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Generation of vector flat-top solitons and hybrid bright–flat-top soliton complexes
in optical microresonators via modulated pump
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We demonstrate numerically the possibility of generation of vector platicons (or vector flat-top solitons)
having orthogonally polarized components by the modulated pump at normal group velocity dispersion (GVD).
Dynamics of this process can be controlled by pump polarization and depends on both the spectral interval
between pumped modes and the difference of their free spectral ranges. We also show the possibility of the
excitation of the hybrid soliton-platicon complexes (or hybrid complexes of bright and flat-top solitons) if
pumped modes have alternating signs of the GVD coefficient.
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I. INTRODUCTION

To date, generation and properties of different types of
solitonic pulses, including dissipative Kerr solitons [1] at
anomalous group velocity dispersion (GVD) and dark pulses
or platicons [2,3] at normal GVD, are well-studied in high-Q
optical microresonators, both bulk and on-chip [4–8]. Such
coherent optical frequency combs are actively used in differ-
ent areas of science and technology such as high-precision
metrology [9,10], high-resolution spectroscopy [11,12], astro-
physics [13,14], and high-volume telecommunication systems
[15–17]. Recently, more complex nonlinear localized struc-
tures, for example, multicomponent ones, have attracted the
attention of researchers. It has been revealed that nonlin-
ear interaction between the fields having different transverse
profiles or different polarizations provides interesting op-
portunities for generation of frequency combs and solitons
[18–21]. In particular, a generation of complex solitonic
structures existing due to the nonlinear coupling between
orthogonally polarized fields [22–25] has been shown. Such
approach has been studied for bright solitons at anomalous
GVD [22–24] and platicons or dark solitons at normal GVD
[25,26]. Since generation of conventional platicons is signif-
icantly more efficient than the generation of bright solitons
in terms of the pump-to-comb conversion efficiency [27,28],
the generation of multicomponent platicons seems to be very
interesting for many actual applications, e.g., coherent optical
communications. In Ref. [25] generation of such solitonic
structures was demonstrated numerically by means of two
pump beams which can be bulky in experiment and hard
to realize in some cases. Here we demonstrate numerically
that under certain conditions one may use single amplitude-
modulated pump beam with the frequency of the amplitude
modulation equal to one free spectral range (FSR) of the
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microresonator [29,30] for the generation of vector platicons
with orthogonally polarized components. Dynamics of this
process can be controlled by pump polarization and depends
on the distance between orthogonally polarized modes and on
the difference of their FSRs. We also show that in a more
exotic case, when one mode family has anomalous GVD, but
another experiences normal GVD, excitation of nonlinearly
coupled soliton-platicon complexes is also possible.

II. MODEL

We used a model, based on the system of two coupled
LLE-like equations [20], that takes into account a nonlinear
cross action of the orthogonally polarized fields and amplitude
modulation of pump, f (t ) = f (1 + ε cos �t ) [29,30]:
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where ψ1,2 stand for the normalized wave forms of the cor-
responding orthogonally polarized waves, τ = κ1t/2 is the
time, normalized to the first mode photon lifetime, κ1,2 are
the cavity decay rates for the first and second pumped modes
(or the loaded linewidths of the considered microresonator
modes), and ϕ ∈ [−π ; π ] is the azimuthal angle in a co-
ordinate system rotating with the angular frequency equal
to the pump modulation frequency �. For the considered
microresonator mode families the microresonator eigenfre-
quencies are assumed to be ωμ1 = ω01 + D11μ + 1

2 D21μ
2

and ωμ2 = ω02 + D12μ + 1
2 D22μ

2, where ω01 and ω02 are
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FIG. 1. Scheme of the process of the vector platicon generation
by the simultaneous pump of the spectrally separated orthogo-
nally polarized modes by the amplitude-modulated pump beam with
linear-in-time decrease of the pump frequency. θ is the polarization
angle of the pump beam, defined relatively to the polarization di-
rections of the pumped modes. � is the spectral interval between
orthogonally polarized pumped modes, normalized to κ1/2.

the eigenfrequencies of the first and second pumped mode,
respectively. All mode numbers μ1,2 are defined relative
to the pumped modes with μ1,2 = 0. D11,12 and D21,22 are
free spectral ranges and GVD coefficients for the first and
second mode families, respectively; d21,22 = 2D21,22/κ1 are
the normalized GVD coefficients (positive/negative GVD co-
efficients correspond here to the anomalous/normal GVD,
respectively); � = 2(ω01 − ω02)/κ1 is the normalized spec-
tral interval between orthogonally polarized pumped modes;
α = 2(ω01 − ωpump)/κ1 is the normalized detuning of the
pump frequency ωp from the first mode eigenfrequency
ω01. f (ε, ϕ) = f (1 + ε cos ϕ) for one-FSR amplitude mod-
ulation (� ≈ D11) [29,30], ε is the modulation depth, f =√

