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Long-time behavior of a nonlinear electromagnetic wave
in vacuum beyond the linear approximation
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A quantum nature of vacuum is expected to affect electromagnetic fields in vacuum as a nonlinear correction,
yielding nonlinear Maxwell’s equations. We extend the finite-difference time-domain (FDTD) method in the
case that the nonlinear electromagnetic Lagrangian is quartic with respect to the electric field and magnetic
flux density. With this extension, the nonlinear Maxwell’s equations can be numerically solved without making
any assumptions on the electromagnetic field. We demonstrate examples of self-modulations of nonlinear
electromagnetic waves in a one-dimensional cavity, in particular, in a timescale beyond an applicable range
of linear approximation. A momentarily small nonlinear correction can accumulate and a comparably large
self-modulation can be achieved in a long timescale even though the electromagnetic field is not extremely
strong. Further, we analytically approximate the nonlinear electromagnetic waves in the cavity and clarify the
characteristics, for example, how an external magnetic flux density changes the self-modulations of phase and

polarization.

DOLI: 10.1103/PhysRevA.104.063513

I. INTRODUCTION

In classical electromagnetism, the electromagnetic fields
in vacuum are described by the linear Maxwell’s equations.
In modern physics, several corrections have been proposed
for the behavior of the electromagnetic fields such as the
Heisenberg-Euler theory [1] based on the quantum electro-
dynamics, the Born-Infeld theory [2] derived by an analogy
to the special theory of relativity, and the more generalized
Plebariski class [3]. The nonlinear correction of electromag-
netic fields affects many branches of physics. For example,
several calculations are performed for the interaction of strong
laser beams [4,5], the radiation from pulsars and neutron
stars [6—8], the Wichmann-Kroll correction [9] to the Lamb
shift, a photon-photon scattering [10], an interaction between
anucleus and electrons through the Uehling potential [11-13],
a correction to the states of a hydrogen atom [14—17], an elec-
tromagnetic effect for black holes [18,19], and a possibility of
magnetic monopoles [19].

Various experimental proposals have been considered for
the verification of the nonlinear correction, such as an in-
verse Cotton-Mouton effect [20], four-wave mixing [21,22],
a refraction of light by light [23], and birefringence [24-27].
Several experiments have also been performed [28-30]
[31], but the nonlinear correction has yet been observed.
In many proposals and numerical evaluations, a nonlin-
ear effect is calculated via a linear approximation of the
nonlinear Maxwell’s equations, i.e., a large classical input
induces the polarization and magnetization of vacuum and
they act as a wave source for another relatively small elec-
tromagnetic wave [21,32]. In several previous studies, the
nonlinearity, i.e., the self-interaction, is partially included
as nonlinear Schrodinger equations via a slowly varying
envelope approximation and a perturbation that a weak
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field propagates in a relatively large background field
[33,34].

In this study, we explain a numerical method for solving
the nonlinear Maxwell’s equations without any assumptions
on the electromagnetic field, i.e., the nonlinear correction
does not need to be comparably small and we do not have
to assume an envelope function. To this end, an extension
of the finite-difference time-domain (FDTD) method [35] is
given, followed by several examples of self-modulation in
a one-dimensional cavity. Further, we analytically approxi-
mate the leading parts of the nonlinear electromagnetic waves
to reproduce the numerical results. These demonstrations
reveal an accurate time evolution of the resonant increase
[36-38], which has been calculated by the linear approxi-
mation. Throughout the extension of the FDTD method and
demonstrations in a one-dimensional cavity, we reveal a non-
linear property that a large nonlinear effect can appear by
accumulating a momentarily small nonlinear correction for
a long timescale, even though an input electromagnetic field
is not extremely strong. For example, we demonstrate that
the polarization can change by 90° at a specific time if an
adequate magnetic flux density is imposed.

II. BASIC NOTATIONS

We normalize the electromagnetic fields by the electric
constant ¢y and magnetic constant wg. The electric field is

multiplied by 55/ % and electric flux density is divided by sé/ 2,

Similarly, the magnetic flux density is divided by u,(l)/ % and
magnetic field is multiplied by M(l)/ 2, Using the electric field
E and magnetic flux density B, we introduce two Lorentz

invariants by F = E> — B> and G = E - B. The Lagrangian
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FIG. 1. Typical distributions of both sides of Eq. (4) in the case (b)
of Dy # 0 and D, # 0. The red curves are the left-hand side and the 09175 ‘
dotted blue line is the right-hand side. The vertical axis is the value
of each side. The unique intersection expresses the unique solution
of F. The intersection exists at F < 0 if EZ < B>. =
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FIG. 2. The degree of nonlinearity N for A = 107%/,/Cs 0, By =
1072/,/Cy, and By, = 0. In (a), N™ is also shown as the dotted
blue line. Panels (b) and (c) are enlarged graphs at the first peak and
zero, respectively. The leading part N® in Eq. (14) is also shown as
the dashed curve.

0
125600 ot 125800

FIG. 3. The degree of nonlinearity N for A = 107%/,/C, and
By, = B, = 0.5 x 1072//Cyp. In (a), N™V s also shown as the
dotted blue line. Panels (b) and (c) are enlarged graphs at the first
peak and zero, respectively. The leading part N'® in Eq. (15) is also
shown as the dashed curve.

density we treat in this study is given by
& =1F + C0F* + GG, (1)

where C, o and Cp, are the nonlinear parameters [25]. This
Lagrangian is quartic with respect to the electric field and
magnetic flux density. This form is frequently considered and
regarded as an effective Lagrangian. In Figs. 2, 3, and 4
below, we use the values Cy o = 1.665 x 1073° (m?3/J) and
Co2 = 7Cy0 [25,39] of the Heisenberg-Euler model. A part
of electromagnetic field can be calculated by the classical
linear Maxwell’s equations. The “classical term” is expressed
by a subscript c. The difference from the classical term is the
“corrective term” and expressed by a subscript #n. Thus, we can
express as E = E. + E, and B = B, + B, respectively. The
corrective electric flux density and magnetic field are given by

Dn = En + 4C2,0FE + 2C0,2GB, (23)
H, =B, +4C,0FB — 2C),GE. (2b)
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FIG. 4. The time evolution of the polarization at a position of
sinkx = 1. (a) The shapes and rotation directions of the elliptical
polarization. The axes of ellipses are almost coincident with the y
and z axes. (b) The intensity ratio /, in Eq. (16). (c) The relative
phase W, _; in Eq. (A29). Its sign determines the rotation direction.

The nonlinear Maxwell’s equations in vacuum for the cor-
rective term are given by.

V-B,=0,
V-D, =0,
(3)
0B, =—cV xXE,,
oD, =cV xH,,

where ¢ is the speed of light and 0, expresses the partial
differentiation with respect to time ¢. The classical term can
be numerically calculated or sometimes explicitly given in
an analytic form without difficulties in the range of classical
electromagnetism. Thus, the remaining problem is to solve the
corresponding corrective term.

III. EXTENSION OF FDTD METHOD

In many previous studies, analyses of linearized Maxwell’s
equations or nonlinear Schrodinger equations have widely
been performed with applying several approximations such as
the corrective term is always much smaller than the classical
term. We here explain an extension of the FDTD method
which enables us to execute a numerical calculation without
these approximations. As the name indicates, in the FDTD
method, a time evolution of electromagnetic fields is numer-
ically calculated by a finite-difference method in the time
domain. Once the electromagnetic fields at a time step are
given, the magnetic flux density and electric flux density at the
next time step are numerically calculated by the discretized

Maxwell’s equations. Then, the electric field and magnetic
field are calculated. The FDTD method can be executed
straightforward in classical electromagnetism, as we can di-
rectly obtain the electric and magnetic fields because they
are proportional to the electric and magnetic flux densities,
respectively. On the contrary, in nonlinear electromagnetism,
the electric field and electric flux density are not proportional
and E, is only implicitly given to satisfy Eq. (2a) for nu-
merically obtained B,, and D,.. Thus, a special procedure for
calculating E , is required to execute the FDTD method for the
next time step. Once E, is obtained, H,, is directly obtained
by Eq. (2b), and we can proceed to the next time step.

We explain the procedure. First, we obtain B and D by
adding numerically obtained B, and D, to the given (or
already calculated) B, and D, i.e., B=B.+ B, and D =
D.+D,. IfB#0,leeD, =D -B/Band D, = |D — D,B/B]|,
we obtain

D3 N D3
(1 +4C,0F +2Cp»B%)? (1 +4C,0F)?

If B = 0, we can use D? instead of D% + D%. Since B and D are
already calculated, this equation can be used to determine F'. It
is worth emphasizing that we can calculate F' even though we
have yet obtained the electric field. Figure 1 shows both sides
as functions of F. In the case of D, # 0, the left-hand side
monotonically decreases at F > —1/(4C; o) and converges to
—B? < 0. The right-hand side obviously increases monotoni-
cally. Therefore, if B> < 1/(4C5,), we can obtain a unique F
that satisfies Eq. (4) in the domain of F > —1/(4C,). Then
we can calculate a matrix A and a vector x by

—B>=F. 4

1 0 0
A=(144CoF)[0 1 0
0 0 1
B2 BB, BB,
+2Co>| BB, B} BB:|,
BB, BB, B’
X =D, —4CoFE. —2Co(E. - B)B, ®)

as independent values of E,,. Because |A| # 0, E,, is uniquely
obtained by

E,=A"x. (6)

In the case of D; # 0 and D, =0, unique F and E, are
obtained in a similar way. If D; =0and D, =0, E,, = —E,
is clear. Then the procedure is established.

IV. EXAMPLES IN ONE-DIMENSIONAL CAVITY

We demonstrate numerical calculations in a one-
dimensional cavity system with length L in the x direction,
ie., 0 <x < L. The mirrors are supposed to be perfect
conductors and the boundary conditions are given as the y, z
components of the electric field and the x component of the
magnetic flux density to be zero. The classical term at ¢ > 0
is given as the sum of a standing wave and static magnetic
flux density:

E. = Asinwt sinkxe,, o

B. = Acoswt coskxe, + By,
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where A is the amplitude of the standing wave, the wave
number k and frequency w are connected to the wave length
A via k =2m /) and w = ck, and e, , are the unit vectors of
the y, z directions, respectively. We employ A = 400 (nm) and
L = 1007 /k for numerical calculations. By = (0, Byy, By;) is
a constant static magnetic flux density, and its magnitude is
expressed by By. This external field is highly valuable be-
cause it can vary the behavior of the nonlinear correction. For
this system and classical term, the x component of all fields
are always zero, and we do not mention it hereinafter. We
suppose (Cs.g + Co2)(A% + Bg) « 1 because the nonlinear
Lagrangian in Eq. (1) is limited to be quartic. The condition of
B? < 1/(4Cy,) always holds for the present calculation. For
the given classical term, we calculate the corrective term at
t > 0. The initial values of both corrective electric field and
magnetic flux density are set to be zero everywhere because
they should be much smaller than A.

If A and B, are too small, a huge calculation time is
required to see the nonlinear effect beyond the linear ap-
proximation. Because of this numerical limitation, we first
calculate with unrealistic large parameters. An evaluation for
realistic values is performed later in Fig. 4. The amplitude
of the standing wave is set to A = 10_6/,/C2, , and the
corresponding intensity cA” is about 1.80 x 10?* (W/cm?).
For the static magnetic flux density, By, = 1072/,/C> 0 and

By, = 0 are used in Fig. 2 and By, = B;; = 0.5 x 1072/, /Cao
are used in Fig. 3. The value 1072/,/C, corresponds to
1072, /1 /Cr0 &~ 8.7 x 10° (T). While these are too large for
experiments in a cavity, the calculation itself is consistent
because (Cs,0 + Co2)(A? + B?) < 1 holds.

To visualize the nonlinear effect, we define a temporal
function that expresses the magnitude of the corrective term
throughout the cavity. Let

S 2
Eg? () = max EL(x.1),

(®)
and defining ES% (1), B,Sg)(t), and BSY (1) in a similar way, we
introduce “the degree of nonlinearity” as

1 S St S St %
N(@t) = ﬂ[E,gy‘v(t) +ESV@) + BYY (1) + BSY (D], 9)

to indicate the strength of the nonlinear effect. N expresses a
magnitude ratio of the corrective term to the classical term.
For example, if N is much smaller than unity, a linear ap-
proximation will be applicable. On the other hand, when N
is comparable to unity, such an electromagnetic field will not
be analyzed by the linear approximation.

