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Nonequilibrium mode competition in a pumped dye-filled cavity
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We consider a homogeneously pumped photon gas coupled to a dye medium and investigate how its steady
state is affected when varying the pump power, the photon cavity lifetime, and the cutoff frequency. We study
how the interplay between pumping, loss, and dye-induced thermalization influences the selection of the cavity
modes that acquire large occupation. Depending on the parameter regime, the latter can be related either to lasing
of (typically multiple) modes or to equilibrium-like photon condensation in the ground mode. We calculate and
explain the phase diagram of the system, with a particular emphasis on the role played by mode competition that
occurs in the regime of weak cavity loss.
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I. INTRODUCTION

Following the realization of Bose-Einstein condensation
(BEC) of exciton polaritons, [1–6], thermalization [7] and the
formation of an equilibrium-like Bose condensate of photons
has been realized in various experimental setups [8–14]. The
inherently grand-canonical statistics of photon BECs [15] has
been studied, as well as its spatial [16] and temporal features
[17–20]. A considerable amount of work has also been done to
clarify the delimitation of photon BECs from lasers [21–25],
and thermo-optic imprinting has been used to create variable
potentials for coupled photon condensates [26].

Given the inherently driven-dissipative nature of these
systems, a complex interplay between the pump and loss
processes driving the system out of equilibrium and the ther-
malizing influence of the environment (dye solution) emerges
when tuning the various control parameters. This nonequi-
librium nature of these systems makes them an excellent
experimental platform for studying ordering under nonequi-
librium conditions. First studies of this physics have recently
been published. The case of a symmetrically pumped system
and its steady-state featuring multimode condensates has been
studied theoretically [27], predicting a complex phase dia-
gram, where the phases are distinguished by their different
combinations of macroscopically populated modes, as well as
experimentally [13]. Multimode condensates were also shown
to occur in continuously pumped systems of trapped polari-
tons [28,29]. The case where the system of cavity-confined
photons coupled to dye molecules is driven by an off-centered
pump beam has also been investigated and shown to feature a
robust mechanism for controlled two-mode emission [30].

Here we consider the case of a symmetrically (homoge-
neously) pumped system, in which multimode condensates
occur. We show how the limit of a quasiequilibrium photon
BEC is approached via mode competition when the photon
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cavity lifetime is increased. Moreover, we also discuss the role
played by the cutoff frequency, i.e., the ground-mode energy,
in the formation of multimode condensates.

This paper is organized as follows. In Sec. II we introduce
the model system, described in terms of rate equations for
the photon mode populations ni and the spatially dependent
fraction f (�r) of excited dye molecules. Then in Sec. III we
discuss the condition for mode selection, i.e., a mode ac-
quiring macroscopic occupation. We also explain how this
condition is connected to the locking of the chemical potential
as a BEC condition in the equilibrium limit (Sec. IIIA). We
give a general condition for the threshold pump rate for a
mode selection, which reduces to very simple expression in
the case of first selection (Sec. IIIB). Before turning to discuss
our results, we list all the parameter values corresponding
to the relevant experiments and used in the numerical sim-
ulations (Sec. IIIC). In the following section (Sec. IV), we
investigate the dependence of mode selection on the so-called
thermalization parameter, which is effectively a dimensionless
photon cavity lifetime. Here we observe and discuss the ef-
fect of mode competition with the associated cross-saturation
phenomenon, as well as deselection (loss of macroscopic
occupation) [27,31], before presenting a phase diagram in
a parameter plane spanned by the pump rate and the ther-
malization parameter (Sec. V). We explain the various phase
boundaries and how the approach towards a quasiequilibrium
ground-mode condensate manifests in the phase diagram.
Moreover, we point out discrepancies with respect to the
previously computed phase diagram of Ref. [27]. In the final
section (Sec. VI) we study how the mode selection is affected
when tuning the cutoff-frequency.

II. SYSTEM AND MODEL

We describe the system in terms of semiclassical equations
of motion [16,27,30,32] for the photon mode populations ni

and the fraction f (�r) of excited dye molecules at position �r in
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FIG. 1. Upper panel: Photon mode densities |ψnx ,ny (x)|2 pro-
jected onto the x axis. For simplicity, only modes (nx, 0), with nodes
only along the x direction, are shown. Lower panel: Fitted absorption
(Ri

↑) and emission (Ri
↓) rates (solid lines) vs frequency εi/h. The

rates are fitted to experimental data (crosses) [16,38] using a cubic
smoothing spline. The frequency range of the relevant cavity modes
is indicated by the shaded gray area with a sharp cutoff at ωc = ε0/h̄.

the two-dimensional space given by the directions perpendic-
ular to the optical axis of the cavity:

ṅi = −κni + (ni + 1)Ri
↓ρ Gi − niR

i
↑ρ (1 − Gi ), (1)

ḟ (�r) = [1 − f (�r)]

(
P +

∑
i

Ri
↑|ψi(�r)|2ni

)

− f (�r)

[
� +

∑
i

Ri
↓|ψi(�r)|2(ni + 1)

]
. (2)

Here ρ is the density of the dye molecules, � is the rate of
spontaneous losses into noncavity modes, and κ is the photon
loss rate. The transverse photonic modes ψi(�r) (upper panel
of Fig. 1) are the eigenfunctions of the two-dimensional har-
monic trap imposed by the spherically curved mirrors. They
are characterized by a pair of harmonic oscillator quantum
numbers in the x and y directions, i = (νx, νy), and have en-
ergies Ei = h̄[	x(νx + 1/2) + 	y(νy + 1/2)] with oscillator
frequencies 	x and 	y. In the following, we assume 	x and

	y to be almost identical, 	x ≡ 	 and 	y = 0.99 	. This
slight anisotropy of the trap is a realistic assumption and
is required for eliminating the coherent mixing of otherwise
degenerate modes i [33]. The harmonic oscillator length d
associated with 	 is used as a natural unit of length. The total
energy of the cavity mode i is then given by εi = Ei + h̄ωL,
where ωL is the frequency of the relevant longitudinal mode.
The gain [34] of mode i is quantified by its overlap with the
fraction f (�r) of excited dye molecules,

Gi[ f (�r)] =
∫

|ψi(�r)|2 f (�r) d�r ∈ [0, 1]. (3)

The dye solution is characterized by the absorption and emis-
sion rates, Ri

↑ and Ri
↓, which satisfy the Kennard-Stepanov law

[7,35,36]

Ri
↓/Ri

↑ = Ce−β(εi−h̄ωz ), (4)

which can enable the photon gas to thermalize. Here ωz

denotes the zero-phonon frequency of the dye and C is a
frequency-independent proportionality constant. The pump
rate P is considered to be spatially constant [37].

III. MODE SELECTION

We can write the steady state of Eq. (1) in the following
form:

ni =
(

Ri
↑

Ri
↓

(1 − Gi )

Gi
− 1 + κ

Ri
↓ρGi

)−1

. (5)

When a mode i becomes macroscopically occupied (“Bose
selected” [23,24,39,40]), the contribution of spontaneous
emission to this macroscopic population ni becomes negli-
gible (ni + 1 ≈ ni). This allows us to find a sharply defined
threshold value Gth

i of the gain at which the “selection” hap-
pens. It is obtained by setting the term in the brackets to zero
(corresponding to a divergent occupation). We get

Gth
i = Ri

↑ + κ/ρ

Ri
↑ + Ri

↓
= 1 + R0

↑/(Ri
↑ξ )

1 + Ce−β(εi−h̄ωz )
, (6)

where we have isolated the thermalization parameter [16,27]

ξ = R0
↑ρ/κ (7)

as a dimensionless measure of the coupling between the pho-
tons and the dye relative to the cavity loss. Since one of the
requirements of an effective thermalization in the system is
that the absorption at the ground mode is not too low, R0

↑ is a
reasonable choice in this definition. However, it is somewhat
arbitrary, and it does not affect the results, given that the same
quantity is divided from the absorption and emission rates
Ri

↑,↓ to obtain the dimensionless form of the rate equations
used in the numerical calculations. Once a mode is selected,
the gain Gi is clamped [41] close to (i.e., slightly below) the
threshold value Gth

i .

A. Equilibrium limit

In the case of equilibrium BEC, this “divergent” (macro-
scopic) occupation in the ground mode happens when the
chemical potential approaches the value of ground mode en-
ergy. This locking of the chemical potential can be shown
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to be equivalent to the above defined clamping of the gain
Gi in the limit ξ → ∞ for the case of homogeneous excita-
tion field f (�r) = const ≡ f . Equation (5) then reduces to the
Bose-Einstein distribution

ni = (
eβ(εi−μ) − 1

)−1
, (8)

where we have used the Kennard-Stepanov law [Eq. (4)] and
introduced the chemical potential μ of the photon gas given
by [42]

eβμ = Ceβ h̄ωz f /(1 − f ), (9)

where f /(1 − f ) is now a spatially homogeneous ratio of
the number of excited and ground-state dye molecules. When
μ → ε0 (onset of BEC), Eq. (9) becomes Ce−β(ε0−h̄ωz ) = (1 −
f )/ f . It follows that f = Gth

0 = 1/(1 + Ce−β(ε0−h̄ωz ) ), which
is exactly the selection threshold condition for the ground
mode given by Eq. (6) when the photon cavity lifetime 1/κ ∝
ξ → ∞. Therefore, in the equilibrium limit, which does not
require pumping in order to stabilize the average photon num-
ber, the locking of the chemical potential is equivalent to the
clamping of the gain.

B. Threshold pump rate

The general condition for the selection threshold pump rate
Pth

i of mode i can be obtained by inserting Eq. (2) into the
definition of the gain (3) and setting it equal to Gth

i . We get
[27]

Gth
i =

∫
d�r |ψi(�r)|2 P + ∑

j∈S R j
↑ |ψ j (�r)|2 n j

� + P + ∑
j∈S (R j

↑ + R j
↓) |ψ j (�r)|2 n j

,

(10)
where the sums in the integrand are over all of the modes
which have already been Bose selected at lower pump rates.
Again, the sharpness of transitions allows us to omit the con-
tributions of spontaneous emission to the mean occupations,
which are negligible once a mode is selected.

This equation would allow us, in principle, to iteratively
determine each selected mode and the corresponding thresh-
old pump rate, if the populations of all the already selected
modes are known as a function of the pump rate P. Namely,
at each value of ξ , the selected mode is the one for which
Eq. (10) holds for the lowest value of P. However, an analytic
expression can be obtained only for the first selection. Here
the approximate value of the threshold Pth

i can be obtained by
setting all n j to zero (i.e., neglecting the coupling to the still
weakly occupied photonic modes). Equation (10) then reduces
to

Gth
i = P

� + P
. (11)

Solving this equation for P and inserting the condition (6), we
get the first-selection threshold pump rate Pth

i as a function of
the thermalization parameter ξ :

Pth
i = Gth

i

1 − Gth
i

� = Ri
↑ + R0

↑/ξ

Ri
↓ − R0

↑/ξ
�. (12)

It follows that the first-selected mode is the one with the
lowest threshold gain Gth

i (ξ ). In Fig. 2 the threshold pump
rate Pth

i is shown as a function of ξ and the mode energy

FIG. 2. Threshold pump rate Pth of the first selection as a func-
tion of the thermalization parameter ξ and the energy Ei of the
modes.

Ei [blue (dark gray) surface]. The orange (light gray) line
on this surface follows the minimal Pth

i at each value of ξ .
We see that only for very small values of the thermalization
parameter, ξ � 0.1, this is not the ground mode. This follows
from Eq. (6) when taking into account the shapes of the ab-
sorption and emission spectra (see the lower panel of Fig. 1).
In particular, by looking at the second equation we see that the
ξ -independent denominator always favors the ground mode,
which has the largest Boltzmann factor, whereas the nomi-
nator contains the relative absorption rate of mode i, Ri

↑/R0
↑,

modulated by the thermalization parameter. When the latter
is sufficiently large, ξ � 0.1, this term becomes negligible
compared to 1, and the selected mode is determined solely
by the ground-mode favoring Boltzmann factor. On the other
hand, in the high loss regime, ξ � 0.1, excited modes with
higher relative absorption rate can “win out,” i.e., have the
smallest threshold gain.

C. System parameters

For our numerical calculation we use the parameter val-
ues which correspond to the experiments of Refs. [21,26],
namely, we choose a slightly anisotropic harmonic trap, as
defined above, with 	/2π = 4 THz. The ground-mode (cut-
off) frequency is set to ωc = ε0/h̄ = 2π × 515 THz. From
the measured absorption and fluorescence spectra of the Rho-
damine 6G dye [16], we obtain the corresponding rates Ri

↑,↓
as fitted functions of the frequency εi/h [16,38] using a cubic
smoothing spline, as shown in the lower panel of Fig. 1. The
values of the absorption and emission rates across the whole
frequency range are then determined by setting the absorption
rate of the ground mode to R0

↑/d2 = 1 kHz [21]. The density
of dye molecules is set to ρ = 108/d2, and the thermaliza-
tion parameter ξ lies between 0.01 and 100, where ξ = 25
corresponds to the mean experimental value of the photon
loss rate κ ≈ 4 GHz [21]. The rate of spontaneous losses into
noncavity modes is set to � = 0.2 GHz.

We kept 28 modes (corresponding to seven energy levels)
in our numerical calculations. The value of the frequency
spacing 	 between the modes was chosen large enough,
while also achievable experimentally [26], so that increas-
ing the number of modes considered would not produce a
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FIG. 3. The left panel shows the mode populations ni as functions of pump rate P for two values of the thermalization parameter, ξ = 0.03
(a) and ξ = 20.1 (c). Only one of the modes in an almost identically behaving symmetric pair is labeled. The right panel, (b) and (d), shows
the corresponding spatial distributions of excited dye molecules f (x) for the chosen values of P (vertical lines in the left panel).

significant effect on the results. That is, any additional modes
would remain unselected across the whole pump-rate range
and would not affect the transition thresholds of the selected
modes. We used the LSODA algorithm and set a sufficiently
large time interval to achieve convergence to a steady state
for the range of parameters used. The initial condition was
set to a zero mode-population vector for the lowest value in
a range of pump rates P, and adapted to the current solution
at each successive value of P. We also solved the steady-state
equation directly via a root-finding algorithm to confirm that
both methods produce exactly the same results.

IV. TUNING THE PHOTON CAVITY LIFETIME AND
MODE COMPETITION

Let us now discuss how the selection of modes is in-
fluenced by the thermalization parameter ξ , or equivalently
the photon cavity lifetime 1/κ . Numerically obtained photon
mode populations as functions of the pump rate are shown in
Fig. 3 for two values of the thermalization parameter ξ . The
colors correspond to the modes as shown in Fig. 1, and only
modes with varying shapes are shown with different colors;
e.g., symmetric pairs like (2,1) and (1,2) are depicted with
the same color [brown (dark gray)] but a different line style
(solid vs dashed). These same colors are used consistently in
all figures in this paper. As expected from Fig. 2, for the low
value ξ = 0.03 [Fig. 3(a)], multiple quasidegenerate excited
modes (2,0), (0,2), and (1,1) are selected at practically identi-
cal threshold pump rate. This is followed by further selection
of modes with higher energy, while the ground mode (0,0)
remains unselected.

When ξ is sufficiently large, as shown in Fig. 3(c), the
ground mode is the first one to get selected at a much lower
value of P. However, as P is increased further, eventually

also modes (6,0) and (0,6) get selected, as opposed to the
energetically favorable selection of the first excited modes
(1,0) and (0,1), which according to Eq. (6) possess a lower
threshold gain Gth

i .
In order to explain this, we plot the fraction of excited

dye molecules f (x) ≡ f (x, 0) in Fig. 3(d) for three chosen
values of P (indicated by vertical lines of the same style in
the left panel). We see that once P is increased above the first
selection threshold, the shape of f (x) reflects the clamping
of the gain in the central region, which overlaps with the
selected ground-state mode. This clamping in the center of
the trap then suppresses the selection of further low-energy
modes, whose wave functions have a large weight in the trap
center. This mechanism of cross-saturation [43–45] explains
why after the ground mode, the next modes to be selected
possess six excitation quanta. Likewise, Fig. 3(b) shows that
after the first selection f (x) reflects the shape of the selected
excited modes for the scenario of Fig. 3(a).

To see more clearly how the shape of f (x) and with that
the cross-saturation effect changes with ξ , we plot its value at
P = 0.02 for 4 values of ξ (Fig. 4). This pump rate is slightly
above the first selection threshold Pth, and only the ground
mode is selected in each case. It follows from Eqs. (6) and (12)
that a higher value of ξ lowers the first selection threshold,
and the corresponding gain gets clamped at a lower value Gth,
indicated by horizontal blue (gray) lines for each ξ in Fig. 4.
We see that with an increase of ξ the excited dye molecules are
clamped both at a lower value and in a wider spatial region,
therefore becoming progressively more inaccessible to modes
close in energy to the ground mode. In other words, when the
gain is clamped at lower values, not enough molecules can
be excited in the region of overlap between the ground mode
and following excited modes. We can say that successive
modes (those with largest overlap) “compete” for gain in the
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FIG. 4. Spatial distributions of excited dye molecules f (x) close
above the first selection threshold Pth for four values of the thermal-
ization parameter ξ . The corresponding threshold gain Gth is marked
by a horizontal blue (gray) line of the same style.

same spatial domain and block each other from being selected
together in the regime of higher P. When the thermalization
parameter is increased even further to ξ = 20.1 [Fig. 3(d)]
f (x) is locked to an even lower threshold value of the gain
Gth

0 [dashed blue (gray) line] in an even wider middle region.
In this way, when increasing ξ , a quasiequilibrium steady
state is approached, where the gain clamping is equivalent to
locking of the chemical potential. The fact that f (x) is free to
increase with the pump power in the outer spatial region until
gain saturation is reached (no more dye molecules available to
excite) reflects the nonequilibrium nature of the system.

Another observation that we can make from Fig. 3 is that,
while the modes (6,0) and (0,6) are selected in high P regime,
all the other modes with the same energy [like (3,3), (4,2),
(5,1), etc.] remain unselected due to the key influence of
the dye excitation profile on the behavior of modes. This is
another indicator of the nonequilibrium nature of this state
[even though at lower P where only (0,0) is selected, this state
can hardly be distinguished from the equilibrium photon BEC
(of a finite system), as will be discussed below in more detail].

In Fig. 5, at an intermediate value of the thermalization
parameter ξ = 1.8, we can also observe the phenomenon
of “deselection.” Namely, we can see that the green (gray)-
colored mode pair (2,0) and (0,2) gets deselected, as the purple
(dark gray)-colored one (3,0) and (0,3) is selected [Fig. 5(a)]
[henceforth for brevity, mode pairs {(i, j), ( j, i), i �= j} are
denoted simply as “mode pair (i, j)”]. This decondensation
of photonic modes was already discussed in Ref. [27], and a
similar effect was predicted in a system of driven-dissipative
polariton condensate [31]. This is another manifestation of
the above-mentioned competition between successive modes
which have a large spatial overlap. It happens when not
enough dye molecules are pumped to their excited states in
the combined region of mode density for both mode pairs to
stay selected. Once, after the ground mode, the mode pair
(2,0) is selected, f (�r) can increase only in a very restricted
way, such that it stays clamped close to both G(0,0) and G(2,0)

[dotted lines in Fig. 5(c)]. This restriction still allows for the
selection of the mode pair (3,0). However, the more particles
this third selected pair acquires, the more attractive it becomes

FIG. 5. Population ni (a) and gain Gi (c) of modes i vs pump
rate P for ξ = 1.8. Only one of the modes in an almost identically
behaving symmetric pair is labeled. Dotted horizontal lines indicate
threshold values Gth

i to which the gain is clamped at selection. The
middle panel (b) shows the zoomed-in gain of modes (2,0) and (0,2),
which are deselected when the clamped gain starts to drop below
Gth

(2,0) and Gth
(0,2), respectively.

for further photons due to bosonic enhancement (i.e., stimu-
lated emission). This nonlinear effect leads to a competition
with the energetically slightly favored (2,0) modes, which
eventually causes the decondensation of the latter. This is
accompanied by the “declamping” of its gain, which is better
visible in Fig. 5(b) showing the zoom-in around Gth

(2,0).