8gηP0

κ2
1 h̄ω01

is the dimensionless pump amplitude, g = h̄ω2
01cn2

n2
0Veff

is

the nonlinear coupling coefficient, Veff is the effective mode
volume, n2 is the nonlinear refractive index, and η is the
coupling efficiency (η = 1/2 for the critical coupling). δ1,2 =
2(D11,12 − �)/κ1 are the normalized offsets of the modulation
frequency � from the FSRs D11,12 of the corresponding mode,
θ is the polarization angle of the pump beam defined relatively
to the polarization directions of the pumped modes (θ = 0
corresponds to the pumping of the first mode only, θ = π/2
refers to the second mode pumping). Varying θ one may con-
trol the effective pump of the first and second modes. Note the
2/3 coefficient in the cross-action term due to the orthogonal
polarization of the interacting fields. We also considered the
linear coupling effects and the corresponding modifications of
the dispersion laws to be negligible.

III. FREQUENCY SCAN APPROACH

First, using Eqs. (1) we studied the process of platicon
generation from a noiselike input at κ2/κ1 = 1, ε = 0.4 and
normal GVD (d21,22 = −0.02) by means of the conventional
frequency scan approach (see Fig. 1). This method is based
on the pump frequency scan across the microresonator reso-
nance [ωpump(t ) = ωpump(0) − ϒt , ϒ is the scan speed] and
is widely used in experiments for the dissipative Kerr soli-
tons generation [1,5]. Also, it was shown that such approach
can be used for the generation of platicons by the modu-
lated pump [29–31]. In numerical simulations we introduced
linear-in-time variation of the pump frequency detuning α:

FIG. 2. Evolution of the intracavity power (left panel) and field
distribution (right panel) upon pump frequency scan at θ = 0.0,
d21 = −0.02, f = 6.0, ε = 0.4, δ1 = 0.0, v = 0.0025. All quantities
are plotted in dimensionless units.

α(τ ) = α(0) + vτ , where v = 4
κ2

1
ϒ is the normalized pump

frequency scan rate.
First, we considered the case of θ = 0, when only the

first mode is pumped, and δ1 = 0 that means that modulation
frequency is equal to the FSR of the first pumped mode. We
used a rather low scan rate (v = 0.0025) and it was checked
that dynamics of the considered processes does not change
if v decreases further. In the left panel in Fig. 2 one may
see a sudden power drop at α ≈ 14.0 corresponding to the
abrupt change of the field distribution and formation of the
localized state clearly visible in the right panel. This localized
state is a flat-top solitonic pulse or platicon. It exists at a
particular range of the pump frequency detuning α defined by
the pump power and modulation depth. Platicons can be also
considered as bound states of opposing switching waves [32]
that connect upper and lower branches of bistable resonance
to satisfy periodic boundary conditions. The width of the
platicon gradually decreases with increasing pump frequency
detuning. Generation of such structures is significantly more
efficient than the generation of bright solitons in terms of
the pump-to-comb conversion efficiency [27,28]; however,
due to the absence of the modulational instability it requires
special approaches besides the pump frequency scan, such
as the pump modulation described here or controllable mode
interactions [3,28,33,34] or self-injection locking [35,36].

If 0 < θ < π/2 then both modes are pumped simultane-
ously and the dynamics of the nonlinear processes arising
upon pump frequency scan is more complicated. To analyze it
one may study the evolution of the intracavity power or field
distribution evolution for both polarization states upon pump
frequency since abrupt changes of the amplitude profiles
of the generated signals manifest themselves in pronounced
changes of the intracavity power (see Fig. 2).

IV. VECTOR PLATICONS

For different combinations of the polarization angle θ

and interval � we revealed several possible regimes aris-
ing upon pump frequency scan: (1) simultaneous generation
and decay of nonlinearly coupled platicons at both po-
larizations (full trapping); by analogy with vector solitons
[37], further we will call such solitonic structures hav-
ing two orthogonally polarized platicon components as
vector platicons; (2) overlapping platicon generation re-
gions; (3) independent generation of platicons at different
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FIG. 3. Evolution of the intracavity powers for both polarization
states upon pump frequency scan for different values of the inter-
val between pumped modes � at θ = 0.25π , d21 = d22 = −0.02,
f = 6.0, ε = 0.4 ν = 0.0025, δ1,2 = 0. All quantities are plotted in
dimensionless units.

polarizations. This is clearly seen in Fig. 3, illustrating
evolution of the intracavity power for both polarization
states upon pump frequency scan for different values of the

spectral interval between pumped mode �. The evolution
of the intracavity power becomes more complicated in com-
parison with the case of the single pumped mode shown
in Fig. 2.

