

From the output state, we can further find the probabilities
for different outputs,

PQ(1, 1) = |t |4 = PC (1, 1),

PQ(0, 1) = (|t |2 − |r|)2|r| = PC (0, 1) − 2|t |2|r|2,
PQ(1, 0) = |r||t |2 = |t |2(1 − |t |2) = PC (1, 0),

PQ(0, 2) = 2|t |2|r|2 = PC (0, 2) + |t |2|r|2,
PQ(2, 0) = 0 = PC (2, 0),

which can be checked using expressions for general cases
Eqs. (A6)–(A10) with Eq. (B2) and the scattering matrix being
Eq. (B1). It constitutes a special case for Eqs. (4)–(8) in the
main text.

APPENDIX C: IMPLEMENTATION OF THE
PROPOSED MATRIX

The proposed one-sided destructive quantum interference
effect can be implemented with the scattering matrix S =
1
2 (

√
2eiφ1 0
eiφ2

√
2eiφ1

) with arbitrary φ1 and φ2. This matrix can be

first transferred into a real matrix with only magnitude infor-

mation using phase shifters on separate ports, whose matrix
representations are

PS1(θ ) =
(

eiθ 0
0 1

)
, (C1)

PS2(θ ) =
(

1 0
0 eiθ

)
, (C2)

where the subscript denotes the port number. Then the original
scattering matrix can be turned into purely real

Sre = PS1(−φ1)PS2(−φ1) S PS2(φ2 − φ1)

= 1

2

(√
2 0

1
√

2

)
. (C3)

It is worthwhile to note that for |11〉 input and our inter-
ested output |01〉, the phase shifters would not change the
states. Therefore, we focus on the implementation of the Sre,
which can be decomposed into three matrices as Sre = UDW ,
in which

U = 1√
3

(
1 −√

2√
2 1

)
, (C4)

D =
(

1 0
0 1

2

)
, (C5)

W = 1√
3

(√
2 1

−1
√

2

)
, (C6)

where the matrix U and W are a unitary matrix and can be
implemented with one-third beam splitters and D is a diagonal
matrix characterizing the loss in the channels. The one loss
channel can be implemented with 25:75 BS and interference
with an ancilla vacuum mode as represented by the expanded
3 × 3 matrix D′ form D, while the matrices U and W can be
expanded respectively to U ′ and W ′,

U ′ =
⎛
⎝ 1/

√
3 −√

2/
√

3 0√
2/

√
3 1/

√
3 0

0 0 1

⎞
⎠, (C7)

D′ =
⎛
⎝

1 0 0

0 1
2

√
3

2

0 −
√

3
2

1
2

⎞
⎠, (C8)

W ′ =
⎛
⎝

√
2/

√
3 1/

√
3 0

−1/
√

3
√

2/
√

3 0
0 0 1

⎞
⎠, (C9)

and the corresponding 3 × 3 unitary matrix for the whole
system is

S′ = U ′D′W ′ = 1

2

⎛
⎝

√
2 0 −√

2
1

√
2 1

1 −√
2 1

⎞
⎠. (C10)

APPENDIX D: COUPLED-MODE THEORY

We use coupled-mode theory (CMT) to explain the sim-
ulation results and find the 2 × 2 scattering matrix S =
{{t f , rb}, {r f , tb}} for y-polarization light. In this model, we
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assume two electric dipole modes on the two gold bars re-
spectively and take the middle plane of the two gold bars as
reference. The matrix to convert input field into local field can
be written

A =
(

e−iφs/2 eiφs/2

eiφs/2 e−iφs/2

)
, (D1)

in which φs is the phase difference resulting from the light
propagation in between the two antennas and thus linear to
the separation of the two strips. The matrix

�a =
( f − f1

a1
κ

κ
f − f2

a2

)
+

(
iγ1 0
0 iγ2

)
(D2)

is used to transform the local field to the resonance modes,
in which fi, ai, and γi describe the resonance frequency,
resonance strength, and decay rate of the resonance modes.
In this way, we can write down the resonance modes as

p = −(�a + i	s)−1AE in, (D3)

where E in = [E1,in, E2,in]T describes the amplitude of the
input field, 	s = AA†/2 describes the radiative scattering [45],
and p = [p1, p2]T describes the resonance modes. The outgo-
ing waves are

Eout = E in + iA† p

= E in − iA†(�a + i	s)−1AE in, (D4)

Therefore, the scattering matrix takes the form

S = I − iA†(�a + i	s)−1A. (D5)

We simulated multiple configurations with varying w1, l1,
and h, and fitted the parameters in CMT with the geomet-
ric parameters. In the parameter space, we found the fitted
relation to be

f1 = 424.4 + 0.81h − 0.90 l1 + 0.62 w1,

a1 = 46 − 0.32 h − 0.16 l1 + 0.15 w1,

γ1 = 2.94 − 0.011 l1 − 0.006 w1,

f2 = 290.5 + 7.81 h − 0.17 h2,

a2 = 14 + 0.78 h − 0.011h2,

γ2 = 0.27,

κ = −4.69 + 0.23 h − 0.004 h2,

s = 25.7 + 0.88 h,

in which the dimensions are in unit nm, f1, f2, γ1, γ2, and κ are
in unit THz, and s is in unit nm, connecting to φs with φs =
π f s

c , in which f is the frequency of wave and c is the speed
of light. With the parameter fitting, the family of UZR cases is
estimated and shown in Fig. 3(a). We note that from the fitting,
we have found that there are additional dependencies on the
separation h in f1, f2, a1, and a2 as our CMT is effectively a
two-mode model, so that all the other coupling terms to other
modes are lumped into these terms as perturbation.
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