
PHYSICAL REVIEW A 104, 063514 (2021)

Scattering of light by a parity-time-symmetric dipole beyond the first Born approximation
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The scattering of light by localized three-dimensional dielectrics having gain and loss defies the usual Born
approximation, since the material can increase the amplitude of the incident field within the scatterer, making
the weak-scattering assumption invalid. The convergence of the Born series is rarely discussed in analytical
treatments, as the state of exhaustion is reached after calculating the very first few terms of the series. Even if all
the terms are obtained, the series will certainly be of a divergent type in general, thus invalidating the equality
of the scattered field to its Taylor-series representation. We present here a simple localized material model of a
dielectric having parity-time (PT ) symmetry, consisting of a PT -symmetric dipole, such that all the terms in the
Born series are analytically evaluated and a closed-form expression is obtained in the far-zone approximation.
The scattered field is then analyzed by using Padé approximants in order to obtain convergent representations of
the scattered radiation and to compare with the exact solution. This allows us to study the role of the gain and
loss parameter in strong-scattering regimes and to demonstrate the remarkable properties of Padé approximants
when applied to scattering.

DOI: 10.1103/PhysRevA.104.063514

I. INTRODUCTION

The scattering of radiation by dielectrics is one of the most
important techniques available to obtain information about
the inner structure of unknown objects and also to control
the scattered wave field emanating from known dielectric
material distributions. The mathematical theory behind it is
very rich and has many levels of sophistication that permeates
almost every field of physics [1]. In one of these ramifications,
approximate solutions can be found by using perturbation
theory. The idea is to represent the total field as a power-series
expansion (Taylor series) in terms of some parameter such
that if this parameter is set to zero, one obtains the solution
to the unperturbed problem, representing the system without
a scatterer. The advantage of this representation is that the
coefficients of the Taylor series are usually easy to obtain, at
least for the first few terms, and one hopes that they represent
a good approximation to the exact answer as long as the
expansion parameter is small in some sense (weak scattering)
[2–10].

The disadvantage is that in some cases one is willing to
obtain information in strong-scattering regimes, where the
material strongly interacts with the incident radiation. If the
Taylor representation is the only tool available, a large number
of terms must be computed to obtain accurate results. This
procedure is certainly to be done using computers and numer-
ical approximations. Furthermore, the radius of convergence
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in the power-series representation may not be easy to obtain
since the analytical formula for all coefficients in the expan-
sion is generally unknown. Even if the convergence radius
is known, the physically reasonable numerical parameters
can be such that the series diverges. Another representation
which has been proven to be very useful arises if we replace
the partial sums of the Taylor terms by Padé approximants.
In this case, the function being sought is represented by a
fraction of two polynomials [11–13]. There has been some
work involving Padé approximants in quantum scattering
theory [14–18] and in classical electromagnetic scattering
[19,20]. Our approach closely follows a recent treatment
involving one- and two-dimensional scattering with lossy
materials [21].

Since the initial exposition of the remarkable effects of
parity-time (PT ) symmetry [22,23] in optics [24–31], the
scattering of light by non-Hermitian materials with gain and
loss has developed a new twist. In one-dimensional systems,
effects such as unidirectional reflectionless materials [32]
and the PT -symmetric laser absorber [33] are among the
most drastic ones highlighting the non-Hermitian aspect of
photonics. In these one-dimensional systems possessing ho-
mogeneous material layers, the transfer and scattering matrix
formalism are the most suited to obtain exact results for the
transmittance and reflectance amplitudes [34]. However, in
three-dimensional settings the lack of a general formalism
forces us to deal with the Born series and the problem of its
convergence. This is especially important if the material has
gain because it could invalidate the weak-scattering assump-
tion (first Born approximation).
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FIG. 1. Scattering system. A monochromatic plane wave of fre-
quency ω traveling in the direction specified by the unit vector â
interacts with the scatterer composed of two point particles with gain
and loss (PT -symmetric dipole). The position of the particle with
loss (gain) is +r0 (−r0). All quantities plotted have arbitrary units.

Our aim here is to demonstrate how the Born series can
be directly summed to obtain the exact closed-form solution
to a three-dimensional scattering problem with a scatterer de-
scribed by a PT -symmetric physical dipole (see Fig. 1). This
exact solution allows us to study the behavior of the scattered
radiation in strong-scattering regimes. With the analytical so-
lution at our disposal, the Padé representation of the scattered
field is analyzed in order to highlight its remarkable properties
over the Taylor-series representation. In Sec. II we present the
general scattering formalism for a scalar field, the Born series,
and the exact closed-form solution to the scattering of light by
a PT -symmetric dipole. Section III is devoted to a detailed
discussion of Taylor and Padé approximants to the scattered
field amplitude and its relation to the gain and loss parameter
present in the scatterer. In Sec. IV we present a summary and
our conclusions.

II. SCATTERING THEORY AND BORN SERIES

Consider the scalar representation of a complex optical
wave field u(r, ω) of monochromatic angular frequency ω

satisfying the differential equation

∇2u(r, ω) + k2ε(r, ω)u(r, ω) = 0, (1)

where k = ω/c is the wave number, with c the speed of light
in vacuum, and ε(r, ω) represents the complex-valued relative
permittivity of a localized scatterer. By writing the relative
permittivity as ε(r, ω) = 1 + αχ (r, ω), with χ (r, ω) the lin-
ear electric susceptibility and α the perturbation parameter,
the differential equation satisfied by the wave field u(r, ω) is
given by

∇2u(r, ω) + k2u(r, ω) = −αk2χ (r, ω)u(r, ω). (2)

The original problem we want to solve is recovered by setting
α = 1. To obtain the integral form of Eq. (2), we view the
right-hand side as an inhomogeneous term and define the
Green’s function G(r, r′) = G(r − r′) as a solution of

∇2G(r − r′) + k2G(r − r′) = −δ(r − r′) (3)

such that it is possible to write

u(r) = u0(r) + αk2
∫

r′
χ (r′)u(r′)G(r − r′)d3r′, (4)

where u0(r) is the solution to the homogeneous equation,
which is obtained from (2) with α = 0 (unperturbed problem).
The explicit form of the Green’s function G(r − r′) that is
physically acceptable is given by

G(r − r′) = eik|r−r′ |

4π |r − r′| . (5)

To apply perturbation methods, we assume that the field
can be expressed as a power series in α,

u(r) =
∞∑

n=0

un(r)αn, (6)

where u0(r) is the solution to the unperturbed problem with
α = 0. Equation (6) is known as the Born series. The unper-
turbed wave field u0(r) satisfies the homogeneous Helmholtz
equation ∇2u0(r) + k2u0(r) = 0 and represents the total field
in the absence of the scatterer. We assume that the unperturbed
wave field is given by the plane wave

u0(r) = eikâ·r, (7)

where â is a unit vector indicating the incident direction.
After substituting Eq. (6) into (4), we obtain the recursion

relation between the expansion coefficients un(r):

un(r) = k2
∫

r′
χ (r′)G(|r − r′|)un−1(r′)d3r′ (n � 1). (8)

The first correction u1(r) to the total field u(r) is known as the
Born approximation. In what follows, we will be interested in
the scattered field far beyond the region where the scatterer
is located (far-zone approximation). Therefore, the Green’s
function represented by Eq. (5) can be approximated by

eik|r−r′ |

4π |r − r′| ∼ eikr

4πr
e−ikŝ·r′

(r � r′), (9)

where ŝ = r/r and r = |r|.
The localized material is represented by a PT -symmetric

dipole, given by the dielectric constant ε(r, ω) = 1 +
αχ (r, ω), with the linear electric susceptibility χ (r, ω) writ-
ten as

χ (r, ω) = (σ + iγ )δ(r − r0) + (σ − iγ )δ(r + r0), (10)

where σ and γ are positive parameters and +r0 (−r0) is the
position of the scatterer which has loss (gain) [35,36]. After
substituting Eqs. (9) and (10) into (8) we obtain

un(r) = k2

4π

eikr

r

[
(σ + iγ )un−1(r0)e−ikŝ·r0

+ (σ − iγ )un−1(−r0)eikŝ·r0
]

(n = 1, 2, 3, . . .).

(11)

Since we are interested in the scattered field ampli-
tude, it is more convenient to write the total field
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as

u(r) = u0(r) + u1(r)α + u2(r)α2 + · · ·

= u0(r) + eikr

r
[ũ1(r)α + ũ2(r)α2 + · · · ]

= u0(r) + eikr

r
ũs(r), (12)

where ũs(r) is the scattering amplitude, and deal directly with
ũi(r), which is independent of r. In the Appendix we demon-
strate the induction process employed to obtain a closed-form
expression for ũn(r) and ũs(r). Although the expressions are
a bit involved, this is a rare example where the nth term
of the expansion can be written analytically for a scattering
three-dimensional problem. The closed-form expression for
ũs is given by

ũs(r) = e−ikŝ·r0

× −D2k4Q0 + D4k4P0 − 4πk2P0

D2D3k4 − (D1k2 − 4π )(D4k2 − 4π )

+ eikŝ·r0
D1k4Q0 − D3k4P0 − 4πk2Q0

D2D3k4 − (D1k2 − 4π )(D4k2 − 4π )
,

(13)

where P0 = (σ + iγ )eikâ·r0 , Q0 = (σ − iγ )e−ikâ·r0 , D1 =
(σ + iγ )/r0, D2 = (σ + iγ )e2kir0/r0, D3 = (σ − iγ )e2kir0/r0,
and D4 = (σ − iγ )/r0. One final quantity that will be of inter-
est is the partial sum SN of the first N terms in the Taylor-series
representation, SN (r) = ∑N

n=1 ũn(r), with S1(r) the scattering
amplitude in the usual Born approximation. In the next section
we discuss the relationship between the closed-form expres-
sion for ũs(r) and the correction terms ũn along with its Padé
approximants for the scattered radiation.

III. TAYLOR AND PADé REPRESENTATIONS
FOR THE SCATTERED FIELD

This section is devoted to a more detailed discussion in-
volving the exact solution obtained in the preceding section
and its connection to Taylor and Padé representations. The
following discussion is divided between passive scatterers
with γ = 0 (Hermitian scattering) and active scatterers with
γ �= 0 (non-Hermitian scattering).

A. Hermitian scattering

Consider the situation without the presence of gain and/or
loss in the scatterers, i.e., γ = 0. An important issue to be
addressed is how the scattering amplitude, in a fixed direction
(θ, φ), behaves as we increase σ , thus making the transition
between weak- and strong-scattering regimes. The exact an-
swer to this question cannot be obtained if one is working with
the first Born approximation since, in this case, the scattering
amplitude is a linear function of σ and so it predicts an infinite
amplitude in the limit σ → ∞:

S1(r) = ũ1(r) = σ
k2

2π
cos[kr0 · (â − ŝ)]. (14)

Figure 2 shows the plot of |S1(r)| (first Born approxima-
tion) as a function of σ for a fixed scattering direction (dashed
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FIG. 2. Scattered field amplitude as a function of σ . The dashed
line shows the first Born approximation |S1(r)|, the dotted line
|S5(r)|, the gray solid line |S30(r)|, and the black solid line |P̃N

N (r)|
(N = 1, 2, 3) and the exact solution |ũs(r)|. For more information
see Table II. The parameters are θ = π

2 , φ − 0, k = 1, x0 = 1
2 , and

γ = 0. All quantities plotted have arbitrary units.

curve). The picture also shows the plots of the sum of the first
5 and 30 terms in the Taylor series, |S5(r)| (dotted curve)
and |S30(r)| (gray solid line) along with the exact solution
for |us(r)| (black curve). Curiously, as we increase σ , the
field amplitude increases and it reaches a maximum value
around σ ≈ 4 before it saturates to a constant amplitude. As
expected, we obtain better accuracy as we add more terms into
the Taylor partial sum. Notice, however, that the discrepancy
between the first Born approximation and the exact solution
is very pronounced even for small values of σ . To explain the
behavior of the partial sums displayed in Fig. 2, we calculate
the radius of convergence of the Born series in the complex
α plane. The first column of Table I shows several values of
σ and Rα is the convergence radius for the respective values
of σ . Since the original problem is restored by choosing
α = 1, Table I indicates that the Taylor series diverges for
σ > 3.579 83, approximately. Since the Taylor representa-
tion is not suitable to obtain information in strong-scattering
regimes, we turn our discussion to another representation. A

TABLE I. Radius of convergence Rα in the complex α plane for
the Taylor series

∑
n unα

n for several values of σ . The parameters are
φ = 0, θ = π

2 , k = 1, x0 = 1
2 , and γ = 0.

σ Rα

1 3.57983
2 1.78991
3 1.19328
4 0.894956
5 0.715965
6 0.596638
7 0.511404
8 0.447478
9 0.397758
10 0.357983
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TABLE II. Comparison between the exact solution ũs for the scattered field amplitude and its Taylor SN and Padé P̃N
N representations (with

σ = 1). The parameters are γ = 0, k = 1, x0 = 1
2 , φ = 0, and θ = π

2 . All values of α are inside the radius of convergence.

α Exact solution |SN | (N ) |P̃1
1 | |P̃2

2 |
3.57 1.0090898257861656 1.0090877280387027(4000) 1.0090898257861698 1.009089825786168
1.79 0.40969141139798726 0.40969141139798715(100) 0.4096914113979872 0.40969141139798704
0.895 0.15828711442382187 0.15828711442382182(30) 0.15828711442382185 0.1582871144238218
0.447 0.06995869702491307 0.06995869702491307(20) 0.06995869702491307 0.0699586970249131
0.0357 0.0050302415730227356 0.005030241573022735(10) 0.0050302415730227356 0.005030241573022735

Padé approximant PN
M of order (M, N ) is defined as the ratio

between two polynomials with degrees M and N ,

PN
M (r) =

∑N
n=0 An(r)αn∑M
m=0 Bn(r)αm

, (15)

where we define B0 = 1 without loss of generality. The re-
maining M + N + 1 coefficients An and Bn are related to un

of Eq. (6) after the first M + N + 1 terms in the Taylor-series
expansion of PN

M match the first M + N + 1 terms of the power
series (6). There are well-known algorithms to efficiently
perform such operations [11,13]. In what follows, we only
consider the diagonal approximants with M = N . We have
performed numerical simulations (not shown) and verified
that the off-diagonal approximants PM+1

M and PM
M+1 indeed

converge to the exact answer in the appropriate limit.
As an elementary example, the approximant P1

1 (r) is given
explicitly by

P1
1 (r) = A0(r) + A1(r)α

1 + B1(r)α

= u0(r) + u2
1(r)α

u1(r) − u2(r)α
.

(16)

Thus, to obtain PN
N (r) we need the first 2N + 1 coefficients in

the Taylor representation. Our claim is that the approximants
approach the correct answer as N increases. We discuss this
point later.

All diagonal approximants are of the form PN
N (r) =

u0(r) + fN [u1(r), u2(r), . . .], where fN is a function inde-
pendent of the incident field u0(r). Since we are mainly
interested in the properties of the scattered field, all the results
displayed below refer to [PN

N (r) − u0(r)]/(eikr/r) = P̃N
N (r),

where P̃N
N (r) is the approximant for the scattered field am-

plitude. In other words, all Padé approximants are of the form

PN
N (r) = u0(r) + eikr

r
P̃N

N (r), (17)

where P̃N
N (r) is independent of r.

Figure 2 shows the plot of |P̃N
N (r)| for N = 1, 2, and 3.

In the scale used, the lines for the approximants are indistin-
guishable from the line representing the exact solution. This
amazing match is due to the fact that the exact solution is
already in a Padé form, being represented by a fraction of
two second-degree polynomials in the variable σ . The truly
remarkable thing to note here is that only two coefficients (ũ1

and ũ2) are necessary to construct P1
1 , which agrees with the

exact answer in ten decimal places for some values of α (or σ ).

Table II compares the exact solution with its Padé and Taylor
representations for a fixed scattering direction.

In this Hermitian configuration we expect the scattered
radiation field to possess a symmetric profile in relation to
the scatterers. Figure 3 shows the plot of the scattered field
amplitude as a function of the polar angle θ . Again, the first
Padé approximant P̃1

1 is able to retrieve information about the
scattering directions from the exact solution by using only two
coefficients of the Taylor series. The figure also displays the
first, second, and third Born approximations along with the
exact solution to the problem. The plotted lines of |P̃1

1 (r)|,
|P̃2

2 (r)|, and |ũs(r)| are indistinguishable from one another in
the scale adopted (black curve).

B. Non-Hermitian scattering

Consider now an active PT dipole with balanced gain and
loss (γ �= 0). This system has been studied under the first
Born approximation [35,36]. The first thing to note is that
we can no longer consider σ or γ as an expansion parameter
since we are unable to recover the unperturbed problem (no
scatterers) by letting σ or γ vanish independently. By the
same reasoning as in the Hermitian case, we ask what happens
to the scattered field amplitude for a fixed direction as we
increase σ or γ . Figure 4 displays the behavior of the exact
solution, the Padé approximants, and the Taylor summation
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FIG. 3. Scattered field amplitude as a function of θ . The dashed
line shows the first Born approximation |S1(r)|, the dotted line
|S2(r)|, the gray solid line |S3(r)|, and the black solid line |P̃N

N (r)|
(N = 1, 2, 3) and the exact solution |ũs(r)|. The parameters are
φ = 0, k = 1, x0 = 1

2 , σ = 5, and γ = 0. All quantities plotted have
arbitrary units.
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FIG. 4. (a) Same as in Fig. 2 but with γ = 1 and (b) |ũs(r)|,
|S1(r)|, |S5(r)|, |S30(r)|, |P̃1

1 (r)|, and |P̃N
N (r)| (N = 2, 3) as a function

of γ with σ = 1. The parameters are θ = π

2 , φ = 0, k = 1, and
x0 = 1

2 . The line plots of |P̃2
2 (r)| and |P̃3

3 (r)| are indistinguishable
from the line representing the exact solution. All quantities plotted
have arbitrary units.

as a function of σ (for γ = 1) in Fig. 4(a) and as a function
of γ (for σ = 1) in Fig. 4(b). In this case, even though the
closed-form solution is already in Padé form, the P̃1

1 approx-
imant is not able to return accurate results, as the dot-dashed
curve in Fig. 4 demonstrates. However, the second diagonal
approximant P̃2

2 agrees almost exactly with the correct answer,
its plotted line being indistinguishable from the line of |ũs|

(black curve). Thus, with only four coefficients of the Born
series, it is possible to obtain very accurate results by varying
σ and/or γ . We conclude that Padé approximants also work
for dielectric systems with gain. To explain the behavior of the
partial sums SN , the reader can consult Table III, which shows
the radius of convergence in the complex α plane for several
values of γ and σ . For example, by inspecting Table III one
can explain the divergence of SN in Fig. 4(a) for σ ≈ 3.5. This
table also suggests one general behavior, that is, increasing γ

decreases Rα . Thus, gain and loss directly influence the radius
of convergence of the Born series.

Physically, as the gain and loss parameter γ increases, the
scattered field amplitude saturates to a constant value inde-
pendent of σ . This can be verified by inspecting Eq. (13) in
the limit γ → ∞, which gives

ũs(r) ∼ r0 cos(kr0 sin θ )[i tan(kr0) − 1]. (18)

Since the Born approximation is formed by retaining the first
term in the Taylor expansion, it predicts an infinite amount
of energy to the scattered radiation when γ (or σ ) increases,
which is clearly nonphysical. Curiously, we also verified that
in this limit, the scattered field profile turns out to be sym-
metric in the sense that it scatters light like its Hermitian
counterpart (the scattered field amplitude being an even func-
tion of θ ). Thus, even though the system is non-Hermitian in
character, it can generate a scattered field with symmetrical
properties.

Regarding the directional properties of the scattered radi-
ation, Fig. 5 shows the non-Hermitian version of Fig. 3. It is
seen that the symmetric character of the field is broken as a
result of the gain and loss present in the scatterer. In general,
more radiation is emitted in the direction where the scatterer
with gain is located (θ = π

2 , φ = 0). The first diagonal Padé
approximant P̃1

1 is again not accurate enough to represent the
analytical solution. On the other hand, the second diagonal
Padé approximant P̃2

2 displays remarkable agreement with the
exact solution |ũs| in the far zone. All high-order Padé ap-
proximants P̃N

N for N > 3 give even more accurate numerical
values. In order to expose some numerical values from this re-
markable match between PN

N and |ũs|, Table IV demonstrates
the agreement between partial sums SN , Padé approximants
P̃N

N , and the closed-form expression |ũs| for several values
of α.

TABLE III. Radius of convergence in the complex α plane for the Taylor series
∑

n unα
n for several values of σ and γ . The parameters are

φ = 0, θ = π/2, k = 1, and x0 = 0.5.

σ Rα (γ = 1) Rα (γ = 5) Rα (γ = 10)

1 2.86615 0.909877 0.471608
2 1.68626 0.827169 0.454939
3 1.1624 0.736475 0.435248
4 0.881973 0.64986 0.413585
5 0.709336 0.57323 0.39096
6 0.592808 0.508002 0.368237
7 0.508995 0.453362 0.346077
8 0.445866 0.407738 0.32493
9 0.396627 0.369507 0.305066
10 0.357158 0.337251 0.286615
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TABLE IV. Comparison between the exact solution ũs for the scattered field amplitude and its Taylor SN and Padé P̃N
N representations (with

σ = 1 and γ = 1). The parameters are k = 1, x0 = 1
2 , φ = 0, and θ = π

2 . All values of α are inside the radius of convergence.

α Exact solution |SN | (N) |P̃1
1 | |P̃2

2 | |P̃3
3 |

2.86 0.7033410417066716 0.7043237092362864(3000) 1.008376895441823 0.7033410417066689 0.7049399474872458
1.43 0.3980343662336995 0.3980343662336992(100) 0.42667412501982227 0.3980343662336992 0.39814262254852434
0.725 0.18228544344617278 0.18228544344617276(30) 0.1848242433424334 0.18228544344617276 0.18229087198641047
0.0725 0.015913207781144273 0.01591320778114422(10) 0.015914968978725994 0.015913207781144276 0.0159132081952227

In closing, a few remarks about Padé approximants are
in order. We have emphasized that the approximants become
very close to the actual answer but we have not proved such
a claim. This is a very difficult question since there are no
theorems on the convergence and uniqueness of Padé approx-
imants in the general case for an arbitrary function [11]. There
is only one class of functions for which the Padé approximants
are known to converge to the exact answer and that is the
class of Stieltjes functions. However, there is evidence that the
approximants converge to the exact answer (in this scattering
scenario at least) and our results suggest that this indeed
happens [21]. A more formal and general discussion in this
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FIG. 5. (a) Same as in Fig. 3 but with σ = 5 and γ = 1 and
(b) γ = 5, for |ũs(r)|, |S1(r)|, |S2(r)|, |S3(r)|, |P̃1

1 (r)|, and |P̃N
N (r)|

(N = 2, 3) as a function of θ . The parameters are φ = 0, k = 1, and
x0 = 1

2 . The line plots of |P̃2
2 (r)| and |P̃3

3 (r)| are indistinguishable
from the line representing the exact solution. All quantities plotted
have arbitrary units.

direction, involving light field amplitudes satisfying Eq. (1),
is still lacking in the literature.

IV. CONCLUSION

We have studied the scattering of a monochromatic plane
wave by a PT -symmetric dipole. An explicit closed-form
expression for the scattered wave amplitude in the far-zone
was obtained. The Padé approximants and the Born approx-
imation were compared with the closed-form expression and
we stressed the limitations of the Born series in the strong-
scattering regime. The Padé approximants were shown to be
a remarkable and accurate alternative for treating weak- and
strong-scattering regimes. The approach using Padé approx-
imants may be more suitable for problems that do not have
an exact solution and when the Born series diverge. There-
fore, we believe that our results contribute an important step
towards scattering in strong regimes.

One possible experimental implementation of our scatter-
ing system could be realized as in Ref. [37], consisting of a
photonic structure with holes filled by semiconductor junc-
tions, as also suggested in Ref. [35].

ACKNOWLEDGMENTS

The authors would like to acknowledge financial support
from CNPq.

APPENDIX: CLOSED-FORM EXPRESSION FOR ũs(r)

In this Appendix we demonstrate the induction process
used to obtain a closed-form expression for ũs and un in terms
of u0. Starting from Eq. (11), the explicit form for the first
three corrections are given by

u1(r) = k2

4π

eikr

r
[P0e−ikŝ·r0 + Q0eikŝ·r0 ], (A1)

where P0 = (σ + iγ )eikâ·r0 and Q0 = (σ − iγ )e−ikâ·r0 ;

u2(r) =
(

k2

4π

)2
eikr

r
[P1e−ikŝ·r0 + Q1eikŝ·r0 ], (A2)

where P1 ≡ (σ + iγ )(P0 + Q0e2ikr0 )/r0 and Q1 ≡ (σ −
iγ )(P0e2ikr0 + Q0)/r0; and

u3(r) =
(

k2

4π

)3
eikr

r
[P2e−ikŝ·r0 + Q2eikŝ·r0 ], (A3)

where P2 ≡ (σ + iγ )(P1 + Q1e2ikr0 )/r0 and Q2 ≡ (σ −
iγ )(P1e2ikr0 + Q1)/r0. Thus, the general formula for un can

063514-6



SCATTERING OF LIGHT BY A … PHYSICAL REVIEW A 104, 063514 (2021)

be written as

un(r) =
(

k2

4π

)n
eikr

r
[Pn−1e−ikŝ·r0 + Qn−1eikŝ·r0 ], (A4)

where

Pn = D1Pn−1 + D2Qn−1,

Qn = D3Pn−1 + D4Qn−1,
(A5)

with D1 = (σ + iγ )/r0, D2 = (σ + iγ )e2kir0/r0, D3 = (σ −
iγ )e2kir0/r0, and D4 = (σ − iγ )/r0. Equations (A5) represent
a system of difference equations with constant coefficients
and initial conditions P0 = (σ + iγ )eikâ·r0 and Q0 = (σ −
iγ )e−ikâ·r0 . They can be solved by writing the system as[

Pn

Qn

]
=

[
D1 D2

D3 D4

]n[
P0

Q0

]
= Dn

[
P0

Q0

]
, (A6)

where D is a 2 × 2 matrix with coefficients Dj . By using the
identity

Dn = λn
1 − λn

2

λ1 − λ2
D − λ1λ2

λn−1
1 − λn−1

2

λ1 − λ2
1, (A7)

where λ1 and λ2 are the eigenvalues of D and 1 is the identity
matrix, the general solution is given explicitly by

Pn = 2−n−1√
(D1 − D4)2 + 4D2D3

× ((D1P0 + 2D2Q0 − D4P0)

×{[
√

(D1 − D4)2 + 4D2D3 + D1 + D4]n

− [−
√

(D1 − D4)2 + 4D2D3 + D1 + D4]n}
+ P0

√
(D1 − D4)2 + 4D2D3

×{[−
√

(D1 − D4)2 + 4D2D3 + D1 + D4]n

+ [
√

(D1 − D4)2 + 4D2D3 + D1 + D4]n}), (A8)

Qn = 2−n−1√
(D1 − D4)2 + 4D2D3

× ((D4Q0 + 2D3P0 − D1Q0)

×{[
√

(D1 − D4)2 + 4D2D3 + D1 + D4]n

− [−
√

(D1 − D4)2 + 4D2D3 + D1 + D4]n}
+ Q0

√
(D1 − D4)2 + 4D2D3

×{[−
√

(D1 − D4)2 + 4D2D3 + D1 + D4]n

+ [
√

(D1 − D4)2 + 4D2D3 + D1 + D4]n}). (A9)

Equations (A8) and (A9) together with (A4) represent the
general solution for the Born series. The total wave field is
given by the sum of the incident and scattered waves (with
α = 1),

u(r) = u0(r) +
∞∑

n=1

un(r), (A10)

where, after substituting Eq. (A4) into Eq. (A10), we obtain

u(r) = u0(r) + eikr

r

∞∑
n=1

(
k2

4π

)n

× (Pn−1e−ikŝ·r0 + Qn−1eikŝ·r0 ). (A11)

It is easy to see that all the summation terms in Eq. (A11) can
be put into a geometric series form

∑∞
n=1 ζ n = ζ

1−ζ
, with |ζ |

< 1. Thus, (A11) can be written as

u(r) = u0(r) + eikr

r
ũs(r), (A12)

where

ũs(r) = e−ikŝ·r0

× −D2k4Q0 + D4k4P0 − 4πk2P0

D2D3k4 − (D1k2 − 4π )(D4k2 − 4π )

+ eikŝ·r0

× D1k4Q0 − D3k4P0 − 4πk2Q0

D2D3k4 − (D1k2 − 4π )(D4k2 − 4π )
(A13)

is the closed-form expression for the scattered wave in the far-
zone approximation.
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