We first pay attention to the short timescale. Figures 2(a)
and 3(a) show that N increases almost linearly. In this
timescale, the nonlinear correction can be calculated with a
linear approximation. The corresponding correction of elec-

J

f 0 — 21 — al?
g 2+ am? 0
i 0 —& +afl
m & —agm 0

tromagnetic fields was called a “minimum corrective term”
in Ref. [37] and it shows the resonant increase. Let N(™ be
the degree of nonlinearity for the minimum corrective term.
According to Eq. (18) in Ref. [37], N(™V behaves almost
linearly and is consistent with N in the short timescale, as
in Figs. 2(a) and 3(a). As for a longer timescale, the linear
approximation becomes an overestimation and N departs from
N(mct)‘

Both Figs. 2 and 3 indicate that N has a slowly varying
component as in both panels (a), as well as an oscillation with
a period of about 27 /w, as in panels (b) and (c). The slower
variation is clearly a characteristic of nonlinear electromag-
netic waves. In addition, Fig. 3(a) shows more complicated
behavior than Fig. 2(a). This may arise from the energy trans-
fer between two polarization modes through By, and B,;.

Readers may wonder how the demonstrated results are
related to various previous calculations. The extension of
FDTD method is done without making any assumptions ex-
cept for the form of the Lagrangian. Therefore, it is possible to
reproduce the calculation results obtained by a linear approx-
imation or a nonlinear Schrodinger equation. Furthermore,
the present scheme is available for the outside of applicable
range of these approximations, in particular, in a timescale
when the corrective term becomes comparable to the classical
term.

V. APPROXIMATION BY LEADING-PART FUNCTIONS

We further inquire into the demonstrated example and re-
veal a nonlinear characteristic mathematically. The numerical
results indicate that the spatial distributions of the electric field
are almost always proportional to sinkx and high-harmonic
components are vanishing. These distributions might be at-
tributed to the resonant behavior in the linear approximation:
where the resonant increase is proportional to wf cos wt sin kx
[37]. We can expect then that the leading part of the electric
field will be approximated by a product of a temporal function
and sin kx. By expressing with a superscript (Ip), the leading
part of the electric field and magnetic flux density can be
supposed to be

E)(,]p)(x, t) = (f cos wt + gsin wt) sin kx,

Ez(]p)(x, t) = (I cos wr + msin wt ) sin kx, 0
(10
B)(,'p)(x, t) = (—mcoswt + I sin wt) cos kx + By,

B;'p)(x, t) = (gcoswt — f sinwt)cos kx + B,

where f, g, [, and m depend only on time. They vary relatively
slower than sin wt and cos wt, i.e., they can be regarded as
slowly varying envelopes. They are determined by the follow-
ing nonlinear differential equations:

0 —&+afl f
& —agm 0

0 2 —ar || | Y
25+ ag 0 m

063513-4



LONG-TIME BEHAVIOR OF A NONLINEAR ...

PHYSICAL REVIEW A 104, 063513 (2021)

where
X=f+g+07+m,
2\ = 4Cy0B, + Co 2B, + 2Co0X,
ZH = 4C2,03§y + Co2BL +2Co0X,
§ = (—4C0 + Co2)ByyBy:,
a=-2C+ %Co,z. (12)
A detailed derivation of the differential equations and their so-
lutions are given in the Appendix. It can be easily verified that
X = A?is a conservative quantity, Note that this fact expresses
a physical meaning that a leading part of the total energy
conserves in the form of Eq. (10) and the time evolution in
Eq. (11).
In this approximation, the corrective term can be approx-
imated as E, ~ E™ —E, and B, ~ B — B,. Therefore,

the leading part of the degree of nonlinearity N'® can be
expressed by

NOP) (1) = %(1 — f). (13)

We write the leading part of the total electric field E"® and
NUP) for both Figs. 2 and 3. For Fig. 2, Eq. (A21) gives

E® = Asin(1 — 2ot sinkx,
(Ip)
E® =0,

. Ziot
sin

NP (1) = : (14)

where 27 = C5,0(2A% + 7B?). We can see that NP becomes
zero when wt is an integer multiple of 277 /.2 &~ 8.976 x 103,
in accordance with the numerical result as in Fig. 2(c). Equa-
tions (A22) and (A23) are used for Fig. 3. In the timescale of
Cy.0A’wt < 1, we obtain

E{™ ~ Acos&wt sin(1 — 11£/3)wrt sin kx,

EM™ ~ —Asin&wt cos(l — 11&/3)wt sin kx,

1 11
N('p)(t) ~ \/5(1 — cos Ewt cos ?Ea)t>,

where & = (3/2)Cy0B2. In this case, NP becomes zero
when f is an integer multiple of 27 /(C2,0B?) = 47 x 10* ~
1.2566 x 10°, reproducing the numerical result as in Fig. 3(c).
Typical time evolutions of nonlinear electric field are ani-
mated in the Supplemental Material [40].

We can see that NP does not oscillate rapidly but well
reproduces a rough behavior of N: the difference is almost in-
distinguishable in the scale of panel (a) of both figures. Thus,
it is shown only in panels (b) and (c). The slight differences are
attributed to the discarded terms in the analytic calculation.
Furthermore, E,, and B,, in a short timescale agree with the
resonant increase of the minimum corrective term [37], as
calculated in Eq. (A25). These results confirm the validity
of the approximation of leading part in the present timescale.
Note that it is not clear that the approximation is valid for an
infinitely long timescale.

5)

These results suggest that the nonlinear effect in the one-
dimensional cavity appears as changes of the phase and
polarization. In contrast, a change in wavelength or frequency
must be discrete because of the fixed boundary conditions,
and high-harmonic components are scarcely generated in the
viewpoint of energy conservation.

In the present system, the maximum of N is about unity. It
can be understood from Eq. (13) as it shows N < 1. When
NP ~ 1, we can see that Ey(lp ) &~ —Asin wt sin kx is neces-
sary, i.e., the whole nonlinear electromagnetic wave is exactly
the antiphase to the classical electromagnetic wave, and the
phase shift becomes maximum. In Fig. 2, NP = 1 is realized
when wt is an odd integer multiple of 7 /2] ~ 4.488 x 103,
as in Fig. 2(b).

VI. CALCULATION FOR REALISTIC PARAMETERS

The leading-part functions enable us to clarify the behavior
of nonlinear electromagnetic waves in much longer timescale
than the extended FDTD method can reach. In particular,
the leading-part functions are highly useful in the case that
the classical amplitude A and the magnitude of the external
magnetic flux density B; are relatively small. If we try to run
a numerical calculation with the extended FDTD method up
to a timescale when the nonlinearity becomes dominant, an
unrealistic long calculation time will be required.

We perform a realistic calculation of the classical ampli-
tude to be 1.94 x 10 (V/m), corresponding to 10® (W/cm?)
[41] and the static magnetic flux density to be 54/2 (T) for
both y and z components [42,43]. Because A and Bj are real-
istic, i.e., much smaller than the above values, the leading-part
functions will be sufficiently precise approximations.

We demonstrate the time evolution of the polarization. For
this purpose, we calculate the intensity ratio of the y compo-
nent of the electric field to the total electric field and the rela-
tive phase. Using Eq. (A26), the intensity ratio /; is given as

I, = 3[1 + en(pot, ig)dn(pat, ig)], (16)

where p and ¢ are given in Eq. (A17). The relative phase ¥,_,
is defined in Eq. (A29). Figure 4 shows a result at a fixed
point of sinkx = 1. Figure 4(a) is a typical time evolution
of the polarization mode. It varies between two orthogonal
linear polarizations. During the transition, the polarization
is almost elliptic because the magnitude and phase of each
component of electric field scarcely change in a cycle of
27 /w. A typical behavior of the polarization transition is
animated in the supplement file [40]. /, and W,__ are shown
in Figs. 4(b) and 4(c), respectively. The value of I,, well
approximated by cos? &wt, determines the shape of the ellipse
of polarization and the sign of W,_. determines the rotation
direction. In particular, the polarization changes by 90° from
ytozatt #n/Ew) = n/(3C2'oB§a)) ~ 1.68 x 10° sec.

We briefly discuss an experimental perspective for the
demonstrated example. Suppose we connect the ratio I, and a
detectable polarization angle 6 (deg) of precise measurement,
we can estimate a necessary time to confine the standing wave
in the cavity by cos? £wt & cos(Am/180), yielding

A / 0
t M#cos’1 COS —TT. (17
37TCC2’()B§ 180
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If we take 6 = 0.003 [44] and By, = By, = 30 (T) [45], the
necessary time is ¢ & 2.20 sec. On the other hand, even if a
high reflectivity mirror is employed such as in gravitational
wave detectors [46—48], a light in the cavity vanishes within
several milliseconds for a cavity length of L = 30 (cm). There
is a gap of timescales by three digits. To bridge the gap or to
find other features of self-modulation may be important open
problems for future verification experiments. For example, to
decrease the loss by reflection, a longer cavity with partial
external fields or compensation by a successive adequate input
will be reasonable. The extension of FDTD method is also
useful for such calculations. In addition, realistic boundary
conditions will be necessary for a high-reflectivity mirror with
a multilayer stack [48,49].

VII. FINAL REMARKS

We have extended the FDTD method to execute a nu-
merical calculation without making any assumptions except
for the form of the nonlinear Lagrangian to be quartic.
We demonstrated the nonlinear electromagnetic waves in a
one-dimensional cavity. We further derived an analytic ap-
proximation as the leading-part functions and mathematically
clarified a characteristic of the nonlinear standing waves. The
numerical and analytical results in a one-dimensional cavity
are not simply the same as the well-known birefringence. In
a calculation of the birefringence, a propagating wave in a
cavity is frequently assumed to be sufficiently smaller than
an external field and to be a plane-wave eigenmode, result-
ing in the time-independent dispersion relation [25,27,50,51].
Several studies show a time-dependent dispersion relation
by using a perturbation [27,52]. The present calculations are
performed without these assumptions. For example, the prop-
agating wave does not have to be smaller than the external
field; in particular, the phase can self-modulate without exter-
nal field. We have not considered a dispersion relation because
it is not adequate to approximate a nonlinear electromagnetic
wave in a cavity by a plane wave.

The extended FDTD method is applicable to even more
general systems, i.e., not limited to a cavity system, and may
reproduce numerous previous results obtained by a linear
approximation or a nonlinear Schrodinger equation. For ex-
ample, if the timescale of nonlinear interaction is extremely
short, such as a focusing of high power lasers, calculation
results of the extended FDTD method and the linear ap-
proximation will be in good agreement. The most important
physical picture of the present study is that a momentarily
small nonlinear effect can accumulate and can appear as a
comparably large self-modulation in a long timescale, even
though the input or classical electromagnetic field is small.
Such a property is not calculated if the corrective term is
assumed to be always sufficiently smaller than the classical
term. While the larger electromagnetic fields are preferable
because the nonlinear effect can appear in shorter time, the
extended FDTD method will enable us to discover properties
of nonlinear electromagnetic waves in a timescale when the
nonlinearity becomes dominant, yielding alternative and opti-
mized verification experiments of nonlinear electromagnetism
in vacuum.
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APPENDIX: CALCULATION OF THE LEADING-PART
FUNCTIONS

In this Appendix, we explain a detailed analysis of the
leading-part functions in Eq. (10). The derivation of the dif-
ferential equations in Eq. (11) and their solutions are shown.
Originally, the leading-part functions of the electric field and
magnetic flux density are introduced as

E)(,'p)(x, t) = (f cos wt + gsin wt) sin kx,

Ez(lp)(x, t) = (I cos wt + msin wt ) sin kx,

B;lp)(x, t) = (—ficos wt + I sin wt) cos kx + By,

B (x,1) = (gcosot — fsinwt)coskx + B,,.  (Al)

In the following calculations, T = wt is used as a new vari-
able. All the functions of f,g, [, m, and tilde-added ones
depend only on T and are supposed to vary slower than sin T’
and cos T. They are determined by the nonlinear Maxwell’s
equations given as

9 9
R () -1 pUp) — 0,
s T
9 9
—EW) 4 ~1__pi» =0,
ax Y O ae
3w _ 1 D
ax *° ot 7
9 §1P>—c*13091’>=0. (A2)
ox ar -

a. First and second lines of Maxwell’s equations
The first line of Maxwell’s equations gives
(I —T+m)cosT + (m—im—1)sinT = 0. (A3)
Each parenthesis varies slowly and is supposed to be zero:
-1+ =0, m—m—1=0. (A4)
Similarly, the second line gives
(f —f+8)cosT +(g—g— f)sinT =0, (A5)
yielding
f=f+8=0 g-g-f=0 (A6)
Because f and the other functions vary relatively slowly,
their derivatives will be comparably small if they are not

identically zero. Combining with the above suppositions, it
will be adequate to suppose the following:

frf o g~g I~ m~m,

ff~f, ¢g~g, 1 ~ . (A7)

!

&
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Equations (A4), (A6), and (A7) enable us to approximate as

f=r+¢.
g:g_f/’
T=14m A
= m,
m=m-—1,

and we erase the four tilde-added functions from our calcu-
lation. In addition, the tilde-added functions are replaced in
Eq. (10).

b. Third and fourth lines of Maxwell’s equations

Substituting the classical and corrective terms into the third
and fourth lines of Maxwell’s equations shows a dependence
on x by sin kx and sin 3kx. We retain only the part of sin kx.
For the temporal part, the terms which oscillate faster than
cosT and sinT are discarded, such as sin27. Finally, the
terms multiplied by cos 7 and sin T are regarded as zero inde-
pendently; in the above postulates, we obtain four differential
equations on the slowly varying functions. Each of f, g, /, and
m is expected to be at most of the order of A. The products of a
nonlinear parameter and two functions such as C, o f1 will be
much smaller than unity. Therefore, the product of such values
and the derivatives are excluded. Finally, the simultaneous
differential equations in Eq. (11) are derived.

1. Solution

We solve the equations in Eq. (11) given the initial con-
ditions of f(0) =0, g(0) = A, [(0) = 0, and m(0) = 0. First,
we can see X’ = 0. Therefore, X = A? is constant and 2] and
2, are also constant. In particular, all of f, g, [, and m are
bounded and at most of the order of A. We introduce three
variables by

a=f+g, B=fl+gn, y=—fm+gl (A9)
Defining a new constant as
A =2 — s, (A10)
we obtain differential equations for «, 8, and y as
o =2y —ap),
B =y[—A+aa—X)], (A11)

y'=AB+EX —2a),

with the initial conditions of «(0) =A%, 8(0) =0, and
y(0) =0 . Because f?+ g*+ 1>+ m? = A?, the range of
a, B, and y is bounded. Hence, the set of differential equations
is Lipschitz continuous, and the solution for the initial value
problem is unique.

We first calculate for & # 0. Let

Z = A(—=A +aX) — 42 (A12)
and
—Z +/Z? + 48%a%X? —&aX
pz\/ 5 4= (A13)

we obtain
_ 2 2 .
o = W{A + Aéqsn (pT, lq)
+2&°[1 + en(pT, iq)dn(pT, iq)]},
EX .
B {2&qsn*(pT, iq)

R
+ A[l —en(pT, iq)dn(pT, ig)]},

§X .
y =———sn(pT, iq). (Al4)
p
We give f, g, [, and m for individual cases. In any case, their
derivatives are sufficiently smaller than the maximum value
of the original function and consistent with the discussion and
assumptions around Eq. (A7).

a. f,g,l,andmfor & #0and A #0

The case of £ #0 and A # 0 corresponds to By, # 0,
By, # 0, and By, # By;. In this case, o > 0 always holds and
J/a is always differentiable. Therefore, let

"ep() +ay (@) J

®=24T+ T, (A15)
0 a(t)
we obtain

f=—+/asin®,

g = /ot cos ®,
1

| = ﬁ(_ﬂ sin ® + y cos ©),
1

m= ﬁ(ﬁ cos ® 4 y sin ®). (A16)

b. f,g,l,andmfor& #0and A =0

The case of £ #0 and A =0 corresponds to |By| =
|Bs;| # 0. In this case,

p= \/252 + |&1V4E2 + a’X?,
—sgn(&)aX

q= ,
216| + /482 + a?X?

and in particular, |g| < 1. The double-angle formula of Jacobi
elliptic function yields

(A17)

o

1
T = 511+ en(pT ig)dn(pT. ig)]

_en®(pT /2, iq)dn*(pT /2, ig)[1 — ¢*sn*(pT /2, iq)]
B [1 4 g*sn*(pT /2, iq)]? '

(A18)

Because |g| < 1, « = 0 holds if and only if cn(pT /2, iq) = 0.
Then, using

r sn(pr, iq)
®=2T - / . dt,
T4 | T entpr, igydn(pr. i)

(A19)
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we obtain

LSNP /2, iq)dn(pT /2, ig)y/1 — gsn*(pT /2, iq)

in®,

1+ g*sn*(pT /2, iq)

Acn(pT/Z, iq)dn(pT /2, iq)\/l — g%sn*(pT /2, iq) .

