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Sensitivity of electromagnetically induced transparency to light-mediated interactions
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Here we present a microscopic model that describes the electromagnetically induced transparency (EIT)
phenomenon in the multiple-scattering regime. We consider an ensemble of cold three-level atoms, in a �

configuration, scattering a probe and a control field to the vacuum modes of the electromagnetic field. By first
considering a scalar description of the scattering, we show that the light-mediated long-range interactions that
emerge between the dipoles narrow the EIT transparency window for increasing densities and sample sizes. For a
vectorial description, we demonstrate that near-field interacting terms can critically affect the atomic population
transfer in the stimulated Raman adiabatic passage (STIRAP). This result points out that standard STIRAP-based
quantum memories in cold-atomic ensembles would not reach high enough efficiencies for quantum information
processing applications even in dilute regimes.
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I. INTRODUCTION

The electromagnetically induced transparency (EIT) [1]
is a quantum interference phenomenon in which an initially
opaque ensemble of three-level atoms becomes transparent to
a probe field due to the influence of a second field, known
as the control field. The existence of a dark state in the atomic
system is the reason why the absorption ceases when the probe
field is tuned at resonance with a given atomic transition.
In particular, when probe and control fields are of the same
magnitude, such a dark state becomes a superposition of two
atomic ground states, which gives origin to coherent popula-
tion trapping (CPT) in the steady-state regime [2,3].

EIT and CPT phenomena have been receiving substan-
tial attention thanks to their vast list of applications [4]. For
example, EIT is useful for the reduction of the group ve-
locity of a light pulse which propagates through an atomic
medium [5], for the narrowing of the transmission linewidth
of optical cavities [6,7], and for quantum memory implemen-
tations, where photonic states can be mapped and stored in
single atoms trapped inside optical cavities [8,9], or in an
atomic ensemble [10]. For the latter, it has been theoretically
demonstrated that the efficiency of quantum memory devices
increases with the sample optical thickness [11,12]. Indeed
high efficiency (>90%) in retrieving quantum information has
been achieved in cold-atom platforms only for high optical
thickness [13–15], a regime where multiple scattering of light
becomes relevant. This leads us to the unexplored question
of how coherent collective scattering of light would affect
EIT and CPT transparency windows and, consequently, all
corresponding applications. The purpose of the present letter
is to shine a light on this question.

In light scattering by cold atoms, effective light-mediated
interactions emerge between all scatterers [16–18] owing to a
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strong suppression of the Doppler broadening by laser cooling
techniques. Such optical dipole-dipole interactions give origin
to several collective effects, as superradiance [19–21], subra-
diance [22–26], coherent backscattering of light [27,28], and
cooperative Lamb shifts [21,29], and cover long ranges in a
similar fashion to Rydberg atomic interactions. Yet Rydberg
interactions are Hamiltonian interactions that do not depend
on light scattering to remain active, being even able to to-
tally destroy EIT [30–33]. On the other hand, light-mediated
interactions are a consequence of the collective scattering of
light in the atomic sample, so any population of a dark state
naturally reduces the atomic cooperation in some level. This
is the reason why purely optical interactions should induce
more subtle modifications in transparency windows, and it is
not clear yet to what extent the EIT and CPT applications are
affected.

In order to detect collective modifications on EIT and CPT
phenomena, here we derive a microscopic coupled-dipole
model that describes the multiple scattering of probe and
control fields by cold ensembles of three-level atoms. Such
a model represents a significant extension of the linear-optics
coupled-dipole model [16–18,34]. In the limit where polar-
ization effects can be neglected, namely the dilute regime,
we show that light-mediated interactions narrow the width of
the transparency window at its full width at half maximum
(FWHM). Furthermore, we analyze the stimulated Raman
adiabatic passage (STIRAP) to get a prospect of the multiple-
scattering effect on the aforementioned quantum memory
applications. This EIT-based dynamical technique is a fun-
damental ingredient in writing and retrieving protocols for
quantum memories [35]. While considering a complete vec-
torial description, we demonstrate that the efficiency of such
a STIRAP process, in which the population is exchanged
between the two ground states of the � system, is substan-
tially reduced by collective scattering of light even in the
dilute regime. As our model combines long-range interactions
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FIG. 1. A cylindrical and homogeneous cold cloud of N disor-
dered three-level atoms scatters probe and control fields to the free
space. The atomic levels are in a � configuration, as schematically
shown on the left. The radius R of the cylindrical surface is much
larger than its thickness L, measuring the probe field transmission in
a disk of radius smax < R.