One can observe the transformation of full trapping (top
left panel; the first drop of the upper thick blue line corre-
sponds to the platicon generation) into the partial trapping (top
right panel and bottom left panel; the first drop of the lower
thin red line occurs after the first drop of the thick blue line
but before its second drop, corresponding to platicon decay)
and then into independent platicon generation (bottom right
panel) with the growth of the interval �.

Field distribution and spectrum evolution for both polariza-
tion states for the same parameters as at the top right panel in
Fig. 3 are shown in Fig. 4. One may notice that abrupt changes
of the intracavity power observed in Fig. 3 (see the top right
panel) correspond to the modifications of the field distribution.
The first power drop at α ≈ 8 corresponds to the excitation of
the first-mode platicon, the second power drop at α ≈ 12 to
the excitation of the second-mode platicon, and the weak drop
at α ≈ 18 to the rapid narrowing of the platicons (compare
the top right panel in Fig. 4 and the right panel in Fig. 2). In-
terestingly, similar abrupt jumps of platicon parameters were
observed in microresonators with backscattering due to the
nonlinear interaction of the forward and backward waves [31].

FIG. 4. Upper panels: first component; bottom panels: second component field distribution (left column) and spectrum (right column,
logarithmic scale) evolution upon forward pump frequency scan at θ = 0.25π , d21 = d22 = −0.02, f = 6.0 ε = 0.4, v = 0.0025, � = 5.0
δ1,2 = 0 (see top right panel in Fig. 3). μ1,2 are mode numbers, μ1,2 = 0 correspond to the pumped modes. All quantities are plotted in
dimensionless units.
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FIG. 5. Examples of the signals generated upon pump frequency
scan for different values of α at θ = 0.25π , d21 = d22 = −0.02, f =
6.0 ε = 0.4, v = 0.0025, � = 5.0, δ1,2 = 0. Field distribution and
spectrum evolution for this process are shown in Fig. 4. All quantities
are plotted in dimensionless units.

Studying spectrum evolution (see bottom panels in Fig. 4) one
can see that platicon generation at each component due to the
nonlinear coupling leads to the spectrum broadening for both
components and the widest spectrum is observed in the vector
platicon state.

It was also found that nonlinear coupling leads to the dis-
tortion of the profiles of the generated signals. It is possible
to identify several types of signals generated upon frequency
scan (see Fig. 5 for the generated profiles for the process at
the top right panel of Fig. 3 and in Fig. 4): (i) high-intensity or
low-intensity low-contrast signals at both polarizations (top
left panel in Fig. 5); (ii) platicon at one polarization and
high-intensity or low-intensity low-contrast signal at another
(top right panel); (iii) nonlinearly coupled platicons at both
polarizations (bottom panels). We also checked that in the

FIG. 6. Vector platicon components profiles for different values
of � at θ = 0.15π , d21 = d22 = −0.02, f = 6.0 ε = 0.4, δ1,2 = 0,
α = 15. All quantities are plotted in dimensionless units.

FIG. 7. Evolution of the intracavity powers for both polarization
states upon pump frequency scan for different values of the polar-
ization angle θ at � = 7.0, d21 = d22 = −0.02, f = 6.0 ε = 0.4,
v = 0.0025, δ1,2 = 0. All quantities are plotted in dimensionless
units.

absence of the frequency scan the generated patterns propa-
gate in a stable fashion over indefinitely large periods of time.

One may notice that the platicon generated at the first
pumped mode induces a dip at the low-contrast profile of
the signal at another polarization (top right panel in Fig. 5).
The width of the dip is equal to the width of the platicon.
Also, one may observe the same dip at the platicon profile of
another component appearing due to the nonlinear coupling
of vector platicon components (see bottom panels in Fig. 5).
Interestingly, nonlinear coupling is more pronounced at high-
intensity parts of the soliton profiles, but it is rather weak
at oscillating tails. It is clearly seen in the bottom panels in
Fig. 5 that platicon tails for different components oscillate at
different frequencies defined by the effective pump frequency
detuning for each component.

FIG. 8. Vector platicon components profiles for different values
of θ at � = 7.0, d21 = d22 = −0.02, f = 6.0 ε = 0.4, δ1,2 = 0, α =
16. All quantities are plotted in dimensionless units.
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FIG. 9. Top panels and bottom left panel: first-mode (between
blue lines), second-mode (between red lines) and vector platicon
generation domains vs pump polarization angle θ for different in-
tervals � between pumped modes. Bottom right: critical value of the
spectral interval between pumped modes �cr for the vector platicon
generation vs pump polarization angle θ . In all cases d21 = d22 =
−0.02, f = 6.0, ε = 0.4, v = 0.0025, δ1,2 = 0. All quantities are
plotted in dimensionless units.

