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Cavity mode dephasing via the optomechanical interaction with an acoustic environment
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We consider an optomechanical system comprising a single cavity mode and a dense spectrum of acoustic
modes and solve for the quantum dynamics of initial cavity mode Fock (i.e., photon number) superposition states
and thermal acoustic states. The optomechanical interaction results in dephasing without damping and bears
some analogy to gravitational decoherence. For a cavity mode locally coupled to a one-dimensional elastic string-
like environment or two-dimensional elastic membrane-like environment, we find that the dephasing dynamics
depends respectively on the string length and membrane area—a consequence of an infrared divergence in the
limit of an infinite-sized string or membrane. On the other hand, for a cavity mode locally coupled to a three-
dimensional bulk elastic solid, the dephasing dynamics is independent of the solid volume (i.e., is infrared finite),
but dependent on the local geometry of the coupled cavity—a consequence of an ultraviolet divergence in the
limit of a “pointlike” coupled cavity. We consider as possible respective realizations for the cavity-coupled one-
and two-dimensional acoustic environments an LC oscillator capacitively coupled to a partially metalized strip
and a cavity light mode interacting via light pressure with a membrane.
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I. INTRODUCTION

Cavity optomechanical systems have received considerable
attention over the past decades, with applications ranging
from the detection of classical gravity waves in the macro-
scopic domain to the generation and detection of quantum
states of mechanical oscillators in the nano-to-mesoscale
regimes [1,2]. Most investigations deliberately consider one
or at most a few cavity modes interacting similarly with one or
at most a few mechanical modes, with notable exceptions in-
cluding optomechanical interactions between multiple driven
bosonic modes and multiple mechanical resonators [3], the
consideration of interacting optical and acoustic waves coex-
isting in bulk, crystalline solids [4], and environment-induced,
driven cavity photon blockade and Rabi oscillations via the
optomechanical interaction [5].

In this present work, we shall take as our starting point the
following Hamiltonian:

H = h̄�

(
a†a + 1

2

)[
1 +

∑
i

λi(bi + b†
i )

]

+
N∑

i=1

h̄ωi

(
b†

i bi + 1

2

)
, (1)

where a, a† are the annihilation and creation operators for a
cavity mode with frequency �, while bi, b†

i are the annihi-
lation and creation operators for N mechanical modes. The
cavity and mechanical modes are coupled via the standard
optomechanical interaction with coupling constant parameters
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h̄�λi. Our particular focus will be on the effective dynam-
ics of the single cavity mode system interacting with many
(i.e., N ≫ 1) mechanical modes, with the latter viewed as an
acoustic, environmental bath for the cavity system. In contrast
with the usual quantum Brownian motion model, where the
system-bath coupling is bilinear in their respective creation
and annihilation coordinates, Hamiltonