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Quantum phase transition and quench dynamics in the two-mode Rabi model
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The second-order quantum phase transition and quench dynamics in the two-mode Rabi model are investi-
gated. We propose a diagonalization approach of jointly using a beam-splitter operator and a squeezed operator
for each effective low-energy Hamiltonian when the ratio of the qubit transition frequency to the oscillator
frequency approximates infinity. Eigenenergy and eigenstate of the normal and superradiant phases in the system
are analytically derived, demonstrating the second-order quantum phase transition at a critical point. This critical
point means that the requirement of coupling strength between the qubit and two oscillators is largely loosened
by joint effect of two modes when compared with the standard Rabi model. The universal scaling between
residual energy and quench time from τ− 1

3 to τ−2 is confirmed.
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I. INTRODUCTION

The quantum phase transition is an important issue in the
area of quantum optics and condensed-matter physics [1–14].
Different from the classical phase transition, which usually
appears at finite temperature, a quantum phase transition al-
ways appears at zero temperature. Traditional studies of the
quantum phase transition [15–17] mainly focus on the ther-
modynamic limit, where the number of microparticle becomes
infinity, for example, the Dicke model [18].

However, a recent theoretical study [19] shows that a
second-order quantum phase transition can occur under a
special frequency ratio even when the system only contains
a qubit and an oscillator, i.e., the Rabi model [20]. Recently, a
trapped-ion experiment [21] using a 171Yb+ ion in a Paul trap
observed this quantum phase transition, which opens up a new
window for controllable study of the quantum phase transition
without requiring the thermodynamic limit.

To reveal the crossover effect between classical and
quantum worlds, the natural question of when the oscillator
number increases for the Rabi model whether the second-
order quantum phase transition still exists remains an open
question. A recent study [22] investigated the dissipative
phase transition based on the two-mode Rabi model by using
the mean-field approximation. Although this study demon-
strated that the PT symmetry breaking resulted in plentiful
phase transitions and a phase diagram, they did not definitely
analyze whether the second-order quantum phase transition
existed. Other works [23,24] solved the analytical ground state
of the two-mode Rabi model but only discussed the entangle-
ment and nonclassical property.

When a slow quench approaches the critical point of
quantum phase transition, for example, changing the qubit-
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oscillator coupling strength by slowly tuning the external
magnetic field, the spectral gap is closing and the adiabaticity
of dynamics breaks despite the quench rate [25–32]. The
work of Ref. [19] has proved that the transition relation of
universal scaling between residual energy and quench time in
the standard Rabi model, but whether this transition relation of
universal scaling keeps the same in the two-mode Rabi model
is still unknown.

To investigate the second-order quantum phase transi-
tion and quench dynamics in the two-mode Rabi model, we
here propose a diagonalization approach of jointly using a
beam-splitter operator and a squeezed operator and find a
special transformation operator mapping the original Hamil-
tonian into an effective two-mode Hamiltonian when the ratio
of the qubit transition frequency to each oscillator frequency
approximates infinity. The analytical eigenenergy and eigen-
state of the normal phase and superradiant phase are derived,
respectively. We demonstrate that the ground state undergoes
a second-order quantum phase transition at a critical point,
which is largely loosened by the joint effect of two modes
other than the standard Rabi model. In the quench dynamics,
we consider the main finite-frequency correction and analyti-
cally derive the universal scaling between residual energy and
quench time. The two-mode Rabi model is interesting because
it adds a deeper insight of understanding the quantum phase
transition, explaining the role that the mode number plays on
the quantum phase transition, revealing a new critical point of
quantum phase transition.

II. QUANTUM PHASE TRANSITION

As shown in Fig. 1, the Hamiltonian of a two-mode Rabi
model is (h̄ = 1) [22]

H = ωaa†a + ωbb†b + �

2
σz − λa(a† + a)σx − λb(b† + b)σx,

(1)
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FIG. 1. Setup of a two-mode Rabi model. Two green-bold lines
represent two modes a and b, respectively. Black-solid dot represents
a qubit.

where σx and σz are Pauli matrices of a qubit. a†(b†) and a(b)
are the creation and annihilation operators of the field mode
a(b), respectively. ωa(ωb) is the a(b) mode’s frequency. � is
the transition frequency of the qubit. λa(λb) is the coupling
strength between a(b) mode and the qubit. For simplicity,
ωa = ωb = ω0 and λa = λb = λ are set. | ↓〉 and | ↑〉 are the
high- and low-energy eigenstates of σz, respectively. |m〉a(b)

(m ∈ N) is the eigenstate of a†a(b†b). The parity operator
� = eiπ[a†a+b†b+ 1

2 (1+σz )] measures an even-odd parity of total
excitation number, which commutes with H . The approach of
investigating phase transition in Ref. [22] is the mean-field
approximation, which is applicable only when the whole sys-
tem approaches the classical regime but fails when the system
is completely quantum. To solve this problem, we propose
a diagonalization method to investigate the quantum phase
transition and find more interesting results.