The width and depth of the dip depend on the interval �

(see Fig. 6). Note that the dip usually appears at the wider
platicon component, not at the less powerful one (compare top
left and bottom left panels in Fig. 6). If orthogonally polarized
modes have different thermorefractive coefficients, one may
tune the value of � by varying microresonator temperature
[38–40].

FIG. 10. Top panels: Vector platicon generation domains for
δ2 = 0 (left panel) and δ2 = 0.4 (right panel) at � = 7.0. Bottom
panels: Vector platicon components profiles for δ2 = 0 (left panel)
and δ2 = 0.4 (right panel) at � = 5.0, α = 14.0. In all cases d21 =
d22 = −0.02, f = 6.0, ε = 0.4, v = 0.0025, δ1 = 0. All quantities
are plotted in dimensionless units.

FIG. 11. Vector platicon generation domains for different pump
amplitudes at d21 = d22 = −0.02, ε = 0.4, v = 0.0025, � = 0,
δ1,2 = 0. All quantities are plotted in dimensionless units.

The same transition from the simultaneous platicon gener-
ation to the independent platicon generation takes place with
the growth of the polarization angle θ (see Fig. 7).

If the vector platicon is generated at one pump polarization
angle θ , in some cases one can control its parameters by
slowly varying it (see Fig. 8). Thus, pump polarization pro-
vides an additional degree of freedom for the efficient control
of properties of the generated coherent frequency comb.

Then, we studied in more detail the parameter range pro-
viding generation of the vector platicons. It was revealed that
the spectral and polarization angle ranges, where generation
of the vector solitons is possible, become narrower with the
growth of the interval between pumped modes (see Fig. 9).
The critical value of the interval between pumped modes for
the vector platicon generation was found to decrease mono-
tonically with the growth of the pump polarization angle (see
bottom right panel in Fig. 9). For considered parameters the
generation of the vector platicons was observed for � < 20;
that means that the frequency interval between pumped modes
should be less than 10κ1.

We also studied the influence of the difference of the
pumped modes’ FSRs on the efficiency of vector platicon
excitation. We considered the case when modulation

FIG. 12. Vector platicon generation domains for different inter-
vals between pumped modes at d21 = d22 = −0.02, f = 10, ε = 0.4,
v = 0.0025, δ1,2 = 0. All quantities are plotted in dimensionless
units.
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FIG. 13. Evolution of the intracavity powers U1, U2 upon pump
frequency scan when the mode with anomalous GVD is pumped
first (upper panels) and profiles of the generated soliton-platicon
complexes with 1 and 2 solitons (bottom panels) at d21 = 0.02, d22 =
−0.02, f = 6, ε = 0.4, v = 0.0025, δ1,2 = 0, θ = π/4, � = 12.0.
Bottom left profile corresponds to the top left process, bottom right
profile to the top right one. All quantities are plotted in dimensionless
units.

frequency is equal to the first-mode FSR (δ1 = 0) and is
detuned from the second-mode FSR (δ2 �= 0). With the growth
of the offset value the vector platicons’ generation domain
becomes narrower in terms of the pump frequency detuning
values (see the top panels in Fig. 10). Generation of vector
platicons was found to be possible for FSRs difference less
than some critical value (δ2 < 1; that means that the difference
should be less than κ1/2). Note that if δ2 �= 0, second-mode
platicon profile (blue line) becomes asymmetric (compare the
bottom panels in Fig. 10).

It was shown in [29] that generation of conventional plati-
cons by modulated pump is possible if the pump amplitude
is less than some critical value depending on the modulation
depth. For ε = 0.4 platicon excitation is absent if pump am-
plitude f > 8.5. In the case of vector platicon generation one
may use larger pump amplitudes since the pump power is
redistributed between two pumped modes. With the growth of

the pump amplitude above f = 6 generation domain becomes
smaller and if f > 9 it is split into two areas (see Fig. 11).

We found that for the generation of the vector platicons
the critical pump amplitude is approximately

√
2 times larger

than for the generation of the conventional scalar platicons.
Thus, for the pump modulation depth ε = 0.4 the generation
of vector platicons was observed for f < 12.

Note that generation domains also depend on the spectral
interval � between pumped modes and two domains may
transform into one if this interval is large enough (compare
Fig. 12 and the bottom left panel in Fig. 11).

V. HYBRID SOLITON-PLATICON COMPLEXES

We also considered a more exotic case, when one mode
family experiences anomalous GVD, but another has normal
GVD. In that case one may observe simultaneous action of
two effects: generation of the single-soliton or two-soliton
state due to the pump modulation described in [41], and
platicon generation by the modulated pump [29,30]. If the
modulation depth ε is large enough and the scan rate v is small
enough, one or two solitons are generated [41]. Generation of
two-soliton state occurs due to the symmetry-breaking effect
described in [42] when the soliton attraction point shifts away
from the minima of driving field amplitude inhomogeneities
and, thus, two attraction points appear. We found out that
if the mode with anomalous GVD is closer to the pump
(d21 > 0, d22 < 0, � > 0), it is possible to generate hybrid
nonlinearly coupled soliton-platicon structures. Due to the
nonlinear coupling with the soliton component, the platicon
component profile has several narrow dips (see the bottom
panels in Fig. 13). Interestingly, the one-soliton state survives
after platicon decay, while the two-soliton solution may an-
nihilate upon a fast drop of platicon power (compare the top
panels in Fig. 13).

Note that the dip position varies upon the pump frequency
scan moving towards the center of the platicon (see Fig. 14).
Such soliton-platicon complexes were studied in [43] for the
dual-pump setting. It should be noted that for the realization of
such process the pump frequency scan rate v should be small
enough: for the considered parameters v � 0.005.

FIG. 14. Field distribution evolution upon pump frequency scan for the first (left panel) and second component (right panel) at d21 = 0.02,
d22 = −0.02, f = 6, ε = 0.4, v = 0.0025, δ1,2 = 0, θ = π/4, � = 12.0. All quantities are plotted in dimensionless units.
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FIG. 15. Parameter range providing generation of soliton-
platicon complexes at d21 = 0.02, d22 = −0.02, f = 6, ε = 0.4,
v = 0.0025, δ1,2 = 0 (the inner area between thick red curves). All
quantities are plotted in dimensionless units.

Generation of such hybrid complexes occurs for the par-
ticular range of values of the interval � between pumped
modes: it should be large enough to provide the generation of
a platicon at larger detuning values than generation of solitons,
but also provide the overlapping of their generation ranges.
The optimal range of the interval between pumped modes
strongly depends on the polarization angle θ (see Fig. 15).
For example, for d21 = 0.02, d22 = −0.02, f = 6.0, ε = 0.4,
v = 0.0025 the generation was observed at 5 < � < 23.5
for θ = 0.3π and at 8.5 < � < 13.0 for θ = 0.15π . For the
platicon generation the effective second-mode pump should
be less than a critical value: for ε = 0.4 it should be f sin θ <

8.5. Also, to avoid the influence of the transient chaos effect
described in [44] and subsequent decay of soliton at slow
frequency scan, the first-mode pump amplitude also should be
less than some critical value: in the considered case f cos θ <

6.4. These conditions show that generation of soliton-platicon
complexes is possible for the limited range of the pump polar-
ization angles dependent on the pump amplitude. This process
was also found to be very sensitive to the FSRs difference: for
δ1 = 0 the generation of such structures was observed just for
δ2 < 0.05.

If a normal GVD mode is pumped first (d21 < 0, d22 > 0,
� > 0), generation of such structures mostly does not occur:

generation of a bright soliton mostly takes place after platicon
decay. The excitation of hybrid complexes in that case was
found for a narrow range of polarization angles close to θ =
π/2 (see Fig. 15).

It should be noted that if different signs of the GVD co-
efficient are realized close to the zero-dispersion point, then
high-order dispersion terms should be taken into account,
since they can have a strong influence on the dynamics and
properties of both solitons [45–48] and platicons [49–51].

VI. CONCLUSION

We demonstrated numerically that it is possible to generate
vector platicon states consisting of two nonlinearly cou-
pled orthogonally polarized components by one amplitude-
modulated pump. Generation conditions were found, and the
profiles of the generated signals were analyzed. It was shown
that the pump polarization provides an additional degree of
freedom for efficient control of the properties of the generated
coherent frequency comb making them more tunable than
conventional single-component platicons. It was also found
that nonlinear coupling leads to the distortion of the platicon
profile. We also showed the possibility of the excitation of the
hybrid soliton-platicon complexes if pumped modes have al-
ternating signs of the GVD coefficient. It was revealed that the
generation of such hybrid structures, combining one platicon
and one or two bright solitons, is possible if the anomalous
GVD mode is pumped first. Reported results provide deep
insight into the complex dynamics of the nonlinear processes
in high-Q microresonators and can be used to develop and cre-
ate microresonator-based frequency comb sources with better
performance.

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foun-
dation (Project No. 17-12-01413-П). V.E.L. and O.V.B.
acknowledge personal support from the Foundation for
the Advancement of Theoretical Physics and Mathematics
“BASIS.”

[1] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev,
M. L. Gorodetsky, and T. J. Kippenberg, Temporal solitons in
optical microresonators, Nat. Photonics 8, 145 (2014).

[2] X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E.
Leaird, M. Qi, and A. M.Weiner, Mode-locked dark pulse Kerr
combs in normal-dispersion microresonators, Nat. Photonics 9,
594 (2015).

[3] V. E. Lobanov, G. Lihachev, T. J. Kippenberg, and M. L.
Gorodetsky, Frequency combs and platicons in optical mi-
croresonators with normal GVD, Opt. Express 23, 7713 (2015).