V. PHASE DIAGRAM

After having discussed the role of mode competition for
the selection of excited cavity modes, let us now compute
the phase diagram of the system in the parameter plane
spanned by the pump rate and the thermalization parameter.
Figure 6 shows a phase diagram where the various phases
are characterized by which modes are selected. There are no
macroscopically occupied modes in the white region (labeled
1). Only the ground mode is selected in the blue region (2),
whereas in the gray one (3), there are multiple selected modes.
Dots (crosses) are numerical points indicating selections (de-
selections) of the corresponding modes. The lower and upper
phase boundaries (dotted lines) are obtained by interpolating
between the points of first (second) selection. Below the value
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FIG. 6. Phase diagram showing three main regions. The white region (labeled 1) has no selected modes, only the ground mode is selected in
the blue region (2), and there are multiple selections in the gray one (3). Dots (crosses) are numerical points indicating selections (deselections)
of the corresponding modes. The dotted line is the lower (upper) phase boundary, interpolating between the points of first (second) selection.
The pump rate at which the two phase boundaries meet is the minimal P for which the ground mode is selected. Below this pump rate (“lasing
phase”), the phase boundaries are indistinguishable, because multiple quasidegenerate higher energy modes are selected at almost exactly the
same P. The analytical result for the first selection threshold [Eq. (12)] is shown with a solid black line. In the high-ξ regime, this phase
boundary approaches the dashed horizontal line, showing the high thermalization limit of Eq. (12) Pth(ξ → ∞). The three dotted vertical lines
mark the cuts through the phase diagram shown in Fig. 3 and Fig. 5.

of ξ at which both boundaries meet, the mode which becomes
selected first is not the ground state anymore. Below this
point, the two phase boundaries are indistinguishable, because
multiple quasidegenerate higher energy modes are selected at
almost exactly the same P. The solid black curve indicates
the analytical result for the first selection threshold, given by
Eq. (12) and shown with the orange (light gray) line in Fig. 2.
It closely matches the numerical result, especially in the high
ξ regime, where it approaches the high thermalization limit of
Eq. (12) Pth(ξ → ∞)/� = R0

↑/R0
↓ (dashed horizontal line).

We note that our phase diagram differs from the one
obtained in Ref. [27]. Namely, in agreement with the an-
alytical prediction (12), we find that the threshold pump
rate for the first selection process decreases as a func-
tion of the thermalization parameter, while it increases
in Ref [27].

In the regime of low ξ , where the photon cavity lifetime
is too short for photons to effectively thermalize, there are
multiple high-energy modes selected closely together instead
of the ground mode, and these transitions to macroscopic oc-
cupation represent the limit where the operation of the system
would typically be considered as that of a laser. Given that
drive and thermalization are both present in this system, Bose
condensation cannot be sharply distinguished from lasing.
Nevertheless, this phase diagram still clearly shows the trend
of going from the lasing limit towards the BEC limit as the
thermalization parameter is ramped up.

The second phase boundary separates the blue region (2)
with only the ground state selected from the gray one (3),
where also excited modes have acquired a large occupation.
With increasing ξ , the separation between the Pth

0 of the
ground mode selection and the Pth

j of the next selected mode
j increases together with its energy Ej , due to mode competi-
tion explained above. In this way, a limit of quasiequilibrium

photon BEC is approached for large ξ and pump powers well
below the second selection threshold.

To support this claim, in Fig. 7 we compare the Bose-
Einstein (BE) distribution ln(1 + 1/ni ) = βεi − μ [solid or-
ange (light gray) line] with the distribution of numerically
obtained mode populations ni [blue (gray) dots] for P close
and far above the first selection threshold Pth. Left panel

FIG. 7. Numerical mode population ni [blue (gray) dots] vs mode
energy Ei compared to the thermal distribution [solid orange (light
gray) line] below, close above and far above the first selection thresh-
old Pth when ξ = 1 ⇒ Pth = 0.0065 � (left panels) and ξ = 100 ⇒
Pth = 0.0044 � (right panels).
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corresponds to ξ = 1, and the right one to ξ = 100, for which
only the ground mode is selected. As expected, for higher
ξ , the match between the numerical points and the thermal
distribution is better, particularly when P is only slightly
above the threshold, P � Pth. Here the small deviations are
only due to the fact that the absorption and emission rates
fitted to measured data (Fig. 1) do not satisfy the Kennard-
Stepanov relation [Eq. (4)] exactly, but only to a very good
approximation. As P is raised significantly above Pth, the
numerically obtained populations start to deviate from the
BE distribution, particularly those of higher modes. This is
expected, even though at the very high value of ξ , no other
mode is selected at P 
 Pth except the ground mode. The
reason for this is that outside of the increasingly wide central
region of the trap where the gain is clamped, f (x) can still
increase with P. Therefore, the occupation of modes with a
high density there (higher energy modes) can increase as well,
moving away from the thermal distribution.