mediated by light with two distinct incident fields, it opens a
route for the study of collective effects in nonlinear optics.

II. MICROSCOPIC MODEL

We consider an ensemble of N pointlike three-level atoms
at zero temperature, with random positions r j = (x j, y j, z j ),
for j = 1, . . . , N , decaying to the vacuum modes of the ra-
diation field. Their � energy-level scheme is composed of
two ground states, |1〉 and |2〉, and one excited state |3〉, as
represented in Fig. 1. A probe field, of angular frequency ω1

and Rabi frequency �1, pumps the transition |1〉 ↔ |3〉, of
frequency ω31, whereas a control field, of angular frequency
ω2 and Rabi frequency �2, drives the transition |2〉 ↔ |3〉,
of frequency ω32. Both fields are plane waves propagating in
the direction of the wave vectors k1 and k2, respectively. The
light-matter Hamiltonian that describes this system reads
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∑
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n3 = |n〉〈3| j (σ̂ j
3n = |3〉〈n| j) are the lowering (raising)

atomic operators, and σ̂
j

nn = |n〉〈n| j are the atomic population
operators. Each vacuum mode is characterized by its wave
vector k, polarization vector s, and angular frequency νk,
where â†

k (âk) is the corresponding creation (annihilation)
operator. The exchange of photons between the atoms and
the environment takes place with coupling strength g(n)
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√
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matrix elements of the transitions, the vacuum permittivity,
and the mode volumes.

The explicit time dependence on the laser terms, appear-
ing in the last line of Eq. (1), can be removed by applying

two consecutive unitary transformations: e−iH0t , with H0 rep-

resenting the free energy terms, and e−i[
∑

j (�1−�2 )σ j
22+�1σ

j
33]t ,

where we define the detuning �n = ωn − ω3n. Then the fol-
lowing Hamiltonian is obtained:
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Note that the time dependence was transferred to the interac-
tion between atoms and vacuum modes, which is the required
expression for the next steps.

In order to obtain the expectation value dynamics for the
atomic operators, we first evolve atom and photon operators in
the Heisenberg representation, according to the Hamiltonian
(2). Then we formally solve the equations for the photon
operators and substitute their solutions in the dipole equa-
tions [17,29,36]. Neglecting fasting oscillating terms in the
Markov approximation, we then obtain the following reduced
dynamics:
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for m, n = 1, 2 with m �= n, where we define the effective field
operators

F̂ j
n ≡ i1̂�neikn·r j +

∑
l �= j

σ̂ l
n3Gjl

n + noise, (6)

and the effective light-mediated interactions

Gjl
n ≡ 2

∫ ∞

0
dτeiωnτ

∑
k,s

∣∣g(n)
k,s

∣∣2
(e−iνkτ+ik·r jl − c.c.). (7)

In Eqs. (3)–(5), the decay rates that determine the timescale of
the problem are 	n ≡ Re(Gj j

n ), with 	 ≡ 	1 + 	2, whereas in
Eq. (7), we have defined r jl ≡ r j − rl as the relative position
between atoms j and l . Note that the upper limit of the time
integral in Eq. (7) is now the infinity since the vacuum mode
dynamics are much faster then the population dynamics.
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Going to the spherically symmetric continuous integration
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which covers all possible wave vectors k [16–18], we end up
with effective long-range interactions,
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(9)

that decay with the Euclidean distance r jl = |r jl | between
atomic pairs. Here, we have defined z jl = z j − zl , where z j is
the position of the jth atom along the cylinder’s longitudinal
axis. For the derivation of the interactions Gjl

n , one takes into
account the polarization of all vacuum modes in the radiation-
matter Hamiltonian [29]. This is the reason of the name
“vectorial” for the corresponding scattering model. However,
dilute atomic clouds (ρ/k3