In the limit �
ω0

→ ∞, we find a unitary transformation

UT = e
λ
�

(a†+a+b†+b)(σ+−σ− ) to remove the coupling terms be-
tween the qubit’s subspaces {| ↓〉} and {| ↑〉}, i.e., HT =
U †

T HUT , where σ+ = | ↑〉〈↓ | and σ− = | ↓〉〈↑ |. When HT

is projected into {| ↓〉}, an effective two-mode Hamiltonian in
normal phase is obtained:

Hnp = ω0(a†a + b†b) − λ2

�
(a† + a + b† + b)2 − �

2
. (2)

The main obstacle here is to diagonalize Hnp in the two-mode
subspace. It is obvious that Hnp has a cross-interaction term
between two modes, i.e., (a† + a)(b† + b), and this similar
structure of Hnp has been used to calculate the quantum phase
transition and chaos of the Dicke model in Ref. [18]. However,
the Bogoliubov transformation method of Ref. [18] lacks a
universal form of eigenstate in the original Hilbert space,
which is hard to generalize to investigate the time-dependent
dynamics here, for example, quench dynamics.

To settle this problem, we propose a diagonalization
method for Hnp. By jointly using a beam-splitter operator
Uθ = eθ (a†b−ab† ) and a squeezed operator Us = e

s
2 (a†2−a2 ) (θ

and s are two parameters determined in the Appendix), Hnp

is diagonalized as

H ′
np = ω0

√
1 − 2g2a†a + ω0b†b + ω0

2

√
1 − 2g2 − ω0

2
− �

2
,

(3)

with excitation energies εnp,a = ω0

√
1 − 2g2 for the a oscil-

lator and εnp,b = ω0 for the b oscillator, where g = 2λ√
ω0�

.
εnp,b is a definitely real value for any non-negative g, but

εnp,a is real only for 0 � g �
√

2
2 and imaginary only for

g >
√

2
2 , indicating that the quantum phase transition happens

at a critical point gc =
√

2
2 . The universal form of low-energy

eigenstates of Hnp for g �
√

2
2 is |φm,n

np (g)〉=U †
θ U †

s |m, n〉a,b|↓〉,
with θ = π

4 and s = 1
4 ln(1 − 2g2). Note that |φG,np〉 =

U †
T U †

θ U †
s |0, 0〉a,b| ↓〉 is the ground state in normal phase and

the ground-state energy is E0,np = ω0
2

√
1 − 2g2 − ω0

2 − �
2 .

However, if another beam-splitter operator Uθ ′ =
eθ ′(a†b−ab† ) and another squeezed operator U ′

s = e
s
2 (b†2−b2 )

are jointly used, where θ ′ = −π
4 , Hnp is diagonalized as

H ′′
np = ω0a†a + ω0

√
1 − 2g2b†b + ω0

2

√
1 − 2g2 − ω0

2 − �
2 ,

where excitation energies are ε′
np,a = ω0 for the a oscillator

and ε′
np,b = ω0

√
1 − 2g2 for the b oscillator. The ground state

in normal phase becomes |φ′
G,np〉 = U †

T U †
θ ′U ′†

s |0, 0〉a,b| ↓〉, but
its ground-state energy is still E0,np. The original Hamiltonian
(1) is invariant under the interchange a ↔ b. This symmetry
is broken when the squeezing operator is employed, giving
rise to different excitation energies. But since two squeezed
extents are the same, the ground-state energy is not influenced
by the broken symmetry, which is demonstrated from Eq. (A1)
to Eq. (A13) in the Appendix.

When g >
√

2
2 , two oscillators are macroscopically oc-

cupied and the ground state comes into the superradiant
phase. We transform the original Hamiltonian by displac-
ing two field modes a and b with displacement operators
Da(α) = eα(a†−a) and Db(β ) = eβ(b†−b), respectively. With the

choice of displacement α = β =
√

�
16ω0g2 (4g4 − 1), the dis-

placed Hamiltonian can be written as the same formation of
Eq. (1),

HD = ω0(a†a + b†b) + �̃

2
σ̃z − λ̃(a† + a + b† + b)σ̃x

+2λ2

ω0
− ω0�

2

32λ2
, (4)

where the revolved bases are σ̃z = 1
2g2 (| ↑〉〈↑ | − | ↓〉〈↓ |) −√

1 − 1
4g4 (| ↑〉〈↓ | + | ↓〉〈↑ |) and σ̃x =

√
1 − 1

4g4 (| ↑〉〈↑ | −
| ↓〉〈↓ |) + 1

2g2 (| ↑〉〈↓ | + | ↓〉〈↑ |), with the rescaled fre-

quency �̃ = 8λ2

ω0
and the rescaled coupling strength λ̃ = ω0�

8λ
.