[4] C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo,
Stability analysis of the spatiotemporal Lugiato-Lefever model
for Kerr optical frequency combs in the anomalous and normal
dispersion regimes, Phys. Rev. A 89, 063814 (2014).

[5] T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodesky,
Dissipative Kerr solitons in optical microresonators, Science
361, eaan8083 (2018).

[6] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M.
Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye,
X. Xue, A. M. Weiner, and R. Morandotti, Micro-combs: A
novel generation of optical sources, Phys. Rep. 729, 1 (2018).

[7] A. L. Gaeta, M. Lipson, and T. J. Kippenberg, Photonic-
chip-based frequency combs, Nat. Photonics 13, 158
(2019).

[8] A. Kovach, D. Chen, J. He, H. Choi, A. H. Dogan, M.
Ghasemkhani, H. Taheri, and A. M. Armani, Emerging material
systems for integrated optical Kerr frequency combs, Adv. Opt.
Photonics 12, 135 (2020).

063511-7

https://doi.org/10.1038/nphoton.2013.343
https://doi.org/10.1038/nphoton.2015.137
https://doi.org/10.1364/OE.23.007713
https://doi.org/10.1103/PhysRevA.89.063814
https://doi.org/10.1126/science.aan8083
https://doi.org/10.1016/j.physrep.2017.08.004
https://doi.org/10.1038/s41566-019-0358-x
https://doi.org/10.1364/AOP.376924


VALERY E. LOBANOV et al. PHYSICAL REVIEW A 104, 063511 (2021)

[9] P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts,
J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S.
Randel, W. Freude, T. J. Kippenberg, and C. Koos, Ultrafast
optical ranging using microresonator soliton frequency combs,
Science 359, 887 (2018).

[10] S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J.
Vahala, and S. A. Diddams, Microresonator frequency comb
optical clock, Optica 1, 10 (2014).

[11] M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala,
Microresonator soliton dual-comb spectroscopy, Science 354,
600 (2016).

[12] N. G. Pavlov, G. Lihachev, S. Koptyaev, E. Lucas, M. Karpov,
N. M. Kondratiev, I. A. Bilenko, T. J. Kippenberg, and
M. L. Gorodetsky, Soliton dual frequency combs in crystalline
microresonators, Opt. Lett. 42, 514 (2017).

[13] M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G.
Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang,
D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K.
Vahala, Searching for exoplanets using a microresonator astro-
comb, Nat. Photon. 13, 25 (2019).

[14] E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, M.
Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M.
Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Bouchy F. Wildi,
T. J. Kippenberg, and T. Herr, A microphotonic astrocomb, Nat.
Photon. 13, 31 (2019).

[15] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle,
M. H. P. Pfeiffer, P. Trocha, V. Brasch S.Wolf, M. H. Anderson,
R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and
C. Koos, Microresonator-based solitons for massively parallel
coherent optical communications, Nature (London) 546, 274
(2017).

[16] A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason,
P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson,
A. M. Weiner, and V. Torres-Company, High-order coherent
communications using mode-locked dark-pulse Kerr combs
from microresonators, Nat. Commun. 9, 1598 (2018).

[17] Ó. B. Helgason, A. Fülöp, J. Schröder, P. A. Andrekson, A. M.
Weiner, and V. Torres-Company, Superchannel engineering of
microcombs for optical communications, J. Opt. Soc. Am. B
36, 2013 (2019).

[18] G. D’Aguanno and C. R. Menyuk, Nonlinear mode coupling in
whispering-gallery-mode resonators, Phys. Rev. A 93, 043820
(2016).

[19] G. D’Aguanno and C. R. Menyuk, Coupled Lugiato-Lefever
equation for nonlinear frequency comb generation at an avoided
crossing of a microresonator, Eur. Phys. J. D 71, 74 (2017).

[20] T. Hansson, M. Bernard, and S. Wabnitz, Modulational instabil-
ity of nonlinear polarization mode coupling in microresonators,
J. Opt. Soc. Am. B 35, 835 (2018).

[21] E. Averlant, M. Tlidi, K. Panajotov, and L. Weicker, Coexis-
tence of cavity solitons with different polarization states and
different power peaks in all-fiber resonators, Opt. Lett. 42, 2750
(2017).

[22] Ch. Bao, P. Liao, A. Kordts, L. Zhang, A. Matsko, M. Karpov,
M. H. P. Pfeiffer, G. Xie, Y. Cao, A. Almaiman, M. Tur,
T. J. Kippenberg, and A. E. Willner, Orthogonally polarized
frequency comb generation from a Kerr comb via cross-phase
modulation, Opt. Lett. 44, 1472 (2019).

[23] A. U. Nielsen, B. Garbin, S. Coen, S. G. Murdoch, and M.
Erkintalo, Coexistence and Interactions Between Nonlinear

States with Different Polarizations in a Monochromatically
Driven Passive Kerr Resonator, Phys. Rev. Lett. 123, 013902
(2019).

[24] R. Suzuki, S. Fujii, A. Hori, and T. Tanabe, Theoretical study
on dual-comb generation and soliton trapping in a single mi-
croresonator with orthogonally polarized dual pumping, IEEE
Photon. J. 11, 6100511 (2018).

[25] L. Guo, L. Wang, Q. Sun, M. Liu, G. Wang, W. Wang, P.
Xie, W. Fan, and W. Zhao, Mid-infrared dual-comb generation
via the cross-phase modulation effect in a normal-dispersion
microcavity, Appl. Opt. 59, 2101 (2020).

[26] B. Kostet, Y. Soupart, K. Panajotov, and M. Tlidi, Coexistence
of dark vector soliton Kerr combs in normal dispersion res-
onators, Phys. Rev. A 104, 053530 (2021).

[27] X. Xue, P.-H. Wang, Y. Xuan, M. Qi, and A. M. Weiner,
Microresonator Kerr frequency combs with high conversion
efficiency, Laser Photon. Rev. 11, 1600276 (2017).

[28] B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C.
Joshi, M. Lipson, and A. L. Gaeta, Turn-key, high-efficiency
Kerr comb source, Opt. Lett. 44, 4475 (2019).

[29] V. E. Lobanov, G. Lihachev, and M. L. Gorodetsky, Generation
of platicons and frequency combs in optical microresonators
with normal GVD by modulated pump, Europhys. Lett. 112,
54008 (2015).

[30] V. E. Lobanov, N. M. Kondratiev, A. E. Shitikov, R. R. Galiev,
and I. A. Bilenko, Generation and dynamics of solitonic pulses
due to pump amplitude modulation at normal group-velocity
dispersion, Phys. Rev. A 100, 013807 (2019).

[31] V. E. Lobanov, A. E. Shitikov, R. R. Galiev, K. N. Min’kov, and
N. M. Kondratiev, Generation and properties of dissipative Kerr
solitons and platicons in optical microresonators with backscat-
tering, Opt. Express 28, 36544 (2020).

[32] P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, Dark
solitons in the Lugiato-Lefever equation with normal disper-
sion, Phys. Rev. A 93, 063839 (2016).

[33] J. K. Jang, Y. Okawachi, M. Yu, K. Luke, X. Ji, M. Lipson, and
A. L. Gaeta, Dynamics of mode-coupling-induced microres-
onator frequency combs in normal dispersion, Opt. Express 24,
28794 (2016).

[34] X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi, and
A. M. Weiner, Normal-dispersion microcombs enabled by con-
trollable mode interactions, Laser Photon. Rev. 9, L23 (2015).

[35] N. M. Kondratiev, V. E. Lobanov, E. A. Lonshakov, N. Y.
Dmitriev, A. S. Voloshin, and I. A. Bilenko, Numerical study of
solitonic pulse generation in the self-injection locking regime at
normal and anomalous group velocity dispersion, Opt. Express
28, 38892 (2020).

[36] W. Jin, Q.-F. Yang, L. Chang, B. Shen, H. Wang, M. A.
Leal, L. Wu, M. Gao, A. Feshali, M. Paniccia, K. J. Vahala,
and J. E. Bowers, Hertz-linewidth semiconductor lasers using
CMOS-ready ultra-high-Q microresonators, Nat. Photon. 15,
346 (2021).

[37] Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers
to Photonic Crystals (Academic, London, 2003).

[38] D. V. Strekalov, R. J. Thompson, L. M. Baumgartel, I. S.
Grudinin, and N. Yu, Temperature measurement and stabiliza-
tion in a birefringent whispering gallery mode resonator, Opt.
Express 19, 14495 (2011).

[39] I. Fescenko, J. Alnis, A. Schliesser, C. Y. Wang, T. J.
Kippenberg, and T. W. Hänsch, Dual-mode temperature

063511-8

https://doi.org/10.1126/science.aao3924
https://doi.org/10.1364/OPTICA.1.000010
https://doi.org/10.1126/science.aah6516
https://doi.org/10.1364/OL.42.000514
https://doi.org/10.1038/s41566-018-0312-3
https://doi.org/10.1038/s41566-018-0309-y
https://doi.org/10.1038/nature22387
https://doi.org/10.1038/s41467-018-04046-6
https://doi.org/10.1364/JOSAB.36.002013
https://doi.org/10.1103/PhysRevA.93.043820
https://doi.org/10.1140/epjd/e2017-70705-x
https://doi.org/10.1364/JOSAB.35.000835
https://doi.org/10.1364/OL.42.002750
https://doi.org/10.1364/OL.44.001472
https://doi.org/10.1103/PhysRevLett.123.013902
https://doi.org/10.1109/JPHOT.2018.2888637
https://doi.org/10.1364/AO.385401
https://doi.org/10.1103/PhysRevA.104.053530
https://doi.org/10.1002/lpor.201600276
https://doi.org/10.1364/OL.44.004475
https://doi.org/10.1209/0295-5075/112/54008
https://doi.org/10.1103/PhysRevA.100.013807
https://doi.org/10.1364/OE.410318
https://doi.org/10.1103/PhysRevA.93.063839
https://doi.org/10.1364/OE.24.028794
https://doi.org/10.1002/lpor.201500107
https://doi.org/10.1364/OE.411544
https://doi.org/10.1038/s41566-021-00761-7
https://doi.org/10.1364/OE.19.014495