1 < 0.01) are well described by the
scalar approximation [17,37]

Gjl
n ≈ 	n

eiknr jl

iknr jl
, (10)

which can be obtained by not taking into account the polar-
ization vectors s in the initial Hamiltonian Ĥ . In this work,
we consider the scalar model for the calculation of the trans-
parency window, while both models are compared in the
collective STIRAP analysis.

Returning to Eqs. (3)– (5), we now obtain the dynamical
equations for the expectation values 〈 · 〉 of the dipole op-
erators σ̂

j
nn. We consider that the total density matrix of the

system can be approximated by the tensor product between
the individual density matrices of each subsystem (ρ̂ = ρ̂1 ⊗
ρ̂2 ⊗ . . . ⊗ ρ̂N ), which in our case is a good approximation for
incident fields such that �n < 	n [38]. As a result, we can ne-
glect the correlations between different dipoles 〈σ̂ j
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leads us to the following system of equations:
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for m, n = 1, 2 with m �= n. Note that the contribution from
noise operators disappears in the semiclassical approximation
since 〈âk,s(0)〉 = 0 for a white noise reservoir. As another con-
sequence of the semiclassical approximation, the expectation

values 〈
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n

〉 = i�neikn·r j +
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G jl
n

〈
σ̂ l
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act like mean fields exciting the atomic transitions. The first
contribution comes from the incident fields, while the second
contribution represents the influence of all the other atoms on
a given atom j, described by the light-mediated interactions
from Eq. (9) [29,39].

Finally, we point out that the optical interactions Gjl
n are

the main ingredient that distinguish Eqs. (11)–(13) from those
that describe independent three-level atoms. Note that it cou-
ples the transition |1〉 ↔ |3〉 of a given atom to the transition
|2〉 ↔ |3〉 from another atom, an effect neglected in single-
scattering models but that here is essential for our many-atom
analyses, as can be seen in the following.

III. COLLECTIVE TRANSPARENCY WINDOW

The procedure adopted in most experiments to investigate
the transparency properties of a medium relies on light trans-
mission measurements [1,4,30–32]. In this context, the total
scalar electric field operator [17,18,40],

Ê (r, t ) = 1̂E1eik1·r − 	1

2d1

N∑
j=1

σ̂
j

13(t )
eik1|r−r j |

k1|r − r j | , (15)

is investigated around the transition frequency ω31, within
the spectral range where the contribution of the control field
can be neglected. In Eq. (15), the probe field, of amplitude
E1 ≡ �1/d1, interferes with its associated scattered field, and
generates an intensity profile I (r, t ) ∝ 〈Ê†(r, t )Ê (r, t )〉 over
the whole three-dimensional space. The symbol 1̂ represents
the identity operator of the atomic Hilbert space. To keep the
consistency of our procedure, we also consider the semiclas-
sical approximation for the intensity:

I (r, t ) ∝ |〈Ê (r, t )〉|2 + 	2
1

4d2
1

N∑
j=1

〈
σ

j
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k2
1 |r − r j |2 , (16)

where only quantum correlations between different dipoles
were again neglected.

In our simulations, probe and control fields propagate
along the longitudinal axis of a cylinder with thickness L
and radius R, where the random positions of the atoms are
homogeneously distributed with a given average density ρ =
N/LπR2 (see Fig. 1) [41]. We then obtain the transmission
T by numerically integrating the steady-state solution of
Eq. (16) in a disk of area πs2

max, at the observation point z0,
for a radius of integration smax. The result is divided by the
incident power E2

1 πs2
max, as in the following:

T = 1

E2
1 πs2

max

∫
d2sI (s, z0, t → ∞). (17)

To minimize the power losses by diffraction effects around
the cylinder edges, we chose R � L and smax < R [42]. Given
that most experiments are carried out in the optical regime
and the specific range of parameters we are adopting, the
fundamental lengths L and R would be on the scale of μm. We
calculate many realizations of the EIT transmission spectrum
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FIG. 2. Transmission spectrum as a function of the probe field
detuning. (a) and (c) were calculated in the EIT regime (�2 =
0.5	 � �1 = 0.1	), while (b) and (d) were obtained for the CPT
regime (�2 = �1 = 0.5	). In (a) and (b) we see the changes in the
transmission spectrum for different values of the atomic density ρ,
for a fixed cylinder thickness k1L = 40, while for (c) and (d) we vary
k1L for a fixed density ρ/k3

1 = 0.01. In panels (a) and (b), the number
of atoms N ranged from 314 to 3140, and in panels (c) and (d), from
785 to 2335. For all plots we set �2 = 0 and k1R = 50.

as a function of the probe field detuning �1, keeping the radius
R constant for different values of the density ρ and the sample
thickness L, and take the average to reduce the fluctuations.
The number of realizations can vary from dozens to thousand,
depending on the number of scatterers, and it is increased until
one sees no significant changes in the transmission curves.
We focus on densities ρ � 0.01k3

1 and optical thicknesses
b < 1 (see the Appendix), where multiple scattering orders
are already required to describe coherent light scattering by
cold atoms [39]. Our goal is to show that EIT and applications
are sensitive to coherent light-mediated interactions even for
optically dilute regimes.

Figure 2 displays the transmission spectrum as a function
of the sample density and thickness, in the limits where the
scalar model remains a good approximation (ρ � 0.01k3

1)
[37]. In particular, Figs. 2(a) and 2(b) were obtained for �2 �
�1, a regime usually named the “EIT regime,” while (c) and
(d) for �1 ∼ �2, the “CPT regime” [4]. Note that the trans-
parency at the resonance line (�1 = 0) remains unchanged
for EIT and CPT regimes, so light-mediated interactions are
not able to reduce the transparency maximum as Rydberg
interactions do [30–33]. Such a difference arises from the very
nature of the interactions: Rydberg interactions do not depend
on how the atoms scatter light, whereas optical interactions
totally disappear when the system reaches a dark state [4].

Outside the resonance line, but still within the transparency
window, we show that the FWHM is affected by collective
effects for not-so-low densities (ρ < 0.01k3

1), a regime where
recent works sought high efficiencies in quantum memories
[13–15]. In Fig. 3, we exhibit the FWHM for EIT and CPT
transparency windows, as a function of the sample density

FIG. 3. FWHM as a function of ρ and L for models with and
without interacting terms. The full black curves are obtained by solv-
ing the full system of Eqs. (11)–(13), whereas dashed orange curves
by turning off all dipole interactions. (a) and (c) were calculated in
the EIT regime (�2 = 0.5	 � �1 = 0.1	), while (b) and (d) were
obtained for the CPT regime (�2 = �1 = 0.5	). In (a) and (b) we
see the changes in the FWHM by varying the atomic density ρ, for
a fixed cylinder thickness k1L = 40, while for (c) and (d) we vary
k1L for a fixed density ρ/k3

1 = 0.01. For all plots we set �2 = 0 and
k1R = 50, and the maximum number of atoms in the cloud in the
simulations was N = 3142.

ρ and thickness L. We confront the results obtained from
the full system of equations (11)–(13), where the multiple
scattering of light is preserved, with those of totally in-
dependent atoms (Gjl

n = 0). The latter model predicts only
single-scattering events, with no communication between the
dipoles. Nevertheless, the scattered fields from each individ-
ual atom still interfere, thus being equivalent to a highly
rarefied atomic sample [43,44]. As can be clearly noted in
Figs. 3(a)–3(d), both models converge for very small densities
and sample thickness (single-scattering regime), where weak
incident fields (�1,�2 � 	1, 	2) lead to the limit FWHM ∝
(�2

1 + �2
2)/	 [45]. Yet, as the density increases for a fixed

thickness (and vice versa), a substantial disagreement appears
between both models. The single-scattering model predicts
a slow linear increment of EIT and CPT FWHMs, while a
practically linear narrowing of the transparency window is
predicted by the complete interacting model even over the
range where atomic clouds are still considered dilute (ρ �
0.01k3

1). In particular, Figs. 3(a) and 3(c), obtained for the EIT
regime, show narrowings of 34.2% and 27.8%, respectively,
at the largest point of the horizontal axis. In the CPT regime
[Figs. 3(b) and 3(d)], the narrowings are considerable smaller:
21.5% and 17.0%, respectively. Our results point out that
higher-order scattering events are relevant for the calculation
of the narrowing of the transparency window [39].

We would like to highlight that narrowing of the EIT
FWHM has been already estimated empirically from Beer-
Lambert’s law [4,46], where many physical processes, for
instance, the Doppler effect and collisions, contribute to this
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FIG. 4. Minimum value of transmission as a function of ρ and
L. The full black curves are obtained by solving the full system of
dynamical equations, whereas dashed orange curves by turning off
all dipole interactions. (a) and (c) were calculated in the EIT regime
(�2 = 0.5	 � �1 = 0.1	), while (b) and (d) were obtained for the
CPT regime (�2 = �1 = 0.5	). In (a) and (b) we see the changes
in the FWHM by varying the atomic density ρ, for a fixed cylinder
thickness k1L = 40, while for (c) and (d) we vary k1L for a fixed
density ρ/k3

1 = 0.01. For all plots we set �2 = 0 and k1R = 50, and
the maximum number of atoms in the cloud in the simulations was
N = 3142. As a result of the asymmetry discussed in the text, we
obtain different values of Tmin for opposite detunings, around �1 =
±√

�2
1 + �2

2/2, so Tmin refers to the lowest value between the two.

spectral narrowing. In these previous works, one deduces the
scaling of the FWHM with the density from a naive extrap-
olation of the susceptibility for an ideal EIT noninteracting
medium, where a Gaussian ansatz for the near-resonance
transmittivity is considered [4,46]. Our microscopic model,
instead, predicts by first principles the narrowing of the
transparency window provided by multiple-scattering effects
(nonideal medium), with no empirical assumptions for the
transmission spectrum.

In the transmission profile, we have detected an asymme-
try between positive and negative detunings (a little higher
transmission for positive detunings). Such asymmetric behav-
ior has been observed since the first experimental realization
of the EIT phenomenon [47] and was wrongly attributed to
several different effects, such as Fano interference and nonin-
terfering photoionization channels [47]. However, the origin
of such asymmetry relies on the interference that emerges
between incident and scattered fields, whose mathematical
term is proportional to the detuning �1 [48]. This feature is
not unique to three-level systems.

Looking at the valleys of the transmission curves, we
can see that minimum transmission Tmin (around �1 =
±

√
�2

1 + �2
2/2) gets drastically reduced for increasing ρ and

L. Figures 4(a) and 4(c), obtained for the EIT regime, show a
reduction of 42.9% and 33.4% in the minimum transmission,
respectively, for the last points of the horizontal axis, whereas
Figs. 4(b) and 4(d), obtained for the CPT regime, show a

smaller variation: 13.3% and 10%, respectively. We infer that
Tmin is weakly affected by atomic interactions since the single-
scattering model describes qualitatively well the reduction of
the minimum transmission, over the regime where the FWHM
is incorrectly described by the same model. In other words,
multiple scattering affects the FWHM even for not-so-high
densities. The valleys of the transmission curves are actually
modified for independent atoms when varying macroscopic
parameters (ρ, L) because that the incident intensity I0 is kept
constant over the detection area A at the same time that the
number of absorbers changes.

