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Entangling operations in nonlinear two-atom Tavis-Cummings models
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We derive an analytical approximate solution of the time-dependent state vector in terms of material Bell
states and coherent states of the field for a generalized two-atom Tavis-Cummings model with nonlinear
intensity-dependent matter-field interaction. Using this solution, we obtain simple expressions for the atomic
concurrence and purity in order to study the entanglement in the system at specific interaction times. We show
how to implement entangling atomic operations through measurement of the field. We illustrate how these
operations can lead to a complete Bell measurement. Furthermore, when considering two orthogonal states of the
field as levels of a third qubit, it is possible to implement a unitary three-qubit gate capable of generating authentic
tripartite entangled states such as the Greenberger-Horne-Zeilinger state and the W state. As an example of the
generic model, we present an ion-trap setting employing the quantized mode of the center-of-mass motion instead
of the photonic field, showing that the implementation of realistic entangling operations from intrinsic nonlinear
matter-field interactions is indeed possible.
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I. INTRODUCTION

Entangling quantum gates are crucial in quantum infor-
mation and quantum computation protocols such as quantum
teleportation, superdense coding, and Shor’s algorithm [1,2].
For the implementation of these gates in atomic qubits, cav-
ity quantum electrodynamics (QED) has played an important
role, as generating and controlling entangled states have be-
come an experimental reality [3–10]. Some of these concepts
and results have been shared with other settings [11–13].
The celebrated Cirac-Zoller controlled-NOT (CNOT) gate is an
example in the context of ion traps, where a Jaynes-Cummings
interaction [14] between electronic levels of the ions and its
mechanical oscillatory mode has been exploited in order to
mediate the interaction between the ions [15,16]. Similar ap-
plications have been found in the context of superconducting
systems, where artificial atoms can be tailored to specific
needs [17–19]. While certain problems seem to be solved, it is
important to offer other advantageous alternatives for different
experimental settings. For instance, the Mølmer-Sørensen en-
tangling gate in ion traps does not require ground-state cooling
as the Cirac-Zoller gate [20–22].

Recent proposals offer new perspectives exploiting the
multiphoton regime in cavity QED such as the hybrid quan-
tum repeater utilizing dispersive and resonant interactions
of matter qubits and coherent light states [23–26]. It has
been shown that using the Jaynes-Cummings interaction as-
sisted with multiphoton states, it is possible to implement a
nonunitary entangling operation replacing the CNOT gate in
an entanglement purification protocol [27,28]. Furthermore,
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exploiting a two-photon interaction with multiphoton states,
it is in principle possible to implement a complete Bell mea-
surement (BM) by measuring the state of the field [29]. An
important feature to achieve this BM is that the two-photon
interaction model presents perfect revivals of Rabi oscillations
in the system observables, in contrast to the Tavis-Cummings
interaction [30], where these revivals broaden in time [31,32].
A natural question is whether other models with perfect re-
vivals of Rabi oscillations could also be useful in this type of
protocol. This is relevant in an ion-trap implementation of the
model, as single-phonon processes are simpler to achieve than
two-phonon ones [11]. Furthermore, large coherent states in
the motional degree of trapped ions are nowadays accessible
and controllable [33–35], making it an interesting candidate to
implement multiphoton regime machinery from cavity QED
as multiphonon ion-trap protocols.

In this paper we study a generalized version of the two-
atom Tavis-Cummings model with a nonlinear matter-field
interaction. We derive an approximate analytical solution of
the time-dependent state vector given in terms of material
Bell states and coherent states of the field. We find conditions
where this approximation remains valid and where perfect
revivals of Rabi oscillations occur. The simple and general
form of our solution allows us to study the entanglement in the
system and to generate entangling two-qubit and three-qubit
quantum operations. We present a viable realization in an
ion-trap setup, where the photonic oscillator is replaced by
the center-of-mass motion of the ions.

The paper is organized as follows. In Sec. II we introduce
a generic nonlinear two-atom Tavis-Cummings model. We
identify constants of motion, show the model’s full solvabil-
ity, and derive a compact analytical approximate solution.
In Sec. III we present three examples of the generic model
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and we propose the implementation in an ion-trap setting.
In Sec. IV we study the dynamical features and numerically
test our approximate solution. We study the entanglement in
the system in Sec. V, where we find approximate analytical
expressions for concurrence and purity of the atomic state.
Based on our approximate solution, in Sec. VI we present
the implementation of entangling operations for the two- and
three-qubit cases, together with a Bell measurement protocol
using a second quantized mode.

II. GENERALIZED TWO-ATOM TAVIS-CUMMINGS
MODEL

In this section we present the Hamiltonian of a generalized
version of the Tavis-Cummings model [30] with a nonlin-
ear intensity-dependent coupling. We identify constants of
motion that lead to an exact solvability. Similar general mod-
els have already been considered and their exact solution is
known [36–43]. However, here we are interested in presenting
a general approximate solution for initial coherent states with
a large mean number of quanta that is especially convenient
for analyzing the entanglement in the system as it is expressed
in terms of material Bell states and coherent states of the field.

A. Hamiltonian and exact solvability

We consider the following Hamiltonian describing two
two-level atoms resonantly interacting with a quantized har-
monic oscillator:

H = h̄ωI + V, I = a†a + Sz. (1)

The free Hamiltonian is expressed in terms of the operator
I , which represents the number of excitations in the system.
In the present case I commutes with the intensity-dependent
interaction operator

V ≡ Va = h̄�[ f (a†a)aS+ + a† f (a†a)S−]. (2)

We have employed the creation and annihilation operators of
the oscillator, a† and a, respectively. In Sec. III we will specify
the nature of the oscillator, which will be considered optical
or mechanical for different particular models. The interaction
includes the intensity-dependent function f (a†a) leading to
a nonlinear atom-field interaction. We have also used the
denotation Va in order to stress the dependence on the specific
mode operator a, as it will prove useful when we introduce a
second mode and its operators b and b† in Sec. VI.

As for the electronic degrees of freedom of the atoms, we
have introduced the operators

S− = |g〉〈e|1 + |g〉〈e|2, S+ = S†
−,

Sz = 1
2 (|e〉〈e|1 + |e〉〈e|2 − |g〉〈g|1 − |g〉〈g|2), (3)

where |e〉1 (|e〉2) and |g〉1 (|g〉2) are the excited and ground
states of the first (second) atom, respectively. The energy
difference between the atomic levels is given by h̄ω and co-
incides with a single quantum unit of energy of the oscillator.
Furthermore, h̄� represents the coupling energy between the
internal states of the atom and the oscillator degree of free-
dom. The resonance condition implies a second constant of
motion, namely, S2 = (S+S− + S−S+)/2 + S2

z . If each two-
level system is regarded as a pseudospin, then the operator

S plays the role of an adimensional total pseudospin operator.
The existence of these two constants of motion implies that
the eigenstates of the Hamiltonian have to be simultaneous
eigenstates of I and S2. Noting this fact, it is natural to work
out the problem in the basis

|ϕn〉 = |�−〉|n〉, ∣∣ϕn
−1

〉 = |gg〉|n + 1〉,∣∣ϕn
0

〉 = |�+〉|n〉, ∣∣ϕn
1

〉 = |ee〉|n − 1〉, (4)

where we have employed two of the Bell states

|�±〉 = |ge〉 ± |eg〉√
2

, |�±〉 = |gg〉 ± |ee〉√
2

. (5)

In the above definitions of the atomic states, we have used
the convention of labeling the first atom always to the left, for
instance, |e〉1|g〉2 = |eg〉.