VI. TUNING THE CUTOFF FREQUENCY

Let us finally discuss how the physics of the mode selection
changes, when considering a variation of the cutoff frequency
ωc (or, equivalently, the detuning from the zero-phonon line).
The cutoff frequency corresponds to the ground-mode energy
and can be tuned experimentally by varying the longitudinal
frequency ωL via the cavity length. It determines the absorp-
tion and emission rates, thus affecting also the degree of
thermalization. This has been studied experimentally for the
case of a continuous wave (CW) [7] and pulsed laser pump
[21], as well as in theoretical work [17].

In Fig. 8 we show the numerical results for the photon
populations ni for three different values of the cutoff fre-
quency, while keeping the thermalization parameter fixed at
ξ = 1. Changing the cutoff frequency, i.e., the ground-mode
energy, corresponds to shifting the frequency range of cavity
modes (sketched by the gray shaded area in the lower panel
of Fig. 1) to the left or right. This effects the threshold gain
Gth

i of each mode [Eq. (6)]. For sufficiently low cutoff fre-
quency ωc/2π = 490 THz [Fig. 8(a)], the tabulated values
for the absorption and emission rates no longer satisfy the
Kennard-Stepanov law. Instead of the ground mode, now an
excited mode pair (3,0) has the lowest value of Gth

i and it is
selected first, closely followed by additional excited modes,
while the ground mode remains unselected. In the case of
higher ωc/2π = 515 THz (the same value is used for all the
rest of our results), the ground mode is selected first, followed
by the selection of several excited modes, as seen in Fig. 8(b).
Compared to Fig. 8(a), the threshold pump rate Pth of the first
selection has increased. When the cutoff frequency is shifted
even further to ωc/2π = 525 THz, only the ground mode is
selected before the gain is saturated [Fig. 8(c)] and no further
selections can occur. This is shown in the inset, where the P
axis is extended by two orders of magnitude. In this case the
Kennard-Stepanov law still holds, but the corresponding Pth

and Gth are now the highest. It should be pointed out that
in the actual experiment, as the cutoff frequency is varied,
the photon cavity lifetime also varies significantly [21]. In
the case of our chosen ωc values, this means that ξ should
increase with ωc [46]. However, this would only enhance the

FIG. 8. Population ni of modes i vs pump rate P for ξ = 1. The
cutoff frequency is ωc/2π = 490 THz (a), ωc/2π = 515 THz (b) and
ωc/2π = 525 THz (c). The inset of panel (c) contains the same result
extended to high P regime, showing that only the ground mode is
selected before the gain is saturated.

effect of increase in photon thermalization, observed from
Figs. 8(a)–(c).

VII. CONCLUSIONS

We have studied how the variation of the photon cavity
lifetime 1/κ and the cutoff frequency ωc effects the steady
state of a homogeneously pumped photon gas coupled to a
dye medium. We have shown how, through the effect of mode
competition (governed by the dye excitation profiles), the
equilibrium-like ground-mode condensation emerges from the
steady state of the system. Namely, we found that increasing
the thermalization parameter ξ ∝ 1/κ results in an increased
competition of transverse modes for the gain, in the sense
that the ground-mode selection is followed by a selection of
modes with increasing number of excitation quanta. This is
explained as a consequence of how the dye excitation pro-
file f (�r) at pump powers above which the ground-mode is
selected changes with ξ . We produced a phase diagram of the
system in the space of two parameters, the pump power and
the thermalization parameter, and noted how it differs from
the one in Ref. [27].
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We also looked at the effect of varying cutoff frequency
ωc on the selection of modes, and found that, in agreement
with previous work [7,17,21], below a certain value of ωc, the
photons are unable to effectively thermalize, resulting in the
closely spaced selections of many excited modes, as opposed
to the ground mode. On the other hand, the cutoff frequency
can be increased above the value used in the rest of this work,
while keeping the ratio of emission and absorption rates still
to a good approximation proportional to the Boltzmann factor

(i.e., the Kennard-Stepanov law still holds). We show that in
this case only the ground mode is selected before the gain
saturates.
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