Based on the same procedure of deriving Hnp, an effective
two-mode Hamiltonian in superradiant phase is obtained,

Hsp = ω0(a†a + b†b) − ω3
0�

2

512λ4
(a† + a + b† + b)2

−2λ2

ω0
− ω0�

2

32λ2
, (5)
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FIG. 2. Relative errors Ernp of ground-state energy between the

numerical solution of H and analytical solution of H̃T at g =
√

2
4 (blue

star) and g =
√

2
2 (red circle). The units of horizontal coordinate and

vertical coordinate are dimensionless and ω0, respectively.

which can be diagonalized by Uθ and Us̃ = e
s̃
2 (a†2−a2 ), where

s̃ = 1
4 ln[1 − (4g4)−1] is the rescaled squeezed parameter. Ex-

citation energies of Hsp for the a and b oscillator are εsp,a =
ω0

√
1 − (4g4)−1 and εsp,b = ω0, respectively, which are both

real for g >
√

2
2 . The universal form of low-energy eigen-

states of Hsp for g >
√

2
2 is |φm,n

sp (g)〉 = U †
θ U †

s̃ |m, n〉a,b| ↓〉.
Note that |φG,sp〉 = D†

aD†
bU †

T̃
U †

θ U †
s̃ |0, 0〉a,b| ↓〉 is the ground

state in superradiant phase, where UT̃ = e
λ̃

�̃
(a†+a+b†+b)(σ+−σ− ),

and the ground-state energy is E0,sp = ω0
2

√
1 − 1

4g4 − ω0
2 −

�
2 (g2 + 1

4g2 ).
Therefore the ground-state solutions of H demonstrate that

quantum phase transition occurs at the critical point gc =
√

2
2 .

This result is very different from the standard Rabi model
whose critical point is gc = 1 [19], meaning that the crit-
ical coupling strength needed in quantum phase transition
becomes smaller as the number of field modes increases. The
physics behind this is that the coupling between the qubit and
each oscillator equally contributes to the critical point, and
more field modes can provide more excitations for the ground
state at the same coupling strength. The validity of the above
diagonalized method is checked in Fig. 2. The result shows
that relative error of ground-state energy quickly decreases
to 10−3 even when � = 100ω0. Note that contributions of a
and b modes are symmetrical in both Hnp and Hsp. The use of
squeezed operator e

s
2 (b†2−b2 ) and e

s̃
2 (b†2−b2 ) for b mode instead

of e
s
2 (a†2−a2 ) and e

s̃
2 (a†2−a2 ) for the a mode leads to the same

quantum phase transition.
The rescaled photon number of the a(b) mode nc,a =

ω0
�

〈φ0,0
np (g)|a†a|φ0,0

np (g)〉[nc,b = ω0
�

〈φ0,0
np (g)|b†b|φ0,0

np (g)〉] is
0 for g < gc and nc,a = ω0

�
〈φ0,0

sp (g)|a†a|φ0,0
sp (g)〉[nc,b =

ω0
�

〈φ0,0
sp (g)|b†b|φ0,0

sp (g)〉] is 1
4g2 (g4 − g4

c) for g > gc; therefore
nc,a and nc,b are two order parameters, as plotted in
Fig. 3(a). Based on a variational method in the Appendix, the
finite-frequency correction for nc,a(nc,b) is nc,gc = 1

12 ( 2�
3ω0

)−
2
3 ,

which is compared with the numerical solution in Fig. 3(b).
The discrepancy between analytical and numerical solutions
in Fig. 3(b) vanishes when �

ω0
� 1, demonstrating the validity

of effective Hamiltonians Hnp and Hsp.

FIG. 3. (a) The rescaled photon number nc,a(nc,b) as a function
of g

gc
for the ground state with numerical (the blue-solid line) and

analytical (the red-dotted line) results when � = 100ω0. (b) The
finite-frequency correction nc,gc as a function of �

ω0
with analytical

and numerical solutions at the critical point. The units of horizon-
tal coordinate and vertical coordinate are dimensionless and ω0,
respectively.