IV. COLLECTIVE STIRAP

Now let us study how light-mediated interactions affect a
coherent population transfer between the two ground states
|1〉 → |2〉 via STIRAP [35], a key process for many quantum
information applications, e.g., quantum memories [4]. To this
goal, any slight probability of finding atoms in state |1〉 is dele-
terious for the process. Therefore, taking care of precision,
henceforward we compare the predictions from scalar and full
vectorial models. Initializing the system with all atoms in the
ground state |1〉, we consider both fields varying in time as

�1(t ) = �max

{
θ (t −t f ) + sin

(
πt

2tr

)
[θ (t − t0) − θ (t −t f )]

}
,

(18)

�2(t ) = �max

{
1 − θ (t − t0) + cos

(
πt

2tr

)

× [θ (t − t0) − θ (t − t f )]

}
, (19)

where �max represents the maximum value of the Rabi fre-
quency of the fields, t0 is the STIRAP process starting time, tr
is the time it takes for the sine (cosine) to reach its maximum
(minimum), t f = t0 + tr is the instant where the variations in
the fields end, and θ (x) is the Heaviside step function. The
adiabaticity criterion is then fulfilled when �1,�2 � π/2tr ,
and the population for independent atoms should be totally
transferred coherently to the ground state |2〉 without ever
populating the leaky excited state |3〉. In the previous section,
we have studied the system’s optical response in the steady
state for a fixed ratio �1/�2, which lead the system to the
stationary dark state |1〉. In the STIRAP, however, this ratio
changes from 0 to ∞. Now we initially prepare the system
in |1〉, with the typical EIT configuration �1 � �2, and vary
the parameters until we reach �1 � �2. This is the same
regime as before but now with swapped roles for the two
fields. The adiabatic theorem [49,50] tells us that if the process
is adiabatic, the system will now be at the new dark state |2〉.

Panel (a) of Fig. 5 shows the time variation of both fields,
whereas panel (b) shows the average population 〈σ11〉 of the
ground state |1〉 throughout the process, for different values
of density. Note that after the STIRAP is over, the average
population probability 〈σ11〉 remains for both scalar and vec-
torial models over much longer times than the noninteracting
prediction. In particular, the vectorial model (represented by
markers) shows a deviation around 1% (〈σ11〉 ≈ 10−2) for
ρ/k3

1 = 0.01, two orders of magnitude higher than that from
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FIG. 5. STIRAP process in a cold cloud of three-level atoms.
Panel (a) shows how the Rabi frequencies of the probe and control
field change in time, starting in a condition where �1 � �2 and
adiabatically reaching a regime where �1 � �2. Panel (b) shows
how the average ground state population of the state |1〉 behaves
for different densities. For all plots we set �max = 0.5	, t0 = 10	,
tr = 60	, �1 = �2 = 0, k1L = 60, and k1R = 40. The number of
atoms N ranges from 1005 to 3015.

the scalar model (〈σ11〉 ≈ 10−5). One could argue that such
an error is not relevant; however, since the long-range inter-
actions cannot be eliminated, they pose a fundamental limit
for STIRAP-based applications. For instance, from the results
showed in Fig. 5, a qualitative estimation of the efficiency loss
in the writing process of a quantum memory can be made.
If the long-range interactions reduce the capacity of storing
a photonic state in the atomic basis with high fidelity, in a
quantum algorithm where the memory has to be accessed
thousands of times [51], these errors will propagate and it
is expected to drastically reduce the practical overall infor-
mation retrieval efficiency of the quantum memory device.
Our result points out that the efficiency can be even worse
for increasing densities.

V. CONCLUSION

In conclusion, we have derived a model that describes the
light scattering by a cold ensemble of three-level atoms. In the
scalar regime, we were able to investigate how light-mediated
long-range interactions influence EIT and CPT phenomena,
by simulating the light transmission spectrum. This analysis
demonstrates that optical dipole-dipole interactions consider-

ably narrow the transparency window for sufficiently dense
and large atomic clouds, which can be useful for applications
such as high-resolution spectroscopy. We have demonstrated
that collective scattering also modifies a STIRAP process,
showing that it spoils the population transfer between two
atomic states. Although a propagating pulse model is required
to infer a quantitative influence of these interactions on quan-
tum memories, our microscopic analysis recreates the basic
writing process of such devices and poses fundamental limi-
tations to quantum memories.

