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We investigate the three-level Dicke model, which describes a fundamental class of light-matter systems.
We determine the phase diagram in the presence of dissipation, which we assume to derive from photon
loss. Utilizing both analytical and numerical methods we characterize the incommensurate time crystalline,
light-induced, and light-enhanced superradiant states in the phase diagram for the parametrically driven system.
As a primary application, we demonstrate that a shaken atom-cavity system is naturally approximated via a
parametrically driven dissipative three-level Dicke model.
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I. INTRODUCTION

The Dicke model is a paradigmatic model capturing the
physics of a fundamental class of light-matter systems [1].
The standard two-level Dicke model describes the interaction
between N two-level systems and a quantized single-mode
light field. The dissipative or open standard Dicke model was
first realized by using an atom-cavity setup allowing for an
approximate description, in which the intracavity light field
is adiabatically eliminated [2]. Later, it was also implemented
in the recoil-resolved regime, which requires independent dy-
namical descriptions of the cavity and the matter field [3].
Meanwhile, extensions of the two-level Dicke models [4–11]
and variations of the transversely pumped atom-cavity sys-
tems [12–19] have been studied.

An important class of quantum optical phenomena de-
rive from three-level systems interacting with light. These
phenomena include electromagnetically induced transparency
(EIT) [20,21] and lasing without inversion (LWI) [22,23], as
well as methods such as stimulated Raman adiabatic passage
(StiRAP) [24,25]. They are based primarily on three-level
systems in a λ or a V configuration. These three-level system
configurations occur naturally in numerous physical systems,
which is the origin of the universality of the phenomena that
derive from them. In the context of the Dicke model, its
generalization to three-level atoms interacting with a multi-
mode photonic field has been proposed in Ref. [26]. A similar
three-level model has been used to demonstrate subradiance
[27–30].

In this work, we study a system of three-level atoms cou-
pled to a photonic mode modeled by a three-level Dicke
mode, in which the three-level system forms a V configura-
tion, as depicted in Fig. 1(a). The three-level system can be
described by using pseudospin operators following the algebra
of the SU(3) group. Our representation maps onto the standard
SU(3) basis, the Gell-Mann matrices [31], spanning the Lie

algebra in the defining representation of the SU(3) group. The
Gell-Mann matrices are commonly used in particle physics
to explain color charges [32,33]. We obtain the equilibrium
phase diagram of the three-level Dicke model in the presence
of dissipation due to photon loss. Moreover, we show that
periodic driving of the light-matter interaction strength may
lead to the emergence of new nonequilibrium phases, such as
an incommensurate time crystal (ITC), light-induced superra-
diance (LISR), and light-enhanced superradiance (LESR).

Here, we present a comprehensive discussion of a para-
metrically driven three-level Dicke model. We discuss its
dynamical phase diagram including the incommensurate crys-
talline phase, predicted by us in Ref. [34] and experimentally
implemented in Ref. [35]. We show that this phase is a char-
acteristic signature of the driven three-level Dicke model. We
give a detailed account of how this model can be approxi-
mately implemented by a light-driven atom-cavity system.

This work is organized as follows: In Sec. II, we introduce
the three-level Dicke model and discuss its phase diagram. We
explore the dynamical phase diagram of the driven three-level
Dicke model in Sec. III. The mapping of a shaken atom cavity
system onto the periodically driven three-level Dicke model is
presented in Sec. IV. In Sec. V, we conclude this paper.

II. THREE-LEVEL DICKE MODEL

We are interested in the properties of the three-level Dicke
model for a system of N three-level atoms interacting with
a quantized light mode, as schematically shown in Fig. 1(a).
Each atom has three energy states |1〉, |2〉, and |3〉. We define
the three-level Dicke model by the Hamiltonian

H/h̄ = ωâ†â + ω12Ĵ12
z + ω13Ĵ13

z

+ 2√
N

(â† + â)
(
λ12Ĵ12

x + λ13Ĵ13
x

)
, (1)
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FIG. 1. (a) Three-level system coupled to a single light mode.
(b) Schematic diagram of the shaken atom-cavity system. The cavity
photon loss rate is κ . This atom-cavity configuration can emulate the
driven dissipative three-level Dicke model.

where ω is the photon frequency, ωnm is the detuning between
states |m〉 and |n〉, and λnm is the light-matter interaction
strength associated with the photon-mediated coupling be-
tween states |n〉 and |m〉. The bosonic operators â and â†

annihilate and create a photon in the quantized light mode,
respectively. There are three classes of pseudospin operators
Ĵ12
μ , Ĵ13

μ , and Ĵ23
ν with μ ∈ {z,±} and ν ∈ {±}, corresponding

to the transitions |1〉 ↔ |2〉, |1〉 ↔ |3〉, and |2〉 ↔ |3〉, respec-
tively. These operators obey the commutation relation of the
SU(3) algebra (see Appendix A). The x and y components
of the pseudospins are defined as Ĵ�

x = (Ĵ�
+ + Ĵ�

−)/2 and Ĵ�
y =

(Ĵ�
+ − Ĵ�

−)/2i, respectively, with � ∈ {12, 13, 23}.
Note that, in principle, there is a light-matter coupling

term proportional to Ĵ23
x in Eq. (1) [26]. However, this term

is neglected here since we are only interested in the case
when ω12 ≈ ω13. This leads to a negligibly small λ23 since
the light-matter coupling strength is proportional to the energy
difference between the relevant states [36,37]. Moreover, we
could also use the Gell-Mann matrices as the representation of
the SU(3) group in our system. To retain a form of the Hamil-
tonian reminiscent of the standard two-level Dicke model,
which is often written using a representation of the SU(2)
group, we instead use the pseudospin operators as described
above. Nevertheless, the Gell-Mann matrices can be obtained
from appropriate superpositions of the pseudospin operators
(see Appendix A).

The Hamiltonian in Eq. (1) is superficially similar to
the two-component Dicke model [9,10,16,17] (see also
Appendix B for a brief discussion). However, we emphasize
that, unlike in the two-component Dicke model, which de-
scribes two types of two-level systems coupled through the
light field, the pseudospin operators introduced in Eq. (1)
obey the SU(3) algebra resulting from the use of three-level
systems. This fundamentally changes the dynamics of the
parametrically driven system out of equilibrium since new

FIG. 2. Long-time average of the mean-field dynamics of the
(a) cavity mode occupation |a|2, (b) | j12

x |2, and (c) | j13
x |2 for ω =

ω12 = ω13 = κ . The black curve denotes the critical line separating
the normal and superradiant phases in the thermodynamic limit.

terms corresponding to additional spin operators are now
present in the equations of motion.