The rescaled ground-state energy E0 is −ω0
2 for g � gc

and −ω0
2 [g2 + (2g)−2] for g > gc, which is continuous at the

critical point. However, its second-order derivative d2E0
dg2 is

zero for g � gc and −ω0[1 + 12(2g)−4] for g > gc, which is
discontinuous at the critical point, as plotted in Fig. 4(a). The
finite-frequency correction for E0 is E0,gc = ω0

4 ( 2�
3ω0

)−
4
3 , which

quickly decreases as �
ω0

increases as shown in Fig. 4(b). This
result reveals the second-order characteristics of the quantum
phase transition in the ground state.

When g approaches gc, excitation energies εnp,a and εsp,a

both vanish as a parabolic relation |g − gc| 1
2 in the a oscillator,

but the excitation energies εnp,b and εsp,b do not vanish and
both remain to be ω0 in the b oscillator, as shown in Fig. 5.

FIG. 4. (a) The analytical solution of ground-state energy E0 (the
blue-solid line) and its second-order derivative d2E0

dg2 (the red-dotted
line) as functions of g

gc
when � = 100ω0. (b) The finite-frequency

correction E0,gc as a function of �

ω0
. The units of horizontal coordi-

nate and vertical coordinate are dimensionless and ω0, respectively.
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FIG. 5. Excitation energies (εnp,a, εsp,a, εnp,b, and εsp,b) as func-
tions of g

gc
. εnp,a and εsp,a are denoted by the red solid line. εnp,b and

εsp,b are denoted by the blue dashed line. The units of horizontal coor-
dinate and vertical coordinate are dimensionless and ω0, respectively.

III. QUENCH DYNAMICS

To investigate the quench dynamics of this system, we con-
sider a time-dependent coupling parameter g, where g linearly
increases with time t , i.e., g(t ) = g f t/τ (g f is a final coupling
strength and τ is the quench time). When the quench is slow
enough and the system is initially in the ground state, the
residual energy Er at the end of the quench has an inverse-
square relation with τ ,

Er = τ−2
g4

f

4ω0(1 − 2g2
f )

5
2

∝ τ−2. (6)

When the quench ends at the critical point, i.e., g f = gc, the
energy-gap equation becomes

g � gc − 2− 13
6 (ω0τ )−

2
3 , (7)

which leads to a universal scaling relation between Er and τ :

Er � 2− 8
3 ω

2
3
0 τ− 1

3 ∝ τ− 1
3 . (8)

This universal scaling between residual energy and quench
time from τ− 1

3 to τ−2 is the same with the standard Rabi
model [19].

For the finite-frequency case, the motion equations are
written as iȧ(t ) = [a(t ), H̃np(t )] and iḃ(t ) = [b(t ), H̃np(t )] in
the Heisenberg picture, which leads to the following four
coupled differential equations:

i
dua(t )

dt
= ω0[(1 − g(t )2)ua(t ) − g(t )2va(t )]

+3ω2
0g(t )4

�
(ua(t ) + va(t ))|ua(t ) + va(t )|2,

−i
dva(t )

dt
= ω0[(1 − g(t )2)va(t ) − g(t )2ua(t )]

+3ω2
0g(t )4

�
(ua(t ) + va(t ))|ua(t ) + va(t )|2,

i
dub(t )

dt
= ω0ub(t ),

−i
dvb(t )

dt
= ω0vb(t ), (9)

FIG. 6. Residual energy Er as functions of the quench time τ ob-
tained from Eq. (A41) for subfigure (a) when �

ω0
→ ∞ and Eq. (10)

for subfigure (b) when gf = gc. The units of horizontal coordinate
and vertical coordinate are 1

ω0
and ω0, respectively.

where ua(t ), va(t ), ub(t ), and vb(t ) are four parameters to be
determined. When the quench ends at time τ , the residual
energy becomes

Er = ω0(|va(τ )|2 + |vb(τ )|2) − ω0g2
c

2
|ua(τ ) + va(τ )|2

+3ω2
0g4

c

4�
|ua(τ ) + va(τ )|4 + ω2

0g2
c

4�
+ ω0

2

−�

4

(
2�

3ω0

)− 4
3

− �

18

(
2�

3ω0

)−2

. (10)

Detailed derivations from Eq. (6) to Eq. (10) can be seen in the
Appendix. In Fig. 6, we plot residual energy Er as functions
of the quench time τ for different final coupling strengths g f

and different ratios �
ω0

. For small values of τ , the curves of
Er keep flat and suddenly increases as τ increases further. For
large values of τ , when �

ω0
→ ∞ and g f = gc, the relation

Er ∼ τ− 1
3 is well satisfied, which is predicted by the univer-

sal scaling relation in Eq. (8). This result also confirms the
universal adiabatic dynamics of quantum phase transition in
the two-mode Rabi model. In Fig. 6(a), when g f is gradually
away from the critical point gc, the universal scaling τ− 1

3

progressively transforms to τ−2, which is predicted by the
universal scaling relation in Eq. (6). When the main finite-

frequency correction 3ω2
0g(t )4

�
(ua(t ) + va(t ))|ua(t ) + va(t )|2 is

considered and the ratio �
ω0

is gradually away from the infinity,
this crossover behavior between residual energy and quench
time is also observed in Fig. 6(b). This is because energy
gap at the critical point opened by a finite ratio �

ω0
has an

equivalent effect with that opened by a deviation |gc − g f |
from the critical point.

IV. CONCLUSION

To summarize, when the ratio of the qubit transition fre-
quency to the oscillator frequency approximates infinity, we
have studied the second-order quantum phase transition and
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the quench dynamics of the two-mode Rabi model based
on the diagonalization approach. This approach jointly uses
a beam-splitter operator and a squeezed operator for each
effective two-mode Hamiltonian in the normal and superra-
diant phases. Analytical eigenstate and eigenenergy of the
normal and superradiant phases are given. We find the special
unitary transformation mapping the original Hamiltonian into
two solvable two-mode Hamiltonians and demonstrate that
there exists a critical point gc =

√
2

2 where the second-order
quantum phase transition happens. Compared with the stan-
dard Rabi model, this critical point means that the requirement
of coupling strength between the qubit and two oscilla-
tors is largely loosened by joint effect of two modes.
Based on the numerical simulation and analytical solution,
we prove that the universal scaling between residual en-
ergy and quench time from τ− 1

3 to τ−2 in the two-mode
Rabi model is the same with that in the standard Rabi model.
This diagonalization approach can also be generalized to any
Rabi model, including two oscillators, for example, the dis-
sipative two-mode Rabi model, which will largely motivate
research in the new direction of quantum phase transitions for
the multimode Rabi model.
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APPENDIX : DETAILS OF DIAGONALIZATION METHOD

In this section details of the diagonalization method are
derived. The two-mode Rabi Hamiltonian of Eq. (1) can be
written as

H = H0 − λV, (A1)

where

H0 = ω0(a†a + b†b) + �

2
σz, (A2)

and

V = (a† + a + b† + b)σx. (A3)

H0 is an unperturbed Hamiltonian, which has two decoupled
qubit subspaces {| ↓〉} and {| ↑〉}. For �

ω0
� 1, the low-energy

eigenstates of H0 are restricted in {| ↓〉}, where there are only
two simple harmonic oscillators. To find a unitary transforma-
tion UT = eT to decouple the virtual transition between {| ↓〉}
and {| ↑〉} induced by the interaction Hamiltonian V , we use
the Schrieffer-Wolff transformation [19],

HT = U −T HU T =
∞∑

k=0

[H, T ](k)

k!
, (A4)

where the special anti-Hermitian operator T is found to have
an approximate form

T � λ

�
(a† + a + b† + b)(σ+ − σ−)

− 4λ3

3�3
(a† + a + b† + b)3(σ+ − σ−). (A5)

With this choice for T , the transformed Hamiltonian approxi-
mately develops into

H̃T � ω0(a†a + b†b) + �

2
σz + λ2

�
(a† + a + b† + b)2σz

− λ4

�3
(a† + a + b† + b)4σz + ω0λ

2

�2
. (A6)

For the λ
�

→ 0 limit and H̃T is projected to {| ↓〉}, an effective
Hamiltonian for two coupled oscillators in the normal phase
is obtained,

Hnp � ω0(a†a + b†b) − λ2

�
(a† + a + b† + b)2 − �

2
, (A7)

which is Eq. (4) of the main text.
To diagonalize Hnp, we use a beam-splitter operator Uθ =

eθ (a†b−ab† ) and a squeezed operator Us = e
s
2 (a†2−a2 ), where θ

and s are two undetermined parameters. When Uθ acts on Hnp,
the transformed Hamiltonian becomes

Hθ = UθHnpU
†
θ

= ω0(a†a + b†b) − λ2

�
[(cos θ + sin θ )(a† + a)

+(cos θ − sin θ )(b† + b)]2 − �

2
. (A8)

When the condition cos θ = sin θ is satisfied, i.e., θ = π
4 , only

the a oscillator’s Hamiltonian has a two-photon interaction,
but the b oscillator’s Hamiltonian already has been diagonal-
ized. To further diagonalize the a oscillator’s Hamiltonian, Us

is applied to Hθ leading to

H ′
np = UsHθU †

s

= [ω0(cosh2 s − sinh2 s) − 4λ2

�
(cosh s − sinh s)2]

×a†a − [ω0 cosh s sinh s + 2λ2

�
(cosh s − sinh s)2]

×(a†2 + a2) + ω0b†b − �

2
− ω0 sinh2 s

−2λ2

�
(cosh s − sinh s)2. (A9)

With the choice of the squeezed parameter s = 1
4 ln(1 − 2g2),

the two-photon interaction vanishes and Hnp is diagonalized
as

H ′
np = ω0

√
1 − 2g2a†a + ω0b†b + ω0

2

√
1 − 2g2 − ω0

2
− �

2
,

(A10)

which is Eq. (5) of the main text.
If we use another beam-splitter operator Uθ ′ = eθ ′(a†b−ab† )

and a squeezed operator U ′
s = e

s
2 (b†2−b2 ), where θ ′ is an unde-

termined parameter. When Uθ ′ acts on Hnp, the transformed
Hamiltonian becomes

Hθ ′ = Uθ ′HnpU
†
θ ′

= ω0(a†a + b†b) − λ2

�
[(cos θ ′ + sin θ ′)(a† + a)
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+(cos θ ′ − sin θ ′)(b† + b)]2 − �

2
. (A11)

When the condition cos θ ′ = − sin θ ′ is satisfied, i.e., θ ′ =
−π

4 , only the b oscillator’s Hamiltonian has a two-photon
interaction, but the a oscillator’s Hamiltonian already has
been diagonalized. To further diagonalize the b oscillator’s
Hamiltonian, U ′

s is applied to Hθ ′ , leading to

H ′′
np = U ′

s Hθ ′U ′†
s

= [ω0(cosh2 s − sinh2 s) − 4λ2

�
(cosh s − sinh s)2]

×b†b − [ω0 cosh s sinh s + 2λ2

�
(cosh s − sinh s)2]

×(b†2 + b2) + ω0a†a − �

2
− ω0 sinh2 s

−2λ2

�
(cosh s − sinh s)2. (A12)

With s = 1
4 ln(1 − 2g2), the two-photon interaction vanishes

and Hnp is diagonalized as

H ′′
np = ω0a†a + ω0

√
1 − 2g2b†b + ω0

2

√
1 − 2g2 − ω0

2
− �

2
.

(A13)

To derive finite-frequency corrections for the Hamiltonian

H̃np = 〈↓ |H̃T | ↓〉

= ω0(a†a + b†b) − λ2

�
(a† + a + b† + b)2

+ λ4

�3
(a† + a + b† + b)4 + ω0λ

2

�2
− �

2
, (A14)

we propose a variational ground state |φG,v〉 =
e

π
4 (a†b−ab† )e

v
2 (a†2−a2 )|0, 0〉a,b with a trial parameter v, which

leads to the ground-state energy

EG,v = 〈φG,v|H̃np|φG,v〉

= ω0

2
cosh(2v) − 2λ2

�
e2v + 12λ4

�3
e4v − �

2
+ ω0λ

2

�2
.

(A15)

To find the minimum value of EG,v , the following equation is
calculated:

∂EG,v

∂v
= 96λ4

ω0�3
e6v +

(
1 − 8λ2

ω0�

)
e4v − 1 = 0, (A16)

whose solution is vmin = 1
6 ln( 2�

3ω0
) at gc. Therefore the finite-

frequency correction for nc,a is

nc,gc = ω0

�
〈φG,v (vmin)|a†a|φG,v (vmin)〉

= 1

12

(
2�

3ω0

)− 2
3

+ 1

12

(
2�

3ω0

)− 4
3

− 1

6

(
2�

3ω0

)−1

� 1

12

(
2�

3ω0

)− 2
3

, (A17)

which is the same with that for nc,b. The finite-frequency
correction for the rescaled ground-state energy is

E0,gc = ω0

�
[〈φG,v (vmin)|H̃np|φG,v (vmin)〉 − E0,np]

= ω0

4

(
2�

3ω0

)− 4
3

+ ω0

18

(
2�

3ω0

)−2

� ω0

4

(
2�

3ω0

)− 4
3

. (A18)

To derive the universal scaling of quench dynamics,
similar to the procedure used in Ref. [19], we consider
the normal-phase situation g f � gc for simplicity, where
g f is a final coupling strength which satisfies the
linearly time-dependent equality g(t ) = g f t/τ = ġt . The
time-dependent eigenstate of Hnp(g(t )) is denoted as

|snp(g(t )), na, nb〉 = e
π
4 (a†b−b†a)e

snp(g(t ))
2 (a†2−a2 )|na, nb〉, whose

eigenenergy is εna,nb (g(t )) = ω0na

√
1 − 2g(t )2 + ω0nb.

Therefore, the time-dependent wave function can be expanded
as |�(t )〉 = ∑

na,nb
αna,nb (t )e−i�na ,nb (t )|snp(g(t )), na, nb〉,

where �na,nb (t ) = ∫ t
0 εna,nb (t ′)dt ′ and αna,nb (t ) satisfies the

Schrödinger equation,

α̇na,nb (t ) = −
∑

ma,mb

αma,mb (t )〈snp(g(t )), na, nb|∂t |snp(g(t )),

ma, mb〉ei[�na ,nb (t )−�ma ,mb (t )]. (A19)

The solution of Eq. (A19) is

αna,nb (g(t )) = −
∑

ma,mb

∫ g(t )

0
dg′αma,mb (g′)〈snp(g′), na, nb|∂g′

|snp(g′), ma, mb〉ei[�na ,nb (g′ )−�ma ,mb (g′ )]. (A20)

When the quench is slow, i.e., ġ << 1, and the initial state
of the system is ground state, i.e., α0,0(0) = 1 and αna,nb (0) =
0 (na, nb � 1), Eq. (A20) becomes

αna,nb (g(t )) = −
∫ g

0
dg′〈snp(g′), na, nb|∂g′ |snp(g′), 0, 0〉

×ei[�na ,nb (g′ )−�0,0(g′ )]. (A21)

Since the phase factor e
i
ġ

∫ g(t )
0 [εna ,nb (g′ )−ε0,0(g′ )]dg′

quickly
oscillates, Eq. (A21) can be approximated as

αna,nb (g(t )) � iġ
〈snp(g(t )), na, nb|∂g|snp(g(t )), 0, 0〉

εna,nb (g(t )) − ε0,0(g(t ))

×ei[�na ,nb (g(t ))−�0,0 (g(t ))]
∣∣g(t )

0 . (A22)

For snp(g(t )) = − 1
4 ln (1 − 2g(t )2), we find

〈snp(g(t )), na, nb|∂g|snp(g(t )), 0, 0〉

= −1

2

∂snp

∂g
〈na, nb|(a†2 − a2)|0, 0〉

= −
√

2g(t )δna,2δnb,0

2(1 − 2g(t )2)
, (A23)
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where the symbol δ represents the Delta function. Thus, only
when na = 2 and nb = 0 does αna,nb have a nonzero value, i.e.,

α2,0(g(t )) = −iġg(t )

2
√

2ω0(1 − 2g(t )2)
3
2

ei[�2,0 (g(t ))−�0,0 (g(t ))],

(A24)

which leads to the residual energy at the end of the quench,

Er (g f ) =
∑

na>0,nb>0

εna,nb (g f )|αna,nb (g f )|2

� ε2,0(g f )|α2,0(g f )|2

= τ−2
g4

f

4ω0(1 − 2g2
f )

5
2

∝ τ−2. (A25)

According to the KZM mechanism [31], g(t ) should satisfy
the energy-gap equation at the critical point,

1

η(g(t ))
=

∣∣∣∣η(g(t ))
η̇(g(t ))

∣∣∣∣, (A26)

where η(g(t )) = 2ω0

√
1 − 2g(t )2, and η̇ represents the η’s

first-order derivative as g(t ). Then we have the following
equation:

(1 −
√

2g(t ))
3
2 = g f

ω0τ
g(t )(1 +

√
2g(t ))−

3
2 . (A27)

When the quench ends at the critical point, Eq. (A27) becomes

(1 −
√

2g(t ))
3
2 � 2− 5

2

ω0τ
, (A28)

i.e.,

g(t ) � gc − 2− 13
6 (ω0τ )−

2
3 . (A29)

By replacing g f in Eq. (A25) with g(t ) in Eq. (A29), the
residual energy becomes

Er � 2− 8
3 ω

2
3
0 τ− 1

3

∝ τ− 1
3 . (A30)

To obtain the motion equation of quench dynamics, we
first consider the �

ω0
→ ∞ limit. The effective time-dependent

Hamiltonian in normal phase is

Hθ (t ) = ω0(a†a + b†b) − ω0g(t )2

2
(a† + a)2 − �

2
. (A31)