GENERATION OF VECTOR FLAT-TOP SOLITONS AND … PHYSICAL REVIEW A 104, 063511 (2021)

compensation technique for laser stabilization to a crystalline
whispering gallery mode resonator, Opt. Express 20, 19185
(2012).

[40] J. Lim, W. Liang, A. A. Savchenkov, A. B. Matsko, L. Maleki,
and C. W. Wong, Probing 10 μK stability and residual drifts
in the cross-polarized dual-mode stabilization of single-crystal
ultrahigh-Q optical resonators, Light: Sci. Appl. 8, 1 (2019).

[41] V. E. Lobanov, G. V. Lihachev, N. G. Pavlov, A. V. Cherenkov,
T. J. Kippenberg, and M. L. Gorodetsky, Harmonization of
chaos into a soliton in Kerr frequency combs, Opt. Express 24,
27382 (2016).

[42] I. Hendry, W. Chen, Y. Wang, B. Garbin, J. Javaloyes, G.-L.
Oppo, S. Coen, S. G. Murdoch, and M. Erkintalo, Spon-
taneous symmetry breaking and trapping of temporal Kerr
cavity solitons by pulsed or amplitude-modulated driving fields,
Phys. Rev. A 97, 053834 (2018).

[43] S. Zhang, T. Bi, G. N. Ghalanos, N. P. Moroney, L. Del Bino,
and P. Del’Haye, Dark-Bright Soliton Bound States in a Mi-
croresonator, arXiv:2104.13351.

[44] M. Karpov, M. H. P. Pfeiffer, H. Guo, W. Weng, J. Liu, and
T. J. Kippenberg, Dynamics of soliton crystals in optical mi-
croresonators, Nat. Phys. 15, 1071 (2019).

[45] S. Wang, H. Guo, X. Bai, and X. Zeng, Broadband Kerr fre-
quency combs and intracavity soliton dynamics influenced by
high-order cavity dispersion, Opt. Lett. 39, 2880 (2014).

[46] C. Milián and D. V. Skryabin, Soliton families and resonant
radiation in a micro-ring resonator near zero group velocity
dispersion, Opt. Express 22, 3732 (2014).

[47] A. V. Cherenkov, V. E. Lobanov, and M. L. Gorodetsky,
Dissipative Kerr solitons and Cherenkov radiation in optical
microresonators with third-order dispersion, Phys. Rev. A 95,
033810 (2017).

[48] M. H. Anderson, G. Lihachev, W. Weng, J. Liu, and T. J.
Kippenberg, Zero-dispersion Kerr solitons in optical microres-
onators, arXiv:2007.14507.

[49] Y. He, S. Wang, and X. Zeng, Dynamics of dispersive wave
emission from dark solitons in Kerr frequency combs, IEEE
Photonics J. 8, 7102508 (2016).

[50] V. E. Lobanov, A. V. Cherenkov, A. E. Shitikov, I. A. Bilenko,
and M. L. Gorodetsky, Dynamics of platicons due to third-order
dispersion, Eur. Phys. J. D 71, 185 (2017).

[51] P. Parra-Rivas, D. Gomila, and L. Gelens, Coexistence of sta-
ble dark- and bright-soliton Kerr combs in normal-dispersion
resonators, Phys. Rev. A 95, 053863 (2017).

063511-9

https://doi.org/10.1364/OE.20.019185
https://doi.org/10.1038/s41377-018-0109-7
https://doi.org/10.1364/OE.24.027382
https://doi.org/10.1103/PhysRevA.97.053834
http://arxiv.org/abs/arXiv:2104.13351
https://doi.org/10.1038/s41567-019-0635-0
https://doi.org/10.1364/OL.39.002880
https://doi.org/10.1364/OE.22.003732
https://doi.org/10.1103/PhysRevA.95.033810
http://arxiv.org/abs/arXiv:2007.14507
https://doi.org/10.1109/JPHOT.2016.2626004
https://doi.org/10.1140/epjd/e2017-80148-0
https://doi.org/10.1103/PhysRevA.95.053863