A. Holstein-Primakoff transformation

To obtain analytical predictions of the phase boundaries,
we employ a Holstein-Primakoff (HP) approximation in the
thermodynamic limit, i.e., N → ∞. This leads to the follow-
ing Hamiltonian:

H/h̄ = ωâ†â + ω12â†
12â12 + ω13â†

13â13

+ (â† + â)[λ12(â†
12 + â12) + λ13(â†

13 + â13)]. (2)

We obtain an elliptic equation for the critical light-matter cou-
pling from the stability matrix (see Appendix C for details):

(κ2 + ω2)

4ω
=

(
λ2

12

ω12
+ λ2

13

ω13

)
. (3)

In the standard open Dicke model, λ13 = 0, the critical light-
matter coupling, λcr = [(κ2 + ω2)(ω12/ω)]1/2/2, is recovered
[38]. To illustrate the resulting phases, we consider the case
ω = ω12 = ω13. Then, the critical line in Eq. (5) defines a
circle in the parameter space spanned by λ12 and λ13, as seen
in Fig. 2. For combinations of light-matter coupling strengths
{λ12, λ13} within the area enclosed by Eq. (5), the stable phase
corresponds to a normal phase (NP), while those outside the
area will lead to an instability towards the formation of a
superradiant phase (SP).
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B. Phase diagram

Next, we employ a mean-field approximation 〈âĴ�
μ〉 ≈

〈â〉〈Ĵ�
μ〉 starting from Eq. (1) to obtain the dynamics of the

system in a semiclassical approximation (see Appendix D for
details). This approximation becomes exact in the thermody-
namic limit N → ∞ in or near the steady state. Furthermore,
we introduce the rescaled c numbers a ≡ 〈â〉/√N and j�μ ≡
〈Ĵ�

μ〉/N . The resulting mean-field equations of motion that
we simulate are shown in Appendix E. We further note that
the SU(3) group inherits two Casimir charges, a quadratic
C1 and a cubic C2. In contrast with this, the group SU(2)
has only one quadratic Casimir charge, namely, the total spin
J2 = (Jx )2 + (Jy)2 + (Jz )2. The expressions for the charges
are shown in Appendix A. We track these quantities when
solving the equations of motion to ensure convergence of
our numerical results. In our simulations, we initialize in
the normal phase j�μ = 0, except for j12

z = j13
z = −1/2. This

amounts to all the atoms initially occupying the lowest energy
state |1〉. We initialize the cavity field as a = 10−2.

An observable of interest is the occupation of the photonic
mode |a|2 because this differentiates the normal (|a|2 → 0
for N → ∞ ) and superradiant (|a|2 > 0) phases. Moreover,
we are interested in the magnitude of the x component of
the collective spin operators corresponding to the transition
|1〉 ↔ |2〉 and |1〉 ↔ |3〉, which are | j12

x | and | j13
x |, respec-

tively. In Fig. 2, we present the long-time average of |a|2, | j12
x |,

and | j13
x |, calculated by numerically solving the equations of

motion. Similar to the standard two-level Dicke model [39],
the photonic mode occupation or the x component of the pseu-
dospin operators can be regarded as order parameters because
they are zero in the NP and are nonzero in the SP. Furthermore,
we demonstrate in Fig. 2 that the onset of superradiance ac-
cording to our mean-field dynamics agrees with the analytical
critical line defined by Eq. (5). In the superradiant phase,
| j12

x | > | j13
x | for λ12 > λ13 and | j12

x | < | j13
x | for λ12 < λ13, as

inferred from Figs. 2(b) and 2(c).

III. PARAMETRICALLY DRIVEN OPEN
THREE-LEVEL DICKE MODEL

We now explore the parametrically driven three-level
Dicke model by the Hamiltonian

H/h̄ = ωâ†â + ωDĴD
z + ωBĴB

z + 2φ(t )(ωB − ωD)ĴDB
x

+ 2λ√
N

(â† + â)
(
ĴD

x − φ(t )ĴB
x

)
. (4)

This particular choice of the Hamiltonian is motivated by
its connection to the shaken atom-cavity system, which we
demonstrate and explore in more detail later. Comparing with
the undriven case in Eq. (1), it can be seen that ω12 = ωD,
ω13 = ωB, Ĵ12

μ = ĴD
μ , Ĵ13

μ = ĴB
μ , λ12 = λ. We define φ(t ) =

f0 sin(ωdrt ), which then means that λ13 = − f0 sin(ωdrt )λ.
This labeling is motivated by the association of the pseu-
dospins with the density wave states in the atom-cavity setup
discussed later in Sec. IV. For now, we simply note that the
photonic mode corresponds to a single cavity mode while
the operators ĴD

μ and ĴB
μ are associated with the density

wave (DW) and bond-density wave (BDW) states in the
shaken atom-cavity system, respectively [34]. A small term

proportional to Ĵ23
x ≡ ĴDB

x is included in Eq. (6) since this will
appear later when we show how the atom-cavity system can
be mapped onto the specific form of the parametrically driven
three-level Dicke model Eq. (6).

A. Holstein-Primakoff transformation

In Sec. II A, we have applied the HP transformation to the
undriven system described by Eq. (3). We now extend this
analysis to include the driving term. Applying the transfor-
mation and identifying d̂ ≡ â12 and b̂ ≡ â13, we obtain a HP
Hamiltonian shown in Eq. (F3) of Appendix F. In particular,
we are interested in d ≡ 〈d̂〉 and b ≡ 〈b̂〉.

We recall that, for a quantum harmonic oscillator, f̂ † =√
ωF /h̄[xF − (i/ωF )pF ] and f̂ = √

ωF /h̄[xF + (i/ωF )pF ].
Then, we can express the corresponding HP Hamiltonian in
momentum-position representation as

H = ω2

2
x̂2 + p̂2

2
+ ω2

D

2
x̂2

D + p̂2
D

2
+ ω2

B

2
x̂2

B + p̂2
B

2

+ 2λ
√

ωωDx̂x̂D − 2φ(t )λ
√

ωωBx̂x̂B

+ φ(t )(ωB − ωD)
√

ωDωB

(
x̂Dx̂B + p̂D p̂B

ωDωB

)
. (5)

This has the form of a Hamiltonian for three coupled oscilla-
tors: (i) the cavity oscillator, (ii) the DW oscillator, and (iii)
the BDW oscillator with frequencies ω, ωD, and ωB, respec-
tively. Here, the two coupling constants connecting the BDW
oscillator to the cavity and DW oscillators are periodically
switched on and off or parametrically driven. Interestingly,
due to the shaking of the pump, the momenta of the DW
and BDW oscillators are also periodically coupled, as seen
from the last term in Eq. (8). However, we find that this does
not alter the qualitative features of the dynamics, as shown in
Fig. 8 in Appendix E.

We initialize the system in the normal state corresponding
to having d = 0 and b = 0, which amounts to the absence
of bosons in the excited states |2〉 and |3〉, respectively. Note
that a small nonzero occupation of the photonic mode 〈â〉 ≡
a = 10−2 is necessary to push the system out of the normal
phase when it becomes an unstable state [9]. The dynamics is
obtained according to Eq. (F4) for varying driving strength f0

and driving frequency ωdr. A parametric resonance in a linear
system corresponding to a bilinear Hamiltonian, such as the
simplified toy model (F3), manifests itself as an oscillatory
solution with exponentially diverging amplitude. The dotted
curves in Figs. 3(a)–3(d) denote the points in the (ωdr, f0)
space, where (b + b∗) exceeds unity within the first 100 driv-
ing cycles, signaling a diverging solution (see also Fig. 5).
They indicate the regions where the normal phase is unstable
towards a different collective phase.