The states in Eq. (4) are eigenstates of I with eigenvalue
n that takes values from −1 to ∞. These states also fulfill
the eigenvalue equations S2|ϕn〉 = 0 and S2|ϕn

l 〉 = 1, where
l ∈ {−1, 0, 1}. This implies that the state |ϕn〉 is an eigenstate
of the Hamiltonian, as it is the only one with eigenvalues n for
I and 0 for S2. The remaining three states, for fixed n, share
the same eigenvalue for S2 and therefore form a disconnected
block of the interaction Hamiltonian V . The matrix represen-
tation of each block with fixed n can be expressed as

V (n) = h̄

⎛
⎝ 0 �n 0

�n 0 �n−1

0 �n−1 0

⎞
⎠, (6)

where �n is a real-valued parameter dependent on n and given
by the expression

�n = �
√

2〈n + 1|a† f (a†a)|n〉. (7)

The nonzero eigenvalues for each subspace can be computed

exactly and are simply given by En,± = ±h̄
√

�2
n + �2

n−1. The

eigenvectors can also be evaluated exactly in closed form;
however, we will resort to approximations that will probe
useful, especially for analyzing the atomic state when the field
is initially prepared in a coherent state with a large mean
excitation value.

The fact that one of the eigenfrequencies in this 3 × 3 block
is zero implies the existence of an additional invariant family
of states together with |�−〉|n〉 = |ϕn〉. This feature is lost in
the off-resonant case, where the atomic transition differs from
the frequency of the oscillator. In this case, additional terms
appear in the diagonal of Eq. (6) leading to three nonzero
eigenfrequencies.

B. Time-dependent state vector

In order to simplify the calculations, we choose to work in
an interaction picture with respect to the free energy h̄ωI that
includes another time-independent transformation. In particu-
lar, the state vector in this frame is given by

|�(t )〉 = e−iIφeiIωt |�(t )〉S, (8)

where |�(t )〉S is the state vector in the Schrödinger or labora-
tory frame. The real parameter φ is the phase of the initial state
of the field that is assumed to be prepared in the Schrödinger
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picture in an arbitrary coherent state

|αeiφ〉 =
∞∑

n=0

pneinφ|n〉, pn = e−|α|2/2 αn

√
n!

. (9)

With the choice of interaction picture as in Eq. (8), we have
encoded the phase of the coherent state in the unitary operator
e−iIφ that acts in a straightforward way on each subspace of
the constant of motion I . In this way, we can restrict our analy-
sis to non-negative values of α. In this way, we have exploited
the commutativity of the constant I with the interaction V in
order to simplify the problem without losing generality. As α

is taken to be real in this work, the mean number of quanta is
given by N = 〈a†a〉 = α2.

For the total initial state of the system, we assume a pure
product state of the form |�(0)〉 = |ψ〉|α〉, where the two
atoms are allowed to start in an arbitrary pure state |ψ〉,
namely,

|ψ〉 =c−|�−〉 + c+|�+〉 + d−|�−〉 + d+|�+〉. (10)

We have chosen to write the initial states in terms of Bell states
for later convenience. However, the basis of Eq. (4), in which
the Hamiltonian is block diagonal, contains two Bell states
and two bare levels of the atoms. For this reason and in order
to keep track of the calculations, it is useful to relate the initial
probability amplitudes d−|�−〉 + d+|�+〉 = cg|gg〉 + ce|ee〉,
where

d± = cg ± ce√
2

. (11)

Note that with the transformation in Eq. (8), the initial atomic
state is given in the laboratory frame as |ψ〉S = eiSzφ|ψ〉.

The solution to the Schrödinger equation in the interaction
picture defined in Eq. (8) is given by |�(t )〉 = e−iV t/h̄|�(0)〉.
Using the basis states in Eq. (4), we can formally expand the
solution of the time-dependent state vector as

|�(t )〉 = c−|�−〉|α〉 +
∞∑

n=−1

Dn∑
l=−1

Cn,l (t )
∣∣ϕn

l

〉
, (12)

with the limit in the second sum Dn = 1 − δn,0 − 2δn,−1 given
in terms of the Kronecker delta. This limit depends on the
value of n and takes into account that for n = −1 there is only
one state in the basis [Eq. (4) without |ϕn〉], two states for
n = 0, and three states for n � 2. These states for low n will
have no significant contribution in the limit of a high number
of excitations as e−α2/2 � 0. Furthermore, we have used the
fact that |ϕn〉 is an eigenstate of V with zero eigenvalue and
therefore its probability amplitude remains constant as c− pn.
At t = 0 one has the initial probability amplitudes Cn,−1(0) =
pn+1cg, Cn,0(0) = pnc+, and Cn,1(0) = pn−1ce. As the system
is exactly solvable, it is possible to obtain exact analytical
expressions for all the probability amplitudes in Eq. (12)
using the exact form of the evolution operator presented in
Appendix A. In particular, the time evolution of initial Fock
states of the field can be evaluated in a straightforward way
using these expressions.

In order to obtain manageable expressions we will resort
to three approximations. In the first one, we make the replace-
ments �n → �n−1/2 and �n−1 → �n−1/2 in Eq. (6). In this

way, the eigenvectors of V (n) are independent of n. Provided
that |�n − �n−1| 
 �n, the neglected part can be considered
as a small perturbation. This is indeed the case, for instance,
when �n ∝ n or �n ∝ √

n. However, we will see later that
�n might have a nonmonotonic dependence on n, but the
condition might be fulfilled for a specific interval outside of
which the distribution pn in Eq. (9) presents vanishing small
contributions. With the first approximation, one can find that
the nonzero eigenenergies are given by

E (n)
± � ±h̄ωn, ωn =

√
2|�n−1/2|, (13)

where we have introduced the approximate eigenfrequencies
ωn. The second approximation is applied to the Poissonian
distribution in the coherent states, namely, pn−1 � pn � pn+1,
which relies on the condition of having a large mean number
of quanta N � 1. Using these two approximations, one is led
to the form of the time-dependent probability amplitudes

Cn,l (t ) �
[

c+ − d+
2(−1)l

eiωnt + d+ + c+
2

e−iωnt − ld−

]
pn−l√

2
,

(14)

with l ∈ {−1, 0, 1}. The third approximation is made to the
eigenfrequencies in (13) by Taylor expanding around the
mean photon number N as

ωn � δN + ω′
N n, δN = ωN − ω′

N N, (15)

where we have used a prime to denote the first derivative,
namely, ω′

n = dωn/dn. In the next section we will show that,
despite the nonlinear form of the interaction, a linear behavior
of the eigenfrequencies is indeed possible in some models at
least in an energy interval.

Substituting the expressions of Eq. (15) in Eq. (14) and
using the result in (12), one can approximate the state vector
|�(t )〉 � |�ap(t )〉 with expansion in terms of coherent states
of the field and material Bell states

|�ap(t )〉 = [|ζ 〉|α〉 + |ϒ(t )〉]/N (t ), (16)

where we have identified a time-independent contribution
|ζ 〉|α〉 with the atomic stationary state

|ζ 〉 = c−|�−〉 + d−|�−〉. (17)

The time dependence is then present only in the atom-
oscillator state

|ϒ(t )〉 =
∑
±

b±e∓i(δN +Szω
′
N )t |φ±〉|αe∓iω′

N t 〉, (18)

which is given in terms of two time-dependent coherent states
accompanied by the normalized material states and their ini-
tial probability amplitudes

|φ±〉 = 1√
2

(|�+〉 ± |�+〉), b± = c+ ± d+√
2

. (19)

Due to the performed approximations, one has to consider the
normalization

N (t ) = 1 + 2 Re[b∗
+b−ei2h(t )]e−2N sin2 ω′

N t sin2 ω′
Nt

−
√

2Im[b+e−ih(t ) + b−eih(t )]e−2N sin2 ω′
N t/2 sin ω′

Nt,
(20)
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with h(t ) = δNt + N sin ω′
Nt . This normalization will not play

a role in the forthcoming analysis for two reasons. It ap-
proaches the unit value in the limit N → ∞, as can be seen
from the behavior e−2N sin2 ω′

N t/2 sin ω′
Nt . The second reason is

that it attains a unit value whenever ω′
Nt is an integer multiple

of 2π and those will be the interaction times that will draw
our attention.

The approximation in Eq. (15) is valid as long as contri-
butions to the time evolution corresponding to higher orders
in the Taylor expansion of the eigenfrequencies remain neg-
ligible. These contributions have the form tω( j)

N (n − N )2/ j!
and can be neglected for small values of t . However, as time
elapses, each contribution can be important, taking into ac-
count that ωnt is evaluated inside an exponential as exp(iωnt )
where its value is taken modulo 2π . This imposes a restriction
on the maximum interaction time t 
 tb, i.e., when it is con-
siderably less than a breakdown time tb, which can be obtained
from the condition∣∣ω( j)

N (n − N ) jtb
∣∣

j!
= 1 ⇒ tb = j!

(8N ) j/2
∣∣ω( j)

N

∣∣ , (21)

where ω
( j)
N is the first nonzero derivative of order j > 1. In this

expression we have taken into account the standard deviation
of the Poissonian distribution given by α = √

N and therefore
we have replaced |n − N | with

√
8N . In this way, the sum of

p2
n in the interval (N − √

8N, N + √
8N ) is larger than 0.995.

The result in Eq. (16) is the first important result of this
work, as it gives a general expression of the state vector for
an initial coherent state of the oscillator and arbitrary atomic
states. It should be noted that with the inverse transformation
in Eq. (8) one can obtain the state vector in the Schrödinger
picture in a simple way from our final state vector in Eq. (16).
More general states of the field could eventually be con-
sidered using our result together with the coherent states’
completeness relation. It is also worth mentioning that the
present treatment is also feasible in the case of more atoms or
multilevel atoms. In these cases, the difficulty lies in the diag-
onalization of larger blocks of the interaction Hamiltonian that
could be achieved in an approximate fashion in order to obtain
an expansion in terms of coherent states. Similar analytical ex-
pressions have been found for the two-atom Tavis-Cummings
model [31,44] and first for the Jaynes-Cummings model [45].
However, here we have presented a more general expression
that is valid for any model described by a Hamiltonian of the
form of Eq. (1). Furthermore, we will show that with this
expression in terms of material Bell sates, it is possible to
analyze in a more manageable way the entanglement in the
system.

C. Rabi oscillations and relevant timescales

Relevant timescales can be revealed by evaluating expecta-
tion values of the system observables. It is not hard to realize
that these quantities depend on the overlaps between coherent
states of the form

〈α|αeiω′
N t 〉 = eiN sin ω′

N t e−2N sin2 ω′
N t/2. (22)

Let us consider, as a figure of merit, the expectation value of
Sz [Eq. (3)] with an initial state |ee〉|α〉. Using the overlap

between coherent states and the solution to the time-
dependent state vector [Eq. (16)], one can arrive at the
approximate expression

〈Sz(t )〉 � e−2N sin2 ω′
N t/2 cos(δNt + N sin ω′

Nt ). (23)

From this expression, one can identify three different
timescales. The fastest one is given by the Rabi frequency ωN

determining fast oscillatory behavior. The oscillations eventu-
ally vanish as they are modulated by a Gaussian envelope, a
phenomenon known as collapse of Rabi oscillations [31,44–
46]. This happens for times with vanishing small values of the
exponential in Eq. (23), when its argument differs from integer
(zero included) multiples of 2π . The oscillations reappear
when the argument of the exponential in Eq. (23) vanishes,
which is known as revival of Rabi oscillations. These relevant
times can be evaluated from the expression (23) and result in
the expressions for the Rabi time, collapse time, and revival
time, which correspondingly are given by

tR = 2π/ωN , tc = 2/
√

N |ω′
N |, tr = 2π/|ω′

N |. (24)

One can note that the revival time always scales with the
collapse time as tr = π

√
Ntc, where N is the mean number of

quanta in the oscillator. In Sec. IV we will numerically study
this behavior for the specific models that will be presented in
Sec. III. It is worth commenting that the expression in Eq. (23)
is only valid for times where the linearization in Eq. (15)
represents a faithful approximation of the eigenfrequencies
ωn.

D. State vector at fractional revival times

The revival time tr, as previously introduced in Eq. (24),
corresponds to the moment at which all components of the
oscillator state in Eq. (16) return to the initial condition |α〉. At
fractional multiples of this revival time, the complete system
attains interesting and relevant states [31,32,44]. For instance,
the state vector at each odd-integer multiple of a quarter of the
revival time tr/4 is given as the completely separable state∣∣∣∣ϒ

(
ktr
4

)〉
= |ζ1,k〉

∑
±

r−1b±e∓ikδN tr/4| ∓ iα〉,

|ζ1,k〉 = r
|�+〉 + ik|�−〉√

2
, r =

√
|c+|2 + |d+|2,

(25)

with an odd integer k. We have arrived at this state using
Eq. (16) and the relation

e∓iSzπ/2|�+〉 = ±i|�−〉. (26)

It can be noted that in the state of Eq. (25), matter and oscil-
lator separate and the atomic state is independent of the initial
condition. Perhaps not so evident is the fact that the atomic
state is a separable state for any value of k, a property that
can be simply tested with any entanglement measure, such
as the concurrence that will be used later in this work. This
means that even if the atoms were initially entangled, no en-
tanglement remains at this time in any partition of the systems
such as a two-atom interaction or either atom or both atoms
interacting with the field. This phenomenon, with no entan-
glement in the system even if it was initially entangled, has
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been referred to as basin of attraction in the Tavis-Cummings
model [44]. It is important to note that this only happens for
the time-dependent part of the state, |ϒ(t )〉, and therefore this
feature applies only when the stationary part vanishes, i.e.,
whenever c− = d− = 0.

At odd multiples of one-half of the revival time, the time-
dependent part is given by∣∣∣∣ϒ

(
k

2
tr

)〉
= |ζ2,k〉| − α〉, |ζ2,k〉 = ck|�+〉 + dk|�+〉,

(27)
with an odd integer k and the coefficients given by

ck = c+ cos δN
k

2
tr − id+ sin δN

k

2
tr, (28)

dk = −i2k+1c+ sin δN
k

2
tr + i2kd+ cos δN

k

2
tr. (29)

In this case, one has again a product state of atoms and
oscillator. However, in this case, the atomic part might be
entangled. It is not hard to realize, as we will later show, that
|ζ2,k〉 has the same degree of entanglement as the initial com-
ponent c+|�+〉 + d+|�+〉. For this reason, Eq. (27) will play
an important role in identifying the entanglement properties
in the system and in designing the entangling operations that
will be shown in Sec. VI.

III. SPECIFIC MODELS

In this section we present three examples of models that
can be described by the interaction Hamiltonian in Eq. (2).
We start with the Tavis-Cummings model in order to com-
pare our results with the most studied example [31,44,47].
The Buck-Sukumar model [36] is considered as it presents
a particular nonlinear interaction that induces an almost exact
linear behavior of the eigenfrequencies as required in Eq. (15).
An ion-trap nonlinear model [42] will be considered, as it rep-
resents a viable experimental setting to this problem. We will
demonstrate that, despite the intrinsic nonlinear behavior, a
linearization of the eigenfrequencies is possible in a restricted
interval of the oscillator occupation number.

A. Two-atom Tavis-Cummings model

The Tavis-Cummings model describes the interaction of an
arbitrary number of two-level atoms interacting with a single
mode of the quantized electromagnetic field [30]. It can be
viewed as an extension of the Jaynes-Cummings model [14]
for many atoms and it has therefore become a paradigm in
cavity QED. The original model was introduced in the same
form as in Eq. (1) with f (a†a) = 1 and with pseudomomen-
tum operators S± and Sz for an arbitrary number of two-level
particles. Here, however, we only consider the two-atom case
that corresponds to the atomic operators in Eq. (3) and whose
interaction Hamiltonian is diagonalizable in the block form of
Eq. (6).

As in this case f (a†a) = 1 in Eq. (2), the matrix ele-
ments in the blocks of the interaction potential [Eq. (6)] can
be obtained from �n = �

√
2n + 2. The eigenfrequencies or

Rabi frequencies are obtained from Eq. (13) and are ωn =
�

√
4n + 2. The relevant frequencies determining the total

state in Eq. (16) can be found using Eq. (15) as

ω′
N = 2�√

4N + 2
, δN = 2N + 2√

4N + 2
. (30)

Therefore, in this model one can find that the relevant
timescales are given by

tR ≈ 2π

�
√

N
, tb ≈

√
N

�
, tr = 2π

√
N

�
. (31)

The shortest timescale corresponds to the Rabi oscillations
period tR, followed by the time tb when the coherent state
approximation breaks down [see Eq. (21)]. Finally, one has
the reappearance of Rabi oscillations at the revival time tr. As
tr > tb, the revival of Rabi oscillations is not perfect in the
Tavis-Cummings model and for this reason the field compo-
nents will deform, leading to the well-known broadening of
the revivals [46].

B. Two-atom Buck-Sukumar model

Buck and Sukumar presented a simple theoretical model
for the interaction of a two-level atom with a single-mode
electromagnetic field [36]. In this model the atom-field cou-
pling is assumed to be nonlinear in the field variables and
can be interpreted as an intensity-dependent interaction. As
the Buck-Sukumar model is integrable and allows perfect
revivals of Rabi oscillations in the case of initial coherent
fields, it has drawn considerable theoretical attention in the
past [37,39,40]. A drawback of this model, however, is that
there is no obvious physical implementation.

Here we consider the Buck-Sukumar interaction for the
two-atom case, where f (a†a) =

√
a†a in Eq. (2). This implies

a linear dependence on n in the matrix elements of the blocks
of V and its eigenfrequencies, namely, �n = �

√
2(n + 1)

and ωn = (2n + 1)�. The relevant frequencies in the time-
dependent state vector in (16) are simply given by

ω′
N = 2�, δN = �. (32)

The timescales are dictated in this case by the parameters

tR ≈ π

�N
, tr = π

�
, tb = N2

√
2�

. (33)

In contrast to the Tavis-Cummings model, here the breakdown
time of the coherent state approximation tb scales as N2. In this
case, the approximate value of the eigenfrequencies are linear
with n and therefore predict an infinite value of tb. Therefore,
we have used the exact dependence on n of the eigenvalues,
which is �

√
4n2 + 4n + 2 � (2n + 1)�. Another important

difference is that here the revival time is independent of the
mean value of the oscillator N .

C. Ion-trap nonlinear model

The last and most important model that will be considered
consists on two ions trapped in a linear harmonic potential
driven by a classical monochromatic radiation field. In this
case a and a† represent the annihilation and creation operators
of the ions’ center-of-mass motion [22,42]. The free Hamilto-
nian is given by H0 = h̄ωSz + h̄νa†a, i.e., the frequency ν of
the mechanical oscillator differs from the transition frequency
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(a) (b)

FIG. 1. Eigenfrequency �n as a function of the oscillator quan-
tum number n for two different values of the mean number of quanta
and the Lamb-Dicke parameter: (a) N = 85 and η = 0.170 582 and
(b) N = 2000 and η = 0.035 265 3. Approximately linear behavior
can be appreciated around N . In magenta (light gray line) we present
the probability amplitude pn of a number state in a coherent state |α〉,
with N = α2. In both cases, vanishing small contributions of pn lie
outside the apparent linear interval of �n.

of the atoms. The coupling with the electronic levels is me-
diated by the external monochromatic field whose frequency
is tuned to the first vibrational sideband and is given by ωL =
ω − ν. With these conditions, the interaction Hamiltonian is
time independent in the interaction picture and is also well
described by Eq. (2) with the intensity-dependent function

f (a†a) = ηe−η2/2
∞∑

m=0

(−η2)m

m!(m + 1)!
a†mam. (34)

Details of the derivation are given in Appendix B. In this case,
the nonzero matrix elements of the interaction potential can be
expressed in terms of a Laguerre polynomial, namely,

�n = �η

√
2

n + 1
e−η2/2L(1)

n (η2). (35)

This polynomial will clearly display nonlinear behavior that
will be inherited by the eigenfrequencies ωn. However, for
a given value of the Lamb-Dicke parameter η, it is possible
to find an interval around a certain value of N displaying
approximately linear behavior with n. In principle, it is pos-
sible to find the most suitable value of the mean phonon
number for a given value of the Lamb-Dicke parameter η by
analyzing the form of the Laguerre polynomial as a function
of n. However, the task is greatly simplified by expressing the
Laguerre polynomials in terms of Bessel functions [35,48,49],
which, in our case, is a good approximation whenever η2 

4n + 4. Doing so, one can find the approximate expression
�n � √

2�J1(2η
√

n + 1) and therefore the eigenfrequencies
become

ωn � 2�

∣∣∣J1

(
2η

√
n + 1

2

)∣∣∣, (36)

where J1(
√

x) is the Bessel function of the first kind and
order one. The eigenfrequency ωn is plotted in Fig. 1 for two
different values of the Lamb-Dicke parameter. Relating the
argument of the Bessel function as 2η

√
n + 1/2 = √

x, it is
possible to analyze the function for arbitrary values of η. One
can then note that there is an approximate linear behavior in
the interval x ∈ (7.25, 12.65). Indeed, one can realize that a
linear approximation in this interval differs on average from

the original function by less than 1%. For this estimation,
we have performed a Taylor expansion around x0, the zero
of the function d2J1(

√
x)/dx2, which is the point where the

slope of J1(
√

x) changes behavior. In this way, one is able to
find a relation between the mean number of quanta N and the
Lamb-Dicke parameter η as

N = x0

4η2
− 1

2
, x0 = 9.951 61. (37)

The value of x0 is written to six digits precision and it was
obtained using the Newton-Raphson method. The value of N
decreases as η increases. Therefore, in order to fit a Poissonian
distribution with standard deviation

√
N in the linear interval,

one has to fulfill the condition η � 2.7/
√

32x0 ≈ 0.156 905.
For this reason, large values of the Lamb-Dicke parameter
cannot be used in this scheme. In Fig. 1 we have also plotted
the probability amplitude of each number state in the coherent
state of Eq. (9) for two different values of the mean number
of quanta N . It should be noted that for a smaller value of the
Lamb-Dicke parameter, the mean number N increases as well
as the number of states lying in the linear part of the function.
For this reason, in the limit of large N , one does not require a
perfect fit of the optimal value of N in Eq. (37). The generation
of large motional coherent states in trapped ions is nowadays
possible [33,35], offering interesting perspective to implement
this model.

Using the results in Eqs. (36) and (37), one can obtain the
relevant frequencies for the state vector (16) as

ωN = 2�J1(
√

x0) ≈ 0.558 924�,

ω′
N = �

√
x0

2N + 1
[J0(

√
x0) − J2(

√
x0)] ≈ −2.501 63�

2N + 1
,

δN = ωN − Nω′
N ≈

(
0.558 924 + 2.501 63N

2N + 1

)
�. (38)

An important feature to note here is that these quantities
are given only in terms of the optimal value of N , therefore
indirectly depending on η. In this form, an analysis similar to
that for the previous two models is also possible in this case.
As for the timescales, it is not difficult to find that the relevant
values are given by

tR ≈ 2π

0.56�
, tr = π

4N + 2

2.5�
, tb ≈ N3/2

10�
. (39)

In this model, the period of Rabi oscillations is independent
of the mean phonon number N and the revival time tr scales
linearly with N . The breakdown time of the coherent state
approximation roughly relates to the revival time as tb ≈√

N/50. Therefore, in order to have a faithful description,
in principle, one has to achieve large mean phonon numbers.
For instance, for an accurate description up to an interaction
time tr/2, one requires values of N > 625. In the next section,
however, we will show that even with moderate values of N ,
the model offers a reasonable description.

In order to present a clear comparison between the models,
in Table I we present a summary of the dependence on N of
the different times for the three cases presented.
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TABLE I. Relevant timescales for three different models in terms
of the mean number of photons N : Rabi oscillation period, col-
lapse time, revival time, and breakdown time of the coherent state
approximation.

Model �tR �tc �tr �tb

Tavis-Cummings 2π/
√

N 2 2π
√

N
√

N
Buck-Sukumar π/N 1/

√
N π N2/

√
2

ion-trap 11.2 1.6
√

N 5N 0.1N3/2

IV. DYNAMICAL FEATURES

In this section we present the results and comparison of
numerical calculations of dynamical features of the three spe-
cific models introduced in Sec. III. We focus on the collapse
and revival of Rabi oscillations and we test our analytical
result with numerically exact calculations that are evaluated
using the exact form of the state vector in Eq. (12) using the
expressions in Appendix A.

A. Rabi oscillations and phase-space representation

As mentioned in Sec. II C, the relevant timescales of the
system can be obtained by evaluating the expectation value
of observables in the system. As a figure of merit, in this
work we have chosen to evaluate the mean value of Sz, which
can be analytically evaluated from our approximate expres-
sion in (16) with the result given in (23). In Fig. 2 we have
plotted the numerically exact result of 〈Sz(t )〉 for the different
models with an initial atomic state |ee〉 and mean numbers of
photons N = 85 and 2000. The black, cyan (light gray), and
magenta (gray) curves correspond to the Tavis-Cummings,
Buck-Sukumar, and ion-trap models, respectively. We present

(a)

(c)

(b)

FIG. 2. Expectation value of the operator Sz in Eq. (3) for two
different values of the mean number of quanta: (a) N = 85 and
(b) N = 2000. In the left column, the initial Rabi oscillation and its
collapse are presented. In the right column the first revival of Rabi os-
cillations is displayed around a time tr . Black, cyan (light gray), and
magenta (gray) curves correspond to the Tavis-Cummings model,
the Buck-Sukumar model, and the ion-trap model, respectively. In
(c) we present a comparison between the analytical prediction in
Eq. (23) (dashed curve) and the numerically exact calculation (solid
line) using the ion-trap model conditions with N = 2000.

the Rabi oscillations close to t = 0 (left column) and around
t = tr (right column). The first evident feature is that for all
three models the collapse of the Rabi oscillations occurs at
the same fraction of the revival time tr, i.e., the Gaussian en-
velope is the same in terms of the adimensional time t/tr . This
is in complete agreement with the analytical approximation
given in Eq. (23). For the reappearance of the Rabi oscil-
lations around tr, only the Tavis-Cummings model presents
a broadening of the oscillatory region. The Buck-Sukumar
model presents perfect revivals for the two values of N . The
ion-trap model presents no apparent enhancement; however,
for N = 85 the oscillations display asymmetries. The revival
seems to be perfect in this model for N = 2000.

The collapse and revival of Rabi oscillations can be eluci-
dated by visualizing the state of the oscillator in phase space
with the aid of some quasiprobability distribution. In this work
we rely on the Husimi function, which can be regarded as the
expectation value of the oscillator reduced density matrix ρos

with respect to a coherent state |β〉, namely,

Q(β ) = 〈β|ρos(t )|β〉/π, ρos(t ) = Trat{|�(t )〉〈�(t )|}.
(40)

We have used Trat to denote the partial trace with respect to the
atomic electronic degrees of freedom and we have considered
β as a complex parameter. Reconstruction of a Husimi Q
function has been experimentally achieved on single 171Yb+

ions in a harmonic potential by using Raman laser beams [50].
In Fig. 3 we have plotted the Husimi function Q(β ) for

the three models described in Sec. III and for two different
interaction times tr/4 and tr/2. We have used two excited
atoms as the initial state and a coherent state for the oscillator
with α = √

85. The initial state |α〉 remains as a stationary
component of the mode for all time as evidenced in the plots.
It can be noted that the time-evolving field components of the
Tavis-Cummings model [Fig. 3(a)] suffer from a distortion
already for a time tr/4 and this feature is more notorious at
tr/2. In contrast, all mode components in the Buck-Sukumar
model [Fig. 3(b)] retain their shape. This is evidence of
their evolution as coherent states. In the case of the ion-
trap model, the field components follow the same trajectory,
slightly distorting their shape. This behavior corroborates the
good agreement with the coherent state approximation, even
with the moderate value N = 85.

B. Fidelity of the approximate state vector

In the preceding section we briefly analyzed the collapse
and revival phenomenon. We have observed that the approx-
imations given in Sec. II seem plausible given the fact that
the revival of the oscillations and the mode components in
phase space do not broaden for the Buck-Sukumar and the
ion-trap models. Let us now turn our attention to the numerical
analysis of the validity of our analytical calculation. In order
to test the approximation in Eq. (16), we consider the fidelity
between the exact state vector |�(t )〉 and its approximation
|�ap(t )〉 as a function of time, which is given by

F (t ) = |〈�ap(t )|�(t )〉|2/N . (41)

The normalization N of |�ap(t )〉 is given in (20) and, as
mentioned before, it gives only a small contribution close the
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(a)

(c)

(b)

FIG. 3. Husimi function of the reduced density matrix for the
oscillator in an initial coherent state |α〉 and for interaction times
t = rr/4 (left column) and t = tr/2 (right column). The results cor-
responds to (a) the Tavis-Cumming model, (b) the Buck-Sukumar
model, and (c) the ion-trap model.

revivals of oscillations. In Fig. 4 we have plotted the fidelity
F (t ) averaged over 1000 random initial conditions uniformly
distributed according to the corresponding Haar measure. For
the three cases we have chosen two different values of the

FIG. 4. Average fidelity as a function of time of the approxi-
mated state vector in (16) with respect the numerically exact state
vector for two different values of the mean number of quanta: the
solid (dashed) line correspond to N = 85 (N = 2000). The average
has been preformed over 1000 random initial conditions.

(a)

(b)

FIG. 5. Fidelity of the approximate atomic reduced density ma-
trix with respect to its numerically exact counterpart, averaged over
1000 initial conditions. Two values of N are considered for the
three different models as indicated in the legend: (a) N = 2000 and
(b) N = 85.

mean number of quanta: N = 85, presented by the solid line,
and N = 2000, the dashed line. For the Tavis-Cummings
model (black curves) the fidelity drops well before the first
revival. The Buck-Sukumar model [cyan (light gray) curves]
displays very good fidelity for the complete time interval. This
is expected as the coherent state approximation is predicted to
hold for longer time, as in this case tb/tr ∝ N2. For the ion-trap
model (red curves), the fidelity is maintained above 0.9 for
N = 85 and greatly improves for N = 2000, corroborating the
expected agreement given by the timescales in Table I.

In the context of quantum computation and quantum in-
formation tasks with atomic qubits, the oscillator might be
considered as an auxiliary degree of freedom. In this situation,
the state of the mode does not play an important role and one
is mainly concerned with the atomic state. Therefore, the most
important state to test is the reduced density matrix of the
atoms whose fidelity with respect to the exact reduced state
can be evaluated as

Fat (t ) = (
Tr

√√
ρat (t )ρap

at (t )
√

ρat (t )
)2

. (42)

The reduced atomic density matrices are taken from
the exact and approximated total state vector as
ρ

ap
at (t ) = Trosc|�ap(t )〉〈�ap(t )| and similarly for ρat (t ) =

Trosc|�(t )〉〈�(t )|. In Fig. 5 we plot the atomic fidelity
Fat (t ) as a function of time and averaged over 1000 random
initial conditions. Remarkably, the fidelity is extremely
good for all the models, including the Tavis-Cummings
model, for times where the field components separate, i.e.,
for times different from tr and tr/2. Around these times,
the Tavis-Cummings model fails to achieve good fidelity;
however, the Buck-Sukumar model displays good fidelity
for any value of N . In the case of the ion-trap model, the
fidelity increases with N . This result also corroborates that
the coherent state approximation accurately describes the
Buck-Sukumar model and the ion-trap model for large values
of N . In the case of the Tavis-Cummings model, although the
coherent state approximation fails to describe the complete
state, the atomic state is well described for times that are
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not close to the revival time and half the revival time. This
happens because the field components follow the trajectory
of the coherent states in the approximation.

V. ENTANGLEMENT ANALYSIS

Entanglement is an important feature of the system in the
context of quantum information and quantum computation,
especially the atomic entanglement when the atoms are re-
garded as qubits. This quantity has been previously studied
for the Tavis-Cummings model [47,51] and some interesting
properties have been introduced Refs. [31,44]. However, the
quantitative study has been limited to specific initial condi-
tions and numerical calculations. As the system is exactly
solvable, one could in principle calculate in closed form cer-
tain entanglement measures for any bipartition of the system.
However, the resulting expressions will surely be complicated
and difficult to analyze. Here we take advantage of our ap-
proximation in order to evaluate remarkable simple analytical
expressions for any initial condition at specific times. In order
to carry out this study, we evaluate the reduced density matrix
for the two-qubit system given by ρat (t ) = Trosc|�(t )〉〈�(t )|.
Furthermore, we concentrate our attention on specific interac-
tions times given by jktr/4, namely, at odd multiples k of a
quarter (half) of the revival time for j = 1 ( j = 2). At these
times the density matrix assumes the simple form

ρat

(
jk

4
tr

)
= |ζ 〉〈ζ | + |ζ j,k〉〈ζ j,k|, (43)

with k an odd positive integer. For j = 1 one has to use the
state in Eq. (25) and for j = 2 the state in Eq. (27). The ket
|ζ 〉 is the stationary atomic state given in Eq. (16). Using ρat,
it is possible to evaluate the entanglement between the atoms
and the entanglement between atoms and the oscillator.

A. Two-atom entanglement

We rely on the concurrence [52] as a measure of the entan-
glement between the atoms. For a general two-qubit state ρ, it
is defined as

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), (44)

where the four λi are the square roots of the eigenvalues
of the positive non-Hermitian operator ρρ̃ in decreasing or-
der. We have also introduced the Pauli operator σy and ρ̃ =
σ⊗2

y ρ∗σ⊗2
y , where ρ∗ is obtained from ρ after complex con-

jugation in the computational basis. For a pure state, the
concurrence reduces to C(|ψ〉) = |〈ψ |ψ̃〉|, with |ψ̃〉 = σy ⊗
σy|ψ〉∗ and the complex-conjugate vector |ψ〉∗ in the compu-
tational basis. By noting that the Bell states fulfill the relations
|�̃±〉 = ±|�±〉 and |�̃±〉 = ∓|�±〉, it is not hard to realize
that the concurrence of the initial state in Eq. (10) is given by

C(|ψ〉) = |c2
− − d2

− − c2
+ + d2

+|. (45)

This result will serve as guidance for the concurrence of the
atomic mixed states after the interaction with the oscillator.

Having introduced the entanglement measure and its initial
form, it is now appropriate to evaluate this quantity for the
mixed state of the atoms after the interaction with the mode.
At odd quarters of the revival time, the expression for the

FIG. 6. Average concurrence as a function of time for the three
models as indicated in the legend for N = 2000. The average was
taken from 1000 random initial conditions. The red circles indicate
the average analytical value at fixed times given in Eqs. (46) and (47).
The legend indicates the curve for each model, which present a
substantial overlap.

concurrence can be evaluated in closed form using Eqs. (43)
and (44). The calculations are somehow tedious as 〈ζ |ζ̃1,k〉 �=
0; however, one can find that the only two nonzero values of λi

are given by (
√

|c2− − d2−|2 + 2|dr|2 ± |c2
− − d2

−|)/2. There-
fore, the concurrence reduces to the simple expression

C

(
ρat

(
k

4
tr

))
= |〈ζ |ζ̃ 〉| = |c2

− − d2
−|. (46)

This result shows that the atomic entanglement at this point
has contribution only from the stationary part of the state
vector. This is in line with what is expected from the basin of
attraction [44] that no longer touches a minimum for nonzero
c− and d−.

At half revival time, the reduced density matrix of the
atoms is given by a rank-2 operator with its constituents fulfill-
ing the property 〈ζ |ζ2,k〉 = 〈ζ |ζ̃2,k〉 = 0. This feature enables
a simple calculation of the concurrence that is given by

C

(
ρat

(
k

2
tr

))
= ‖|〈ζ |ζ̃ 〉| − |〈ζ2,k|ζ̃2,k〉||

= ||c2
− − d2

−| − |d2
+ − c2

+|| � C(|ψ〉), (47)

where we have used c2
k,φ − d2

k,φ = d+
φ

2 − c2
+. The last inequal-

ity follows from the reverse triangle inequality and indicates
that the entanglement at odd multiples of one-half of the
revival time cannot be larger than the initial entanglement. The
result can be interpreted as if there were a sort of competition
between the entanglement in the two components leading to
a maximum possible entanglement if either c− = d− = 0 or
d+ = c+ = 0. In order to test our analytical prediction, in
Fig. 6 we have plotted the concurrence averaged over 1000
random initial conditions. Our analytical prediction is indi-
cated by a red circle and displays an accurate prediction of
the numerical calculation. In all the chosen values of time,
we note that there is a critical point in the behavior of the
concurrence; in this case all of them are maxima. This behav-
ior can change, however, depending on the initial probability
amplitudes.
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B. Atom-oscillator entanglement

In order to measure the entanglement between both atoms
and the oscillator one can use the purity of any of the two
density matrices. As we have already evaluated it for the
atomic system in Eq. (43), we will use it to evaluate the purity
of the reduced atomic state as

P(t ) = Tr
{
ρ2

at (t )
}
. (48)

The unit value of the purity corresponds to a pure reduced
state and therefore no entanglement between atoms and oscil-
lator. The minimum value of the purity is 1

4 and corresponds
to a maximally mixed state of the atoms and correspondingly
maximum entanglement in the atom-oscillator bipartition.

Using Eq. (43), it is not difficult to calculate the atomic
purity. For odd multiples of one-quarter of the revival time,
the result is given by

P

(
ktr
4

)
= p2 + (1 − p)(1 − |c−|2), p = |c−|2 + |d−|2.

(49)

Taking odd multiples of one-half of the revival time, one
arrives at the result

P

(
ktr
2

)
= p2 + (1 − p)2 � P

(
ktr
4

)
. (50)

Note that entanglement between the mode and the atoms
at odd multiples of tr/4 and tr/2 depends entirely on the
the initial probabilities of the states |�−〉 and |�−〉. If nei-
ther of these states is initially populated, the purity of the
atomic reduced density matrix is one and therefore no en-
tanglement is present in the atom-oscillator partition at this
specific times. Also, when p = 1, the purity takes a unit value
at these two times. From the previous expressions one can
find that the minimum value of the purity is 1

2 , attainable for
p2 = 1

2 . Therefore, it is impossible to maximally entangle the
two atoms with the oscillator. Nevertheless, the amount of
achievable degree of entanglement is good enough to generate
authentic tripartite entangled states, as will be shown in the
next section.

VI. ENTANGLING OPERATIONS

In this section we introduce entangling operations that can
be implemented with the aforementioned system and can be
exploited in quantum information protocols. The results rely
on the approximate solution of the state vector in Eq. (16)
for an interaction time tr/2 where the time-dependent part
takes the simple form in Eq. (27). As we will be concentrated
only on this interaction time, it is convenient to introduce the
following abbreviations to be used in this section:

U = e−iV tr/2h̄, θ = δNtr
2

. (51)

We anticipate that some the resulting two-qubit operations are
not unitary; however, they can be of importance in quantum
information tasks. For instance, it has been shown that one of
them can replace the CNOT gate in a recurrence entanglement
purification protocol [27,28]. This does not impose a major
loss in the protocol, as recurrence purification protocols are
probabilistic in nature as the implementation of unitary gates

is followed by measurement in the computational basis where
half of the results have to be discarded. Here we will introduce
an entangling operation that can also assist in such a protocol.

A. Two-qubit operations

Let us first consider a scheme to implement quantum oper-
ations based on Bell state projectors. By inspecting Eqs. (16)
and (27) one can rewrite the approximate solution to the state
vector at time tr/2 in the convenient form

U |ψ〉|α〉 � (c−|�−〉 + d−|�−〉)|α〉
+ (c+|�θ 〉 + d+|�θ 〉)| − α〉, (52)

with the orthogonal and maximally entangled states

|�θ 〉 = cos θ |�+〉 + i sin θ |�+〉,
|�θ 〉 = −i sin θ |�+〉 − cos θ |�+〉. (53)

The coefficients c1 and d1 in Eq. (28) represent the initial
probability amplitudes of these two states, respectively. We
note that a measurement of the oscillator state |α〉 or | − α〉
postselects the atoms in one of two orthogonal states. This
would correspond to two different two-qubit operations. How-
ever, projecting on | − α〉 postselects the atoms in a state that
depends on the parameters of the system and not merely on
the initial atomic state. This can be overcome by initially
applying a quantum gate that transforms the symmetric Bell
states while leaving the antisymmetric ones invariant. For this
purpose, we introduce the unitary gate

Gθ = |�θ 〉〈�+| − |�θ 〉〈�+| + |�−〉〈�−| + |�−〉〈�−|.
(54)

The minus sign in the second element is crucial, as in this way
the required quantum gate is separable and can be expressed
in terms of separable (single atom) gates as

Gθ = gθ ⊗ gθ , gθ = cos
θ

2
I + i sin

θ

2
σx. (55)

Using this gate before the interaction, one can obtain the state
at half the revival time given by

UGθ |ψ〉|α〉 � (c−|�−〉 + d−|�−〉)|α〉
+ (c+|�+〉 − d+|�+〉)| − α〉. (56)

With this result, measuring the state of the oscillator in |α〉
or | − α〉 would correspond, respectively, to the quantum
operations

M = |�−〉〈�−| + |�−〉〈�−|, (57)

L = |�+〉〈�+| − |�+〉〈�+|. (58)

These Hermitian operators can be regarded as the measure-
ment operators of a positive-operator-valued measure [1]. The
operators M and L fulfill M2 + L2 = I. Furthermore, their
sum M + L is a unitary operator. The gate M has already
been used in place of the usual CNOT gate in purification
protocols [27]. The operation L can also be considered in a
setting of this type in order to improve the efficiency of these
purification protocols.

It is important to note that for the measurement of the
photonic field a projection onto coherent states is not strictly
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necessary. A projection onto position eigenstates or the
weighted sum of position eigenstates close to the coherent
state would lead to the same atomic postselection. This can
be implemented using a balanced homodyne measurement as
explained in [31]. In ion traps, one would require the mea-
surement of one mode of oscillation of the ions such as the
center-of-mass motion. A drawback in this case is that a posi-
tion measurement of an ion destroys its internal state. In order
overcome this problem, one could include ancillary ions in the
chain that should not be in contact with the laser generating
the interaction with the center-of-mass motion. At the end
of the interaction, the ancillary atoms could be individually
addressed [8,11,21] with other lasers in order to measure their
position through their fluorescence. Provided all other modes
are cooled down to the ground state, this would correspond to
a detection of the center-of-mass mode. As for the single-qubit
gates gθ , these can in principle be implemented by driving the
atomic transition with laser pulses and properly controlling
their duration [4,53]. In the case of trapped ions, the carrier
resonance has to be chosen in order to avoid excitation of the
mechanical mode [11].

B. Three-qubit operations

As we have seen in Sec. V, the dynamics of this model
is able to generate simultaneous entanglement between the
two atoms and also between these two and the oscillator. For
this reason, it is natural to expect the possibility of tripar-
tite entanglement in the system. It is known that there are
two inequivalent types of tripartite entangled states of three
qubits [54] that can be represented by the states

|GHZ〉 = (|000〉 + |111〉)/
√

2, (59)

|W 〉 = (|001〉 + |010〉 + |100〉)/
√

3. (60)

These two states, the Greenberger-Horne-Zeilinger (GHZ)
state and the W state, possess entanglement among any bi-
partition of the three qubits. We will show that it is possible to
generate both of theses paradigmatic tripartite entangled states
from an initial separable state and using as entangling gate the
evolution operator U in Eq. (51).

Let us first consider the generation of GHZ states, as it
follows directly from the solution of the state vector. Exam-
ining Eq. (56), it is possible to note that in order to generate
a GHZ state, it suffices to initialize both atoms in the ground
state, where d− = d+ = 1/

√
2 and c− = c+ = 0, and apply

the separable atomic gate Gθ followed by the evolution oper-
ator U . With these conditions one can obtain a GHZ state in
the following way:

U Gθ |gg〉|α〉 = |gg〉|α,−〉 + |ee〉|α,+〉√
2

,

|α,±〉 = −(| − α〉 ± |α〉)/
√

2. (61)

We have introduced the symmetric and antisymmetric
Schrödinger cat states |α,±〉 that can be considered as the
two states of a two-level system. This is plausible provided α

is large enough in order to have 〈α,+|α,−〉 � 0.
The generation of a W state from a separable state is more

involved, but also not difficult to achieve using the unitary
evolution. For this case, we will first introduce an effective

form of the evolution operator U where its action as a three-
qubit gate is more evident. In this case, we will use for the
third qubit the nearly orthogonal states | ± α〉. As the solution
of the state vector in Eq. (52) at the specific time tr/2 involves
only these two coherent states, one can identify that the evolu-
tion operator connects the coherent state |α〉 with | ± α〉. The
same is true for | − α〉, which is only connected to | ± α〉,
as one can note by evaluating the action of the evolution
operator on |ψ〉| − α〉 using the interaction picture as defined
in Eq. (8). This means that U is closed in the subspace spanned
by these two coherent states that can be regarded as states of a
third qubit. With this in mind and by analyzing Eq. (52), it is
possible to find the following form of the evolution operator:

U � M ⊗ Ia + K ⊗ | − α〉〈α| + K∗ ⊗ |α〉〈−α|,
K = |�θ 〉〈�+| + |�θ 〉〈�+|. (62)

This form is only valid for an interaction time tr/2 and initial
coherent states | ± α〉. In the expression (62) we have used Ia

as the identity operator in the oscillator space. Although not
evident at first glance, the operator K is Hermitian and fulfills
the relation K2 = L2. An important feature of this effective
evolution operator is its evident three-qubit gate character that
is suitable to analyze three-qubit states.

In order to generate a W state, we choose the specific
value θ = δNtr/2 = π/4 of the angle in |�θ 〉 and |�θ 〉 given
in Eqs. (51) and (53). This restricts the value of the mean
number N and it is not possible to achieve in every model. For
instance, in the Buck-Sukumar model δN and the revival time
are constant. In the ion-trap model, however, N can be chosen
according to Eq. (38) in order to achieve θ = πδN/|ω′

N | =
π/4. Note that for large enough value of the mean number of
quanta N , its value can slightly differ from the optimal one in
Eq. (37), as the coherent state amplitude is narrowly centered
in the linear region of ωn (see Fig. 1 for N = 2000). With this
in mind and using the initial separable condition

|ψ1〉 = |g〉 |g〉 + i|e〉√
2

|α〉 + √
2| − α〉√
3

, (63)

it is not hard to realize that applying the evolution operator
results in

U |ψ1〉 = 1√
3
|ψ2〉|α〉 +

√
2

3
|�+〉| − α〉,

|ψ2〉 = (|�−〉 + i|�−〉 − i
√

2|�+〉)/2. (64)

We have introduced the separable state |ψ2〉 that is orthogonal
to |�+〉. In order to change this state to a more obvious form
of a W state, the next task is to find a separable unitary gate
that fulfills T |ψ2〉 = |ee〉 and T |�+〉 = |�+〉. The problem
can be solved with the aid of the separable gate

T = γ g†
π/4 ⊗ γ gπ/4, γ = i|e〉〈e| + |g〉〈g|. (65)

In this way, using the gate T , one can immediately find that,
starting from a separable state |ψ1〉, one can obtain

T U |ψ1〉 = |ee〉|α〉 + |ge〉| − α〉 + |eg〉| − α〉√
3

, (66)

which is a more evident form of a W state as introduced in
Eq. (59).
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We have shown the potential to generate authentic tripartite
entangled states using the unitary evolution of the model as
the entangling operation. Furthermore, it is also relevant to
note that for the generation of the W state, a state similar to a
Schrödinger cat is needed. Although this might be considered
as a drawback, it is evident from the generated GHZ state in
Eq. (61) that this model also offers a direct form of generating
Schrödinger cat states by measuring the atoms in the compu-
tational basis.

C. Bell measurement

Let us briefly sketch a procedure to implement a Bell
measurement by taking advantage of the interaction dynam-
ics of the general model introduced above. It is not hard
to conceive such a protocol by inspecting the solution for
the state vector in terms of atomic Bell states and coher-
ent states of the oscillator. First let us return to the state in
Eq. (56) after applying the gate G on the initial state followed
by the atom-oscillator interaction U . This procedure can be
considered as an atomic state splitter, in the sense that one
of the material components remains invariant accompanying
the oscillator state |α〉, while another material component
follows another mode state | − α〉 that is orthogonal to the first
one. This interesting feature can be further applied in order
to separate again the two components into four components
in terms of Bell states. In order to do so, one requires the
interchange of the Bell states |�±〉 using a rotation as in
Eq. (26), followed by an interaction with an additional oscilla-
tor with operators b and b† described by Vb as in Eq. (2). With
all these considerations, one can come up with the unitary
gate

U = e−iSz (π/2)G†
θ Ub eiSz (π/2) Ua Gθ , (67)

where we have distinguished between different modes using
their annihilation operator as subscript. Applying this unitary
gate to an initial arbitrary atomic state with two coherent
states, one obtains the state vector with four components

U |ψ〉|α〉a|α〉b � d−|�−〉|α〉a| − α〉b + c−|�−〉|α〉a|α〉b

+ d+|�+〉| − α〉a|α〉b

+ c+|�+〉| − α〉a| − α〉b. (68)

In this final state, a different combination of coherent states
is accompanied by a specific Bell state multiplied by its ini-
tial probability amplitude. Therefore, by discriminating the
four coherent states in the two oscillators, one is able to
postselect the atomic state in one of the four Bell states.
For instance, measuring oscillator states close to |α〉| − α〉
corresponds to a projection onto |�−〉, as this would hap-
pen with probability |d−|2. Analogous procedures apply to
all four Bell states. The process can be visualized using the
useful circuit representation shown in Fig. 7. It is worth
noting that the discrimination of oscillator states need not
be a projection onto coherent states. A measurement of the
oscillator in a localized state close to a specific coherent state
suffices.

FIG. 7. Quantum circuit representation of the Bell measurement
protocol with coherent states | ± α〉a,b used as auxiliary qubits and
with eiSzπ/2 = iZ ⊗ iZ . Here we use the denotation Z = |e〉〈e| −
|g〉〈g| as the Pauli-Z quantum gate commonly used in quantum com-
puting. At the final stage of the circuit, modes a and b are measured,
leading to four possible outcomes that postselect the atoms in one of
the four Bell states as indicated by the state in Eq. (68).

VII. CONCLUSION

We have presented a theoretical analytical study of a non-
linear intensity-dependent two-atom Tavis-Cummings model.
The exact solvability of the model has been shown by identi-
fying two constants of motion. By introducing a convenient
interaction picture, we have been able to solve the time-
dependent problem for initial arbitrary coherent states, using
only coherent states that lie on the positive axis in the com-
plex plane. By considering a large mean number of quanta
in the oscillator, we have derived an analytical approximate
expression given in terms of atomic Bell states and oscil-
lator coherent states that has been numerically tested using
its fidelity with respect to the exact expression. As particular
cases of this model, we have revised in detail three particu-
lar models: the Tavis-Cummings model, the Buck-Sukumar
model, and the nonlinear ion-trap model. We have shown that
in the experimentally feasible ion-trap model, the coherent
state approximation can accurately describe the dynamics,
when carefully choosing the mean number of quanta for a
given Lamb-Dicke parameter. The approximate solution of
the time-dependent state vector has proven to be very useful
in analyzing the dynamical features and more specifically
the entanglement in the system. The most important result
is that, with the approximate form of the state vector, we
have been able to introduce entangling operations for two
qubits and three qubits in a compact form. The results in this
work show that the physical implementation of entangling
operations relying on nonlinear Tavis-Cummings models can
be realized in current ion-trap experiments, opening avenues
for the implementation of basic quantum protocols assisted by
multiphonon states.
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APPENDIX A: EXACT FORM OF THE EVOLUTION
OPERATOR

For the sake of completeness, in this Appendix we briefly
present the exact solution of the evolution operator U (t ) =
e−iV t/h̄. The exact expression of each block of U (t ) for n > 1
is given by

U (n)(t ) =

⎛
⎜⎜⎝

�2
n−1+�2

nC(t )
ν2

n

�2
nS(t )
iνn

�n−1�n(C(t )−1)
ν2

n
�2

nS(t )
iνn

C(t )
�2

n−1S(t )
iνn

�n−1�n(C(t )−1)
ν2

n

�2
n−1S(t )

iνn

�2
n+�2

n−1C(t )
ν2

n

⎞
⎟⎟⎠,

with the abbreviations C(t ) = cos νnt and S (t ) = sin νnt and

the exact form of the eigenfrequencies νn =
√

�2
n + �2

n−1.

For n = 0 the blocks of the interaction operator V and of the
evolution operator U (t ) are two dimensional and given by

V (0) =
(

0 h̄�0

h̄�0 0

)
,

U (0)(t ) =
(

cos �0t −i sin �0t
−i sin �0t cos �0t

)
,

with the basis states |gg〉|1〉 and |�+〉|0〉. For n = −1, we
have only one state, |gg〉|0〉, and therefore the blocks are
one dimensional with V (−1) = 0 and U (−1) = 1. Using these
blocks, the time-dependent amplitudes in Eq. (12) can be
evaluated as Cn(t ) = U (n)Cn(0) with the column vector Cn(t )
containing the coefficients Cn,l (t ), l ∈ {−1, 0, 1}. The approx-
imate expressions in Eq. (14) can also be obtained directly
from the exact expressions using the approximations ex-
plained in Sec. II B.

APPENDIX B: DERIVATION OF THE INTERACTION
HAMILTONIAN IN THE ION-TRAP SETTING

In this Appendix we give a brief overview of the ion-
laser coupling leading to an interaction Hamiltonian in the
form of Eq. (2) between internal levels of the ions and their
center-of-mass motion. We will assume that other normal
modes are cooled down to their ground state. With this condi-
tion we can follow the derivation in Refs. [11,21,42].

The free Hamiltonian describing the internal levels and
center-of-mass motion of two two-level ions inside a har-
monic trap potential is given by

H0 = h̄νa†a + h̄ωSz. (B1)

Here a† and a represent the creation and annihilation operators
of the center-of-mass motion of the ions and ν is the trap fre-
quency. The interaction of the two ions with a monochromatic
laser field at frequency ωL is given by

VL = h̄�(S− + S+) cos(kx − ωLt + ϕ), (B2)

where k is the wave number of the laser and � describes
the ion-laser coupling strength. Furthermore, x stands for the
position operator of the center of mass and ϕ is an arbitrary
phase fixed by the atomic position with respect to the light
wave. Taking into account that ωL is in the optical regime, the
interaction can be simplified using the rotating-wave approxi-
mation as

VL = h̄�S+eiϕeiη(a†+a)e−iωLt + H.c., (B3)

where we have introduced the Lamb-Dicke parameter with
the aid of the relation between position coordinate, the wave
number, and the bosonic operators as kx = η(a† + a). Using
the relation eiη(a†+a) = e−η2/2eiηa†

eiηa and the series expansion
of the exponential, it is possible to express Eq. (B3) in the
interaction picture with respect to H0 in (B1) as

VL,I = h̄�S+eiϕe−η2/2
∞∑

l,m=0

(iη)l+m

l!m!
a†l amei�l,mt + H.c.,

with �l,m = ω − ωL − (m − l )ν. By choosing ϕ = π/2 and
tuning the laser frequency to the first red sideband with respect
to the atomic transition, i.e., ωL = ω − ν, one is able to obtain
the interaction Hamiltonian

V = h̄�S+ae−η2/2η

∞∑
l=0

(−η2)l

l!(l + 1)!
a†l al + H.c., (B4)

which is in the form of Eq. (2) with f (a†a) in Eq. (34).
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