In the Heisenberg picture, the motion equations can be written
as iȧ(t ) = [a(t ), Hnp(t )] and iḃ(t ) = [b(t ), Hnp(t )]. The time-
dependent field mode operators can be expressed as

a(t ) = ua(t )a + v∗
a (t )a†,

b(t ) = ub(t )b + v∗
b (t )b†, (A32)

with an initial condition ua(0) = ub(0) = 1 and va(0) =
vb(0) = 0, which should satisfy the commutation conditions
|ua(t )|2 − |va(t )|2 = 1 and |ub(t )|2 − |vb(t )|2 = 1. The mo-

tion equations become

iu̇a(t )a + iv̇∗
a (t )a† = ω0(v∗

a (t )a† + ua(t )a) − ω0g(t )2[(u∗
a(t )

+v∗
a (t ))a† + (ua(t ) + va(t ))a] (A33)

and

iu̇b(t )b + iv̇∗
b (t )b† = ω0(ub(t )b + v∗

b (t )b†). (A34)

By adding two commutation relations [..., a†] and [a, ...]
([..., b†] and [b, ...]) to Eq. (A33) (Eq. (A34)), four coupled
differential equations are obtained:

i
dua(t )

dt
= ω0[(1 − g(t )2)ua(t ) − g(t )2va(t )],

−i
dva(t )

dt
= ω0[(1 − g(t )2)va(t ) − g(t )2ua(t )],

i
dub(t )

dt
= ω0ub(t ),

−i
dvb(t )

dt
= ω0vb(t ). (A35)

Then we consider the finite-frequency case. The effective
time-dependent Hamiltonian with finite-frequency corrections
in normal phase becomes

H̃θ (t ) = Uθ H̃np(t )U †
θ

= ω0(a†a + b†b) − ω0g(t )2

2
(a† + a)2 + ω2

0g(t )4

4�

×(a† + a)4 + ω2
0g(t )2

4�
− �

2
. (A36)

By neglecting the nonlinear terms, the motion equations
become

iu̇a(t )a + iv̇∗
a (t )a† = ω0(v∗

a (t )a† + ua(t )a) + [
3ω2

0g(t )4

�

× |ua(t ) + va(t )|2 − ω0g(t )2][(ua(t )

+va(t ))a + (u∗
a(t ) + v∗

a (t ))a†] (A37)

and

iu̇b(t )b + iv̇∗
b (t )b† = ω0(ub(t )b + v∗

b (t )b†), (A38)

which lead to four coupled differential equations:

i
dua(t )

dt
= ω0[(1 − g(t )2)ua(t ) − g(t )2va(t )]

+3ω2
0g(t )4

�
(ua(t ) + va(t ))|ua(t ) + va(t )|2,

−i
dva(t )

dt
= ω0[(1 − g(t )2)va(t ) − g(t )2ua(t )]

+3ω2
0g(t )4

�
(ua(t ) + va(t ))|ua(t ) + va(t )|2,

i
dub(t )

dt
= ω0ub(t ),

−i
dvb(t )

dt
= ω0vb(t ), (A39)

which is Eq. (9) of the main text. Compared with
Eq. (A35), the main finite-frequency correction of Eq. (A39)

is 3ω2
0g(t )4

�
(ua(t ) + va(t ))|ua(t ) + va(t )|2.
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In the �
ω0

→ ∞ limit, the time-dependent energy is

a,b〈0, 0|Hθ (t )|0, 0〉a,b = ω0|va(t )|2 − ω0g(t )2

2
|ua(t )

+va(t )|2 − �

2
. (A40)

When the quench ends at time τ , the residual energy becomes

Er = a,b〈0, 0|Hθ (τ )|0, 0〉a,b − E0,np(τ )

= ω0(|va(τ )|2 + |vb(τ )|2) − ω0g2
f

2
|ua(τ ) + va(τ )|2

−ω0

2
(
√

1 − 2g2
f − 1). (A41)

For the finite-frequency case, the energy at time t can be
written as

a,b〈0, 0|H̃θ (t )|0, 0〉a,b = ω0(|va(t )|2 + |vb(t )|2) − ω0g(t )2

2

× |ua(t ) + va(t )|2 − �

2
+ 3ω2

0g4(t )

4�

× |ua(t ) + va(t )|4+ ω2
0g(t )2

4�
. (A42)

By using Eq. (A42) to subtract �
ω0

× Eq. (A18), the residual
energy at the end of quench becomes

Er = ω0(|va(τ )|2 + |vb(τ )|2) − ω0g2
c

2
|ua(τ ) + va(τ )|2

+ 3ω2
0g4

c

4�
|ua(τ ) + va(τ )|4 + ω2

0g2
c

4�
+ ω0

2

− �

4

(
2�

3ω0

)− 4
3

− �

18

(
2�

3ω0

)−2

, (A43)

which is Eq. (10) of the main text.
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