We identify two resonances responsible for the driving-
induced destabilization of the normal phase: (i) resonance
at the BDW oscillator frequency ωB and (ii) a sum reso-
nance involving ωB and the lower polariton frequency ωLP

of the atomic modes dressed by the cavity mode forming the
lower polariton state [40]. Note that we derive the expres-
sion for ωLP within the HP approach and we describe our
method for obtaining the lower polariton frequency by ex-
ploiting a parametric resonance in Appendix G. The resonance
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FIG. 3. Dynamical phase diagram for (a)–(d) λ = 0.98λcr and (e), (f) λ = 1.02λcr . Time-averaged (a), (e) j̃D
x and (b), (f) |̃ jB

x | taken over
100 driving cycles, τ = 100T , for varying modulation parameters. The dominant or peak frequency in the power spectrum of (c), (g) jD

x and
(d), (h) jB

x for ωdr > ωB. The dotted lines in panels (a) and (b) denote the instability boundary according to the oscillator model. In panels (c),
(d), (g), and (h), we are only showing the response frequencies ωDW and ωBDW for parameter sets, which yield |̃ jB

x | > 0.01 and j̃D
x < 0. Note

that we are rescaling the response frequencies in panels (c) and (g) to ωDW/(ωdr − ωB) and it is rescaled in panels (d) and (h) to ωBDW/ωB. The
vertical dashed lines in panels (a)–(d) correspond to the sum frequency ωsum = ωLP + ωB.

frequencies are identified as the driving frequencies with the
lowest modulation strength needed to induce an exponential
instability. For ωdr < ωB, the resonance frequency is close to

ωB. For ωdr > ωB, the sum resonance at ωsum = ωB + ωLP is
the main mechanism, as highlighted by the vertical dashed
line in Figs. 3(a)–3(d) (see also Fig. 5).

(a)

λ = 0.98λcr

(d)

λ = 1.02λcr

(b) (e)

(c) (f)

FIG. 4. Comparison between unmodulated and resonantly modulated dynamics for light-matter coupling strengths close to the NP-SR
phase of the unmodulated system, (a)–(c) λ = 0.98λcr and (d)–(f) λ = 1.02λcr . The relevant observables are the (a), (d) cavity mode occupation
|a|2, and the order parameters (b), (e) jD

x and (c), (f) jB
x . The modulation frequency is fixed at ωdr = 1.05ωB.
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FIG. 5. Time-averaged cavity mode occupation |a|2 taken over
100 driving cycles, τ = 100T , according to (a), (b) the three-level
Dicke model and (c), (d) the full atom-cavity model. For the three-
level model, the light-matter coupling strengths are (a) λ = 0.98λcr

and (b) λ = 1.02λcr . The broken lines denote the instability boundary
from the oscillator model. The vertical dashed line in panel (a) cor-
responds to the sum frequency ωsum = ωLP + ωB involving the lower
polariton frequency ωLP. ωLP has the value ωLP/2π ≈ 1.06 kHz for
this example. For the full atom-cavity model, the pump strengths
are (c) εp = 0.96εcr and (d) εp = 1.04εcr , which corresponds to λ =
0.98λcr and λ = 1.02λcr , respectively.

B. Dynamical phase diagrams

To further understand the resonant collective phases, we
obtain the dynamics of the system. Within the mean-field
approximation, we simulate the semiclassical equations of
motion shown in Appendix E. Similar to the HP theory in
the previous section, we initialize the system in the normal
phase with small nonzero occupation of the photonic mode
a = 10−2, We further choose j�μ = 0, except for jD

z = jB
z =

−1/2. In addition to the photonic mode occupation |a|2, we
are also interested in the x component of the pseudospins jD

x
and jB

x . Time is in units of the modulation period T = 2π/ωdr.
The parameters for the simulation are shown in Appendix H.

In Fig. 4, we present exemplary dynamics for reso-
nant modulation, specifically for ωdr = 1.05ωB. We choose
light-matter coupling strengths close to the phase boundary
between the normal and superradiant phases, specifically λ =
0.98λcr and λ = 1.02λcr, respectively. In the absence of driv-
ing, f0 = 0, we reproduce the prediction of a normal phase NP
and superradiant phase SP from the standard two-level Dicke

model. Periodic driving closed to but blue-detuned from ωB

leads to similar long-time behavior for λ < λcr and λ > λcr.
That is, the spin components related to the order parameters in
the atom-cavity system, jD

x and jB
x , periodically changes their

sign concomitant to pulses of light being emitted. The slow
subharmonic oscillations in jD

x , as exemplified in Fig. 4(b),
reflects the temporal periodicity of the entire light-matter sys-
tem. Note that jB

x rapidly switches sign, as shown in Figs. 4(c)
and 4(f). We quantify the dynamical regimes in the system
using the response frequencies ωDW and ωBDW, which we
define as the frequency at which jD

x and jB
x has a maximum in

the power spectrum. Considering blue-detuned driving with
respect to the BDW oscillator frequency ωdr > ωB, we find
that the DBDW phase is characterized by fast oscillations
of jB

x at ωBDW = ωB and slow oscillations of jD
x at ωDW =

ωdr − ωB. These observations are valid for both λ < λcr and
λ > λcr, as demonstrated in Figs. 3(c), 3(d), 3(g), and 3(h),
where the relations ωDW/(ωdr − ωB) = 1 and ωBDW/ωB = 1
are satisfied over a wide range modulation parameters. In
general, the system’s response frequency ωDW is subharmonic
and incommensurate with respect to the driving frequency
ωdr, underpinning the classification of the DBDW phase as
an ITC. Thus, we show that the emergence of the ITC phase is
one of the signatures of the parametrically driven three-level
Dicke model. In contrast, the system has a harmonic response,
meaning that |a|2 and jD

x have the same response frequency
ωDW = 2ωdr [34], for combinations of driving parameters out-
side the dark areas in Figs. 3(c), 3(d), 3(g), and 3(h), including
red-detuned driving ωdr < ωB.

In the ITC phase for ωdr > ωB, the oscillations of jD
x and

jB
x around zero translate to vanishing time-averaged values,

j̃�x = 1

τ

∫ τ

0
j�x dt . (6)

This property is visible in the light area in Fig. 3(e). Note,
however, that even though j̃D

x = 0, the time-averaged cavity
mode occupation |̃a|2 does not necessarily vanish, especially
when jD

x has nonzero oscillation amplitude, as shown in
Figs. 3(a) and 5(a). The normal phase has jD

x = 0 for all
times and as such, |̃ jD

x | also vanishes, albeit trivially, similar to
the ITC phase. Therefore, to distinguish between the normal
phase and the ITC phase, we calculate |̃ jB

x |, a quantity that
vanishes for the normal phase and is nonzero for the ITC
phase. In Figs. 3(b) and 3(f), it can be seen that the BDW states
are resonantly excited not only for the ITC phase in ωdr > ωB

but also for red-detuned driving ωdr < ωB. We emphasize that
the dynamical response for ωdr < ωB remains harmonic, mak-
ing this phase distinct from the ITC, normal, and superradiant
phases.

We now focus on red-detuned driving ωdr < ωB to illus-
trate the effects of resonantly exciting the BDW states in this
case. For λ < λcr, the normal phase, expected to be dominant
in the absence of driving, is suppressed, which then gives rise
to a superradiant phase enabled by the excitation of the BDW
states. We call this resonant phase for λ < λcr and ωdr < ωB

the light-induced superradiant (LISR) phase. In this phase,
the long-time average of the cavity mode occupation |a|2 and
jD
x are both nonzero, similar to the superradiant phase, as seen

from the resonance lobe in Figs. 3(a) and 5(a) for ωdr < ωB.
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However, the occupation of BDW states, demonstrated in
Fig. 3(b), distinguishes the LISR phase from the usual SR
phase in the undriven case. An analogous effect for λ > λcr

is the enhancement of the superradiant phase, the stationary
phase in the absence of driving. This light-enhanced superra-
diant (LESR) phase is identified by an increase in |a|2 and jD

x ,
accompanied by large amplitude oscillations of jB

x , as shown
in Figs. 5(b), 3(e), and 3(f). In addition to the ITC phase,
the presence of LISR and LESR phases, depending on λ, is
another signature of the driven dissipative three-level Dicke
model.

IV. EMULATION USING A SHAKEN
ATOM-CAVITY SYSTEM

We now show that the parametrically driven open three-
level Dicke model can be emulated by a shaken atom-cavity
system. To this end, we first describe the many-body Hamil-
tonian of the shaken atom-cavity. Then, we present the
approximation needed to obtain Eq. (6) from the atom-cavity
Hamiltonian.

A. Shaken atom-cavity Hamiltonian

We consider a minimal model for describing the dynamics
along the pump and cavity directions of an atom-cavity system
schematically depicted in Fig. 1(b). The corresponding many-
body Hamiltonian is given by [34]

Ĥ/h̄ = −δCâ†â +
∫

dydz�̂†(y, z)

[
− h̄

2m
∇2

− ωrecεp cos2 [ky + φ(t )] + U0â†â cos2 (kz)

− √
ωrec|U0|εp cos [ky+φ(t )] cos(kz)(a†+a)

]
�̂(y, z),

(7)

where â (â†) annihilates (creates) a photon in the single-mode
cavity and �̂(y, z) is the bosonic field operator for the atoms
with mass m. The pump-cavity detuning is δC. The frequency
shift per atom is taken to be redshifted, U0 < 0. The pump
intensity εp is measured in units of the recoil energy Erec =
h̄2k2/2m, where the wave vector is k = 2π/λp. Note that, in
Eq. (11), we neglect the effects of short-range collisional inter-
action. The pump lattice is periodically shaken by introducing
a time-dependent phase in the pump mode

φ(t ) = f0 sin (ωdrt ), (8)

where f0 is the unitless modulation strength and ωdr is the
modulation frequency. The characteristic timescale is thus set
by the driving period T = 2π/ωdr.

The dynamics of the atom-cavity system follows from the
Heisenberg-Langevin equations [40,41],

∂

∂t
�̂ = i

h̄
[Ĥ, �̂], (9)

∂

∂t
â = i

h̄
[Ĥ, â] − κ â + ξ, (10)

where κ is the cavity dissipation rate and the associated
fluctuations are captured by the noise term ξ satisfying

〈ξ ∗(t )ξ (t ′)〉 = κδ(t − t ′). In the mean-field limit of large par-
ticle number N , quantum fluctuations are neglected and the
bosonic operators can be approximated as c numbers. The dy-
namics can then be obtained by numerically solving the
resulting coupled differential equations corresponding to the
equations of motion of the system. This approach and its
extension beyond a mean-field approximation have been suc-
cessfully used to predict and observe various dynamical
phases in the transversely pumped atom-cavity system from
a driving-induced renormalization of the phase boundary to
time crystals [34,42–47].

B. Low-momentum approximation

The atom-cavity system can be mapped onto the Dicke
model using a low-momentum approximation. To this end,
we assume that the majority of the atoms only occupy the
five-lowest momentum modes, namely the zero-momentum
mode, |ky, kz〉 = |0, 0〉, and the states associated with the self-
organized checkerboard phase, | ± k,±k〉. These momentum
modes are coupled by the scattering of photons between the
pump and cavity fields. This low-momentum approximation is
valid close to the phase boundary between the homogeneous
BEC phase and the self-organized DW phase.

Resonant shaking has been shown to lead to the emergence
of an incommensurate time crystal, where atoms localize at
positions between the antinodes of the pump lattice [34,35].
That is, in addition to the spatial mode cos(ky) cos(kz) in
the DW phase, the atoms are driven into additional states,
namely the BDW states, as the atomic distribution acquires
an overlap with the spatial mode sin(ky) cos(kz). Note that
this mode is made available by the periodic shaking of the
pump lattice since it explicitly breaks the spatial symmetry
along the pump axis. Owing to how the system periodically
switches between superpositions of DW and BDW states, we
call this dynamical phase as the dynamical BDW (DBDW)
phase. Since the DBDW phase has been previously identified
as an incommensurate time crystal (ITC), we will use the term
DBDW and ITC phase interchangeably.

The atomic field operator is expanded to include the rele-
vant spatial modes

�̂(y, z) = ĉ1 + 2ĉ2 cos (ky) cos (kz) + 2ĉ3 sin (ky) cos (kz),
(11)

where the ci are bosonic annihilation and creation operator.
We use this expansion in the many-body Hamiltonian (11).
Evaluating the integrals within one unit cell and for weak driv-
ing f0 � 1, we obtain a Hamiltonian in a reduced subspace,

H/h̄ = −δCâ†â + 2ωrec(ĉ†
2ĉ2 + ĉ†

3ĉ3) + U0

2
â†â[ĉ†

1ĉ1

+ 3

2
(ĉ†

2ĉ2 + ĉ†
3ĉ3)] − ωrecεp

4
[2(ĉ†

1ĉ1 + ĉ†
2ĉ2 + ĉ†

3ĉ3)

+ (ĉ†
2ĉ2 − ĉ†

3ĉ3) − 2φ(t )(ĉ†
2ĉ3 + ĉ†

3ĉ2)] −
√

ωrec|U0|εp

2

× (â† + â)[(ĉ†
1ĉ2 + ĉ†

2ĉ1) − φ(t )(ĉ†
1ĉ3 + ĉ†

3ĉ1)].
(12)
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C. Schwinger boson representation

We transform the bosonic operators in Eq. (12) into col-
lective pseudospin operators through the Schwinger boson
representation. The additional spatial mode sin(ky) cos(kz) is
described by the operator c3, so the atomic motion is repre-
sented as a three-level system. We introduce the pseudospin
operators obeying SU(3) algebra via

N = ĉ†
1ĉ1 + ĉ†

2ĉ2 + ĉ†
3ĉ3,

ĴD
+ = ĉ†

2ĉ1, ĴD
− = ĉ†

1ĉ2, ĴD
z = 1

2 (ĉ†
2ĉ2 − ĉ†

3ĉ3 − ĉ†
1ĉ1),

ĴB
+ = ĉ†

3ĉ1, ĴB
− = ĉ†

1ĉ3, ĴB
z = 1

2 (ĉ†
3ĉ3 − ĉ†

2ĉ2 − ĉ†
1ĉ1),

ĴDB
+ = ĉ†

2ĉ3, ĴDB
− = ĉ†

3ĉ2. (13)

This representation suggests that the operators ĴD
μ are associ-

ated with the DW state while ĴB
μ are related to the BDW state.

Applying the commutation relations for the bosonic operators
[ĉm, ĉ†

n] = δmn, we recover the same commutation relations for
the pseudospin operators presented in Eq. (A1). That is, we
identify ĴD

μ ≡ Ĵ12
μ , ĴB

μ ≡ Ĵ13
μ , and ĴDB

μ ≡ Ĵ23
μ .

Substituting the Schwinger boson representation in
Eq. (14) into Eq. (12) yields the driven dissipative three-level
Dicke model (6). Within the shaken-atom cavity platform,
the effective cavity field frequency is ω = (3U0N )/4 −
δC = U0N/4 − δeff , the effective pump-cavity detuning is
δeff , and the light-matter coupling strength is λ/

√
N =

−√
ωrecεp|U0|/2. The pump intensity εp shifts the frequen-

cies of the pair of two-level transitions, ωD = 2ωrec(1 −
εp/8) and ωB = 2ωrec(1 + εp/8). We can infer from Eq. (6)
that weak periodic shaking effectively leads to a paramet-
ric driving of the light-matter coupling between the cavity
and the spin associated with the BDW state. With these
correspondences, we find that indeed the shaken atom-
cavity system can be approximated by the driven three-level
Dicke model presented in Eq. (6) and discussed in Sec. III.
Moreover, we can identify the order parameters of the
self-organized density wave states, namely the DW order pa-
rameter �DW = 〈cos(ky) cos(kz)〉 = jD

x and the BDW order
parameter �BDW = 〈sin(ky) cos(kz)〉 = jB

x .

D. Comparison with the full atom-cavity model

We compare the dynamics of the cavity mode occupation
and the DW order parameter for the full atom-cavity model
(11) and the effective three-level model according to Eq. (E2).
The parameters for the simulation are shown in Appendix H.
For results based on the full atom-cavity model Eq. (11), we
numerically determine εcr from the onset of intracavity photon
number [34]. Moreover, the BDW oscillator frequency ωB for
the full atom-cavity model is extracted from the oscillation
frequency of the BDW order parameter �BDW [34]. We show
in Fig. 5 the time-averaged occupation of the cavity mode |a|2,

|̃a|2 = 1

τ

∫ τ

0
|a|2dt, (14)

for τ = 100T , as a function of modulation strength f0 and
modulation frequency ωdr. For λ < λcr, we obtain a qualita-
tively similar dynamical phase diagrams for the three-level
Dicke model and the full atom-cavity model, as depicted in

(a)

(b)

FIG. 6. Comparison of the dynamics between the full atom-
cavity model [in purple (black)], three-level [in green (light gray)],
and coupled two-level Dicke model [in blue (dark gray)] for the
(a) cavity mode occupation and (b) DW order parameter. For the
Dicke models, the light-matter coupling strength is λ = 1.02λcr . This
corresponds to a pump strength of εp/εcr = 1.04 in the full-atom
cavity model. The driving parameters are fixed to f0 = 0.03 and
ωdr = 1.05ωB.

Figs. 5(a) and 5(c). Therefore, in this regime, the approx-
imation of Eq. (11) via Eq. (6) is applicable. That is, the
parametrically driven open three-level Dicke Hamiltonian is
realized approximately by the shaken atom-cavity system.
Moreover, the instability region from the oscillator model in
the thermodynamic limit Eq. (F3) matches the onset of the
cavity mode occupation in Fig. 5(a).

For λ > λcr, the dark areas in Figs. 5(b) and 5(d) signify
that the system has entered the DW or SR phase indicated
by a nonvanishing cavity mode occupation, as expected for
weak and off-resonant driving. However, the DW phase is
suppressed for driving frequencies blue-detuned from ωB as
indicated by the relative decrease in the cavity photon num-
ber in the light areas in Figs. 5(b) and 5(d). Crucially, the
correspondence between Eqs. (11) and (6) breaks down for
driving frequencies far-detuned from ωB as inferred from the
parameter region ωdr > ωB in Figs. 5(b) and 5(d). This can
be attributed to the occupation of higher momentum modes,
specifically | ± 2k, 0〉, in the full atom-cavity system [34],
which is not captured in the low-momentum expansion (11)
utilized in the mapping. Nevertheless, we still find good
agreement on the qualitative features for driving frequencies
near ωB.

FIG. 7. Dynamics of the density wave order parameter for ωdr =
0.8ωB and f0 = 0.05. The remaining parameters are the same as in
Fig. 6.
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We also consider the dynamics according to a coupled
two-level Dicke model for the same set of parameters (see
Appendix B for details). In Fig. 6, we present the dynamics for
λ > λcr with a driving frequency blue-detuned with respect to
ωB. The results of the coupled two-level systems clearly do
not capture the dynamics of the full atom-cavity system. On
the other hand, the three-level Dicke model and the full atom-
cavity model predict the same dynamical response, which is a
subharmonic motion exhibited as a pulsating photon number
[see Fig. 6(a)] and a periodic switching of the sign of the
DW order parameter [see Fig. 6(b)]. This further supports our
claim that the mapping between the three-level Dicke model
and the full-atom cavity system is applicable to λ > λcr for as
long as the driving frequency is close to ωB. Note, however,
that the coupled two-level systems model and the three-level
model agree with each other for off-resonant driving when
jB
x ≈ 0, as demonstrated in Appendix B.

V. CONCLUSIONS

In this work, we have investigated a three-level Dicke
model, and derived its equilibrium phase diagram, which fea-
tures a normal phase and a superradiant phase. We advanced
the model to a driven dissipative system by including a dis-
sipation mechanism via photon loss and a periodic driving
process. For this system, we developed the dynamical phase
diagram, which shows the phases for varying driving parame-
ters, utilizing analytical and numerical methods. As a central
result we characterized the regime of an incommensurate time
crystalline state in the phase diagram. Furthermore, we ob-
tained light-enhanced and light-induced superradiant states, in
which the equilibrium superradiant state is dynamically stabi-
lized. As a physical system that can be naturally approximated

via the three-level Dicke model, we identified a periodically
shaken atom-cavity system. While the nonshaken atom-cavity
system can be approximated via the standard two-level Dicke
model, the shaking induces the atoms to populate additional
states that are modeled via a third state in the three-level
Dicke model. We note that the LISR and LESR phases display
similarities with light-induced [48] and light-enhanced super-
conductivity [49], for which mechanisms have been proposed
that involve the excitation of auxiliary modes, such as phonons
[50–52] and Higgs bosons [53], by means of optical pumping.
Photoexcitation of the Higgs mode in cuprate superconductors
has also been predicted to lead to an incommensurate time
crystal [54]. In this work, the BDW state plays the role of
such an auxiliary mode, as its excitation [or equivalently, the
|1〉 → |3〉 in Fig. 1(a)] can be used to dynamically control
the system to induce or enhance superradiance, or to enter a
genuine dynamical order, namely, the incommensurate time
crystalline phase. We therefore expand the dynamical control
of phases in atom-cavity systems to include light-induced and
light-enhanced superradiance, in addition to the previously
observed light-enhanced BEC or normal phase [42,43].

Note added. Recently, an example of the driven three-level
Dicke model was presented in Ref. [55].
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APPENDIX A: THE SU(3) ALGEBRA, GELL-MANN MATRICES, AND CASIMIR CHARGES

[Ĵ12
z , Ĵ12

± ] = ±Ĵ12
± , [Ĵ12

− , Ĵ12
+ ] = 2Ĵ12

z + Ĵ13
z + N

2
,

[Ĵ13
z , Ĵ13

± ] = ±Ĵ13
± , [Ĵ13

− , Ĵ13
+ ] = 2Ĵ13

z + Ĵ12
z + N

2
,

[Ĵ12
± , Ĵ13

∓ ] = ±Ĵ23
± , [Ĵ23

+ , Ĵ23
− ] = Ĵ12

z − Ĵ13
z ,

[Ĵ12
z , Ĵ23

± ] = ±Ĵ23
± , [Ĵ13

z , Ĵ23
± ] = ∓Ĵ23

± ,

[Ĵ12
± , Ĵ23

∓ ] = ∓Ĵ13
± , [Ĵ13

± , Ĵ23
± ] = ∓Ĵ12

± . (A1)

The remaining commutators not listed above vanish. Our choice of pseudospin operators for the SU(3) algebra can be mapped
onto the Gell-Mann matrices [31] via

F1 ≡ J12
x = 1

2
λ1,

F2 ≡ J12
y = 1

2
λ2,

F3 ≡ J12
z + 1

2
J13

z + N/4 = 1

2
λ3,

F4 ≡ J23
x = 1

2
λ4,

F5 ≡ J23
y = 1

2
λ5,
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F6 ≡ J13
x = 1

2
λ6,

F7 ≡ −J13
y = 1

2
λ7,

F8 ≡ −
√

3

2

(
J13

z + N/6
) = 1

2
λ8. (A2)

Casimir charges

The group SU(3) enjoys two Casimirs, which can be written in matrix form using the Gell-Mann basis as

C1 =
8∑

i=1

FiFi, (A3)

C2 =
8∑

j,k,l=1

d jkl FjFkFl , (A4)

with

d jkl = 1
4 Tr({λ j, λk}λl ). (A5)

In our chosen basis, they take the form of

〈C1〉/N = 1

12
+ (

j12
x

)2 + (
j12
y

)2 + (
j12
z

)2 + (
j13
x

)2 + (
j13
y

)2 + (
j13
z

)2 + (
j23
x

)2 + (
j23
y

)2 + 1

2

(
j12
z + j13

z + 2 j12
z j13

z

)
, (A6)

〈C2〉/N3/2 = 1

72

{ − 18
(

j12
y

)2 + 216 j23
y

(
j12
y j13

x − j12
x j13

y

) + 216 j23
x

(
j12
x j13

x + j12
y j13

y

)
− (

1 + 6 j12
z

)[
1 + 3 j12

z + 18
(

j13
x

)2 + 18
(

j13
y

)2] − 9 j13
z + 36

(
j23
x

)2(
1 + 3 j12

z + 3 j13
z

)
+ 36

(
j23
y

)2(
1 + 3 j12

z + 3 j13
z

)
− 18

{(
j12
x

)2(
1 + 6 j13

z

) + j13
z

[
6
(

j12
y

)2 + j13
z + 2 j12

z

(
2 + 3 j12

z + 3 j13
z

)]}}
. (A7)

APPENDIX B: TWO-COMPONENT DICKE MODEL

A modified version of the two-component Dicke model [9,10], which can be realized in a spinor BEC coupled to an optical
cavity [16,17], is given by

H/h̄ = ωâ†â + ω1Ĵ1
z + ω2Ĵ2

z + 2√
N

(â† + â)
(
λ1Ĵ1

x + λ2Ĵ2
x

)
. (B1)

Note that this has the same form as the three-level Hamiltonian in Eq. (1) except that here, the pseudospin operators fulfill to the
SU(2) group algebra with the commutation relations,[

Ĵ�
z , Ĵ�

±
] = ±Ĵ�

±, [Ĵ�
−, Ĵ�

+] = 2Ĵ�
z , (B2)

where � ∈ {1, 2}. Applying the same mean-field approximation as in Sec. II B, we obtain the following equations of motion
consistent with those in Refs. [9,10,16,17],

da

dt
= −(iω + κ )a − i2

2∑
�=1

λ� j�x ,

d j�x
dt

= −ω� j�y ,

d j�y
dt

= ω� j�x − 2λ�(a + a∗) j�z ,

d j�z
dt

= 2λ�(a + a∗) j�y . (B3)

To obtain the relevant curves in Fig. 6, we propagate the above set of coupled equations with ω1 = ωD, ω2 = ωB, λ1 = λ, and
λ2 = −λ f0 sin(ωdrt ). The exact values of these parameters are the same as those described in the main text. We present in Fig. 7
a comparison of the dynamics according to the two-component Dicke model and the three-level Dicke model for off-resonant
driving.
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APPENDIX C: CRITICAL LIGHT-MATTER COUPLING

Using the Hamiltonian in Eq. (3) and the Heisenberg equation in Eq. (D1), we obtain the equations of motion as

da

dt
= −(iω − κ )a − iλ12(a†

12 + a12) − iλ13(a†
13 + a13),

da12

dt
= −iω12a12 − iλ12(a∗ + a), (C1)

da13

dt
= −iω13a13 − iλ13(a∗ + a).

We can then construct the matrix M as ∂t �v = M�v to obtain

M =

⎛
⎜⎜⎜⎜⎜⎝

κ − iω 0 −iλ12 −iλ12 −iλ13 −iλ13

0 κ + iω iλ12 iλ12 iλ13 iλ13

−iλ12 −iλ12 −iω12 0 0 0
iλ12 iλ12 0 iω12 0 0

−iλ13 −iλ13 0 0 −iω13 0
iλ13 iλ13 0 0 0 iω13

⎞
⎟⎟⎟⎟⎟⎠. (C2)

A phase transition occurs if M inherits a zero energy eigenstate [39]. This means, to find the critical light-matter coupling λ, we
need to calculate det(M ) = 0, giving us

(κ2 + ω2)

4ω
=

(
λ2

12

ω12
+ λ2

13

ω13

)
. (C3)

APPENDIX D: HEISENBERG EQUATIONS OF MOTION

The dynamics of an observable Ô in the dissipative system considered here is governed by the Heisenberg equation

d〈Ô〉
dt

=
〈

i

h̄
[Ĥ, Ô] + κ (2â†Ôâ − {â†â, Ô})

〉
. (D1)