0s O,

14 ¢>sn*(pT /2, iq)

[ 2Aésn(pT /2, iq)

2AEsn(pT /2, iq)

pJ/1— Psn*(pT /2, igq)

c. f,8,1,andmfor& =0

This case corresponds to By, = 0 or By, = 0. We immedi-
ately see « = A2, B = 0, y = 0, and obtain

f=—Asin 21T,

g=Acos 21T,

=0,

m=0. (A21)

The result contains the case of A =0, i.e., By = 0.

d. Approximation for A K |Byy| = |B|

In the case of A « |By,| = |By|, the solution given in
Egs. (A19) and (A20) can be approximated in a sim-
ple form. p~2|&| and g~ 0 hold because aX < |&|.
Therefore,

~ —Acos&T sin O,
g~ AcoséT cos O,

. (A22)
~ —AsinéT cos O,
m=~ —AsinéT sin ®,
where
aX aX aX
@m(% —)T—— in2 T%(% —)T.
1+ ) 8 sin 2& 1+ 2
(A23)

The oscillating term can be discarded because its absolute
value is much smaller than unity.

2. Comparison to minimum corrective term

We calculate for a short timescale. All of Egs. (A16),
(A20), and (A21) express f, g, [, and m give

[ =—-AZT +0(T?),

g=A+0(T?),
I = —AET + O(T?),
m= O(T?). (A24)

pJT = @sn*(pT /2, iq)

aX D
|:—2—sn(pT, ig)sin ® + cos @],
p

X
‘;—sn(pT, iq)cos © + sin @]. (A20)
p

(

Therefore, the main parts of the corrective term in the short
timescale are

E,, ~ —AZ wt cos wt sin kx,
E,. ~ —A&wt cos wt sin kx,

B,, &~ —A&wt sin wt cos kx,

B,  AZ wt sin wt cos kx. (A25)

3. Calculation of the polarization

For the calculation for Fig. 4 using realistic parameters,
we derive the intensity ratio of the y component to the entire
electric field /, and the relative phase W, _..

Each amplitude of the y and z component is given by
V. f* + g and /1% + m?, respectively, and the ratio I, is given
by

__I+e @
A E+PAmE T A

y

1
= 51+ en(pT. ig)dn(pT. ig)]. (A26)

As for the relative phase, Eq. (A20) for f, g, [, and m and
Eq. (A19) for ® yield

2
x sin(T — ® + 6,.) sin kx,

EW(r )= 4 \/ I+ en(pT, ig)dn(pT, iq)

EW (1) = A / 1 —cn(pT, i;)dn(pT, iq)

x sin(T — ® — Wy + 0,) sin kx, (A27)
where the phase factors ¥, € (0, ), 6., and 6, are defined as

1

sin ¥y = ’
VT + [aXsn(pT. iq)/2p)P
B aXsn(pT, iq)/(2p)
cos¥y = — ’
V1+[aXsn(pT, iq)/2p)2
0 (en(pT/2,iq) = 0)
Oc = {n (en(pT /2, iq) < 0)°
o {o (sn(pT/2,iq) = 0) (A28)
7 (sn(pT/2,iq) < 0)
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The phases of both components W, and ¥, can be defined as
W, = -0 4+ 0. and ¥, = —O — Y, + 6y, respectively. Then,
the relative phase can be defined by

W, = Wy — b, (A29)

where

g.— 10 [sn(pT/2,ig)en(pT /2, iq) = 0]
S w [sn(pT/2,ig)en(pT /2, iq) < 0]

We have defined W,_; and 6, as above so that W,__ ranges in
—m < W,_. < m. The sign of W,_, changes before and after
at a time when sn(pT /2, iq) = 0 or cn(pT' /2, iqg) = 0 holds.

(A30)
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