Finally, we believe that our coupled-dipole model for
three-level atoms, with control and probe fields, is useful for
the study of many other situations. For example, it can be
employed to investigate how nonlinear-optics effects [4,52]
are modified by collective scattering of light, as well as to
understand whether probe intensity profiles in space can be
controlled by a control field. We can also investigate the
modification of the efficiency for writing and generation of
single photons in three-level systems via the DLCZ protocol
[53] for increasing atomic densities.
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APPENDIX: SCATTERING CROSS SECTION AND
OPTICAL DEPTH FOR A � THREE-LEVEL ATOM

In order to estimate the optical thickness for three-level
atoms, we consider the main dynamical equations (11)–(13)
for the particular case of a single atom:

d〈σ̂nn〉
dt

= 	n

2
〈σ̂33〉 − i

2
�n(〈σ̂n3〉 − 〈σ̂3n〉), (A1)

d〈σ̂12〉
dt

= −i(�1 − �2)〈σ̂12〉 + i

2
�1〈σ̂32〉 − i

2
�2〈σ̂13〉, (A2)

d〈σ̂n3〉
dt

= −
[

(	1 + 	2)

2
+ i�n

]
〈σ̂n3〉

− i

2
�n(〈σ̂nn〉 − 〈σ̂33〉) − i

2
�m〈σ̂12〉, (A3)

for m, n = 1, 2, with m �= n. In the steady state, the expecta-
tion value of the excited-state population is given by

〈σ33〉ss = 4	�2
1�

2
1�

2
2

	2�
2
1

[
4	2�2

1 + (
�2

1 + �2
2

)
2
] + �2

2

{
	1

[
4�2

1

(
	2 − 2�2

2

) + 16�4
1 + (

�2
1 + �2

2

)
2
] + 8	�2

1�
2
1

} . (A4)

This expression allows us to obtain the scattering
cross section σsc = Psc/I0, where Psc represents the

scattered power, and I0 ∝ (�1/d1)2 the incident field
intensity.
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In order to obtain Psc, we consider the scalar scattered field
(15) in the far-field approximation:

E (far)
sc (r, k̂) ≈ − 	1

2d1

eik1r

k1r
σ̂13e−k̂.r0 , (A5)

where r0 is the position of the atom, and k̂ a unitary vector
of observation in spherical coordinates. Since the scattered
intensity is proportional to Isc ∝ 〈E†

scEsc〉, we then obtain

Isc(r) ∝
(

	1

2d1k1r

)2

〈σ̂33〉ss. (A6)

The integration of this intensity over an spherical shell results
in the scattered power

Psc ∝
(

	1

2d1k1

)2

〈σ̂33〉ss

∫ 2π

0

∫ π

0
sin(θ )dθdφ (A7)

∝ π

(
	1

d1k1

)2

〈σ̂33〉ss. (A8)

Consequently, the scattering cross section for this three-level
� system can be expressed as

σsc = π

(
	1

k1�1

)2

〈σ̂33〉ss, (A9)

with 〈σ̂33〉ss given by Eq. (A4). Finally, we can calculate the
optical thickness for this system integrating the density over
the cylinder propagation direction [28,54]

b = σsc

∫ L/2

−L/2
ρ(0, 0, z)dz (A10)

= σscρL (A11)

=
(

	1

�1

)2

〈σ̂33〉ss
N

k2
1R2

, (A12)

where we used the fact that the average density ρ = N/πR2L
is constant over space [54–56]. Therefore, when varying L
for a fixed homogeneous density, we are changing the opti-
cal thickness. Around the FWHM (�1 = 0.125	), we obtain
b ≈ 0.36 for ρ = 0.01k3

1 and k1L = 40, in the EIT regime:
	1/	 = 	2/	 = 0.5, �1 = 0.1	, and �2 = 0.5	.
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