Using the commutation relations Eq. (A1), we get the following equations for the expectation values of relevant operators in the
open three-level Dicke model (1):

d〈a〉
dt

= −(iω + κ )〈a〉 − i
2√
N

(
λ12

〈
Ĵ12

x

〉 + λ13
〈
Ĵ13

x

〉)
,

d
〈
Ĵ12

x

〉
dt

= −ω12
〈
Ĵ12

y

〉 + λ13√
N

〈
(a† + a)Ĵy

23

〉
,

d
〈
Ĵ12

y

〉
dt

= ω12
〈
Ĵ12

x

〉 − λ12√
N

[
2
〈
(a† + a)Ĵ12

z

〉 + 〈
(a† + a)Ĵ13

z

〉 + 〈
(a† + a)N/2

〉] − λ13√
N

〈
(a† + a)Ĵ23

x

〉
,

d
〈
Ĵ12

z

〉
dt

= 2λ12√
N

〈
(a + a†)Ĵ12

y

〉
,

d
〈
Ĵ13

x

〉
dt

= −ω13
〈
Ĵ13

y

〉 − λ12√
N

〈
(a† + a)Ĵ23

y

〉
,

d
〈
Ĵ13

y

〉
dt

= ω13
〈
Ĵ13

x

〉 − λ13√
N

[
2
〈
(a† + a)Ĵ13

z

〉 + 〈
(a† + a)Ĵ12

z

〉 + 〈
(a† + a)N/2

〉] − λ12√
N

〈
(a† + a)Ĵ23

x

〉
,

d
〈
Ĵ13

z

〉
dt

= 2λ13√
N

〈
(a + a†)Ĵ13

y

〉
,

d
〈
Ĵ23

x

〉
dt

= (ω13 − ω12)
〈
Ĵ23

y

〉 + λ12√
N

〈
(a† + a)Ĵ13

y

〉 + λ13√
N

〈
(a† + a)Ĵ12

y

〉
,

d
〈
Ĵ23

y

〉
dt

= (ω12 − ω13)
〈
Ĵ23

y

〉 + λ12√
N

〈
(a† + a)Ĵ13

x

〉 − λ13√
N

〈
(a† + a)Ĵ12

x

〉
. (D2)
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On the other hand, the equations of motion for the parametrically driven open three-level Dicke model are

d〈â〉
dt

= −(iω + κ )〈â〉 − i
2λ√

N

〈
ĴD

x

〉 + iφ(t )
2λ√

N

〈
ĴB

x

〉
,

d〈ĴD
x 〉

dt
= −ωD

〈
ĴD

y

〉 − φ(t )(ωB − ωD)
〈
ĴB

y

〉 − φ(t )
λ√
N

〈
(a† + a)ĴDB

y

〉
,

d
〈
ĴD

y

〉
dt

= ωD
〈
ĴD

x

〉 − λ√
N

[
2
〈
(a† + a)ĴD

z

〉 + 〈
(a† + a)ĴB

z

〉 + 〈a† + a〉N

2

]

+ φ(t )(ωB − ωD)
〈
ĴB

x

〉 + φ(t )
λ√
N

〈
(a† + a)ĴDB

x

〉
,

d〈ĴD
z 〉

dt
= 2λ√

N

〈(
a + a†

)
ĴD

y

〉 + 2(ωB − ωD)φ(t )
〈
ĴDB

y

〉
,

d〈ĴB
x 〉

dt
= −ωB

〈
ĴB

y

〉 − φ(t )(ωB − ωD)
〈
ĴD

y

〉 − λ√
N

〈
(a† + a)ĴDB

y

〉
,

d
〈
ĴB

y

〉
dt

= ωB
〈
ĴB

x

〉 + φ(t )
λ√
N

[
2
〈
(a† + a)ĴB

z

〉 + 〈
(a† + a)ĴD

z

〉 + 〈a† + a〉N

2

]

+ φ(t )(ωB − ωD)
〈
ĴD

x

〉 − λ√
N

〈
(a† + a)ĴDB

x

〉
,

d〈ĴB
z 〉

dt
= −φ(t )(ωB − ωD)

〈(
a + a†

)
ĴB

y

〉 − 4λ2

U0N
φ(t )

〈
ĴDB

y

〉
,

d〈ĴDB
x 〉

dt
= (ωB − ωD)

〈
ĴDB

y

〉 + λ√
N

〈
(a† + a)ĴB

y

〉 − φ(t )
λ√
N

〈
(a† + a)ĴD

y

〉
,

d
〈
ĴDB

y

〉
dt

= (ωD − ωB)
〈
ĴDB

x

〉 + λ√
N

〈
(a† + a)ĴB

x

〉 + φ(t )
λ√
N

〈
(a† + a)ĴD

x

〉 + 2(ωB − ωD)φ(t )
〈
ĴB

z − ĴD
z

〉
. (D3)

APPENDIX E: MEAN-FIELD EQUATIONS OF MOTION

The mean-field equations for the dissipative three-level Dicke model are given by

da

dt
= −(iω + κ )a − i2λ12 j12

x − i2λ13 j13
x ,

d j12
x

dt
= −ω12 j12

y + λ13(a + a∗) jy
23,

d j12
y

dt
= ω12 j12

x − λ12(a + a∗)
(
2 j12

z + j13
z + 1/2

) − λ13(a + a∗) j23
x ,

d j12
z

dt
= 2λ12(a + a∗) j12

y ,

d j13
x

dt
= −ω13 j13

y − λ12(a + a∗) j23
y ,

d j13
y

dt
= ω13 j13

x − λ13(a + a∗)
(
2 j13

z + j12
z + 1/2

) − λ12(a + a∗) j23
x ,

d j13
z

dt
= 2λ13(a + a∗) j13

y ,

d j23
x

dt
= (ω13 − ω12) j23

y + λ12(a + a∗) j13
y + λ13(a + a∗) j12

y ,

d j23
y

dt
= (ω12 − ω13) j23

y + λ12(a + a∗) j13
x − λ13(a + a∗) j12

x . (E1)
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FIG. 8. Time-averaged cavity mode occupation |a|2 taken over 100 driving cycles, τ = 100T . We choose ωD = ωB = ωrec while the
remaining parameters are the same as those in Figs. 5(a) and 5(b).

For the parametrically driven open three-level Dicke model, the equations of motion are given by

da

dt
= −(iω + κ )a − i2λ jD

x + iφ(t )2λ jB
x ,

d jD
x

dt
= −ωD jD

y − φ(t )(ωB − ωD) jB
y − φ(t )λ(a + a∗) jDB

y ,

d jD
y

dt
= ωD jD

x − λ(a + a∗)
(
2 jD

z + jB
z + 1/2

) + φ(t )(ωB − ωD) jB
x + φ(t )λ(a + a∗) jDB

x ,

d jD
z

dt
= 2λ(a + a∗) jD

y + 2(ωB − ωD)φ(t ) jDB
y ,

d jB
x

dt
= −ωB jB

y − (ωB − ωD)φ(t ) jD
y − λ(a + a∗) jDB

y ,

d jB
y

dt
= ωB jB

x + φ(t )λ(a + a∗)
(
2 jB

z + jD
z + 1/2

) + φ(t )(ωB − ωD) jD
x − λ(a + a∗) jDB

x ,

d jB
z

dt
= −φ(t )2λ(a + a∗) jB

y − 2(ωB − ωD)φ(t ) jDB
y ,

d jDB
x

dt
= (ωB − ωD) jDB

y + λ(a + a∗) jB
y − φ(t )λ(a + a∗) jD

y ,

d jDB
y

dt
= (ωD − ωB) jDB

x + λ(a + a∗) jB
x + φ(t )λ(a + a∗) jD

x + 2(ωB − ωD)φ(t )
(

jB
z − jD

z

)
. (E2)

In Fig. 8, we demonstrate that the existence of the dynamical phases is independent of the term in the Hamiltonian with jDB
x .

That is, the momenta coupling inferred from Eq. (8) does not play a crucial role in the formation of the ITC, LESR, and LISR
phases. This suggests that the emergence of these dynamical phases originates from the last term in Eq. (6). To confirm this, we
set ωD = ωB in Fig. 8. For comparison, we show in dotted lines the phase boundary obtained for ωD �= ωB.

APPENDIX F: HOLSTEIN-PRIMAKOFF
TRANSFORMATION

We present a Holstein-Primakoff approximation in the
thermodynamic limit, i.e., N → ∞ [5,56]. To capture the cor-
rect SU(3) algebra, we use an extended version of the
Holstein-Primakoff representation given by [57]

Ĵ12
z = â†

12â12 − N/2, Ĵ12
+ = â†

12

√
N − (â†

12â12 + â†
13â13),

Ĵ12
− =

√
N − (â†

12â12 + â†
13â13)â12,

Ĵ13
z = â†

13â13 − N/2, Ĵ13
+ = â†

13

√
N − (â†

12â12 + â†
13â13),

Ĵ13
− =

√
N − (â†

12â12 + â†
13â13)â13,

Ĵ23
+ = â†

12â13, Ĵ23
− = â†

13â12. (F1)

In the N → ∞ limit, we can further approximate the pseu-
dospin operators as

ĴD
z = â†

12â12 − N/2, ĴD
+ = â†

12

√
N, ĴD

− =
√

Nâ12,

ĴB
z = â†

13â13 − N/2, ĴB
+ = â†

13

√
N, ĴB

− =
√

Nâ13,

ĴDB
+ = â†

12â13, ĴDB
− = â†

13â12. (F2)
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In an analog fashion for the driven three-level Dicke model
we obtain the Hamiltonian with a12 → d and a13 → b

H/h̄ = ωâ†â + ωDd̂†d̂ + ωBb̂†b̂ + λ(â† + â)

× [(d̂† + d̂ ) − φ(t )(b̂† + b̂)]

+ φ(t )(ωB − ωD)(d̂†b̂ + b̂†d̂ ). (F3)

The mean-field equations of motion for Eq. (F3) are

∂a

∂t
= −(iω − κ )a − iλ(d∗ + d ) + iφ(t )λ(b∗ + b),

∂d

∂t
= −iωDd − iλ(a∗ + a) − i(ωB − ωD)φ(t )b,

∂b

∂t
= −iωBb + iφ(t )λ(a∗ + a) − i(ωB − ωD)φ(t )d. (F4)

APPENDIX G: LOWER POLARITON

Consider the standard closed Dicke model

Ĥ/h̄ = ωâ†â + ω0Ĵz + 2λ√
N

(â† + â)(Ĵx ). (G1)

In the thermodynamic limit, this can be diagonalized using
the Holstein-Primakoff transformation, which leads to two
polariton frequencies

ωLP,κ=0 =
((

ω2
0 + ω2

)
2

− 1

2

√(
ω2

0 − ω2
)2 + 16λ2ωω0

)1/2

,

(G2)

ωUP,κ=0 =
((

ω2
0 + ω2

)
2

+ 1

2

√(
ω2

0 − ω2
)2 + 16λ2ωω0

)1/2

.

(G3)

The lower polariton frequency, Eq. (G2), is the upper
bound in the presence of dissipation. When κ �= 0, the
lower polariton frequency can be numerically determined by
exploiting the parametric resonance when the light-matter
coupling is periodically driven [5,6]:

λ(t ) = λ0[1 + f0 sin (ωdrt )]. (G4)

In the limit N → ∞, the Hamiltonian can be reduced to a
coupled oscillator, whereby the coupling strength is periodic
in time. This possesses a parametric resonance manifesting
as a resonance lobe centered at the primary resonance, ωdr =
2ωLP. Thus, we can determine ωLP by mapping the instability
region for varying modulation parameters f0 and ωdr. To this

FIG. 9. Maximum value of (b + b∗). The parameters are the
same as those in Figs. 3(a)–3(d).

end, we solve the corresponding equations of motion given by

i
∂a

∂t
= (ω − iκ )a + λ(t )(b∗ + b),

i
∂b

∂t
= ω0b + λ(t )(a∗ + a). (G5)

The unstable region indicating the parametric resonance is
signalled by a diverging (b + b∗), as depicted in Fig. 9. We ob-
tain a lower polariton frequency ωLP/2π ≈ 1.06 kHz, which
is the value used in the sum frequency condition denoted by
the vertical line in Figs. 3(a)–(d).

APPENDIX H: PARAMETERS

We consider realistic parameters based on the experimental
setup in Ref. [35]. A BEC of N = 65 × 103 87Rb atoms
is coupled to a high-finesse optical cavity with a photon
loss rate of κ = 2π × 3.6 kHz. This is very close to the
recoil frequency, ωrec = 2π × 3.55 kHz, associated with the
standing-wave potential of the pump. The cavity light shift
per atom is U0 = −2π × 0.36 Hz. The effective pump-cavity
detuning is fixed to δeff = −2π × 18.5 kHz. We are inter-
ested in the two regimes λ < λcr and λ > λcr, where λcr

is the critical light-matter coupling strength needed to enter
the DW phase in the absence of modulation, where λcr =
[(κ2 + ω2)(ωD/ω)]1/2/2. By equating the expression for λcr

and λ in terms of the atom-cavity parameters for the two-level
Dicke model, we find that the critical pump strength is given
by εcr = 8(ω2 + κ2)/[4Nω|�0| + (ω2 + κ2)].

[1] R. H. Dicke, Coherence in spontaneous radiation processes,
Phys. Rev. 93, 99 (1954).

[2] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger,
Dicke quantum phase transition with a superfluid
gas in an optical cavity, Nature (London) 464, 1301
(2010).

[3] J. Klinder, H. Keßler, M. Wolke, L. Mathey, and A. Hemmerich,
Dynamical phase transition in the open Dicke model, Proc.
Natl. Acad. Sci. USA 112, 3290 (2015).

[4] M. Hayn, C. Emary, and T. Brandes, Phase transitions and
dark-state physics in two-color superradiance, Phys. Rev. A 84,
053856 (2011).

[5] V. M. Bastidas, C. Emary, B. Regler, and T. Brandes, Nonequi-
librium Quantum Phase Transitions in the Dicke Model, Phys.
Rev. Lett. 108, 043003 (2012).

[6] R. Chitra and O. Zilberberg, Dynamical many-body phases of
the parametrically driven, dissipative Dicke model, Phys. Rev.
A 92, 023815 (2015).

063705-13

https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1038/nature09009
https://doi.org/10.1073/pnas.1417132112
https://doi.org/10.1103/PhysRevA.84.053856
https://doi.org/10.1103/PhysRevLett.108.043003
https://doi.org/10.1103/PhysRevA.92.023815


JIM SKULTE et al. PHYSICAL REVIEW A 104, 063705 (2021)

[7] Z. Zhiqiang, C. H. Lee, R. Kumar, K. J. Arnold, S. J. Masson,
A. S. Parkins, and M. D. Barrett, Nonequilibrium phase transi-
tion in a spin-1 Dicke model, Optica 4, 424 (2017).

[8] M. Soriente, T. Donner, R. Chitra, and O. Zilberberg,
Dissipation-Induced Anomalous Multicritical Phenomena,
Phys. Rev. Lett. 120, 183603 (2018).

[9] E. I. Rodríguez Chiacchio and A. Nunnenkamp, Dissipation-
Induced Instabilities of a Spinor Bose-Einstein Condensate
Inside an Optical Cavity, Phys. Rev. Lett. 122, 193605 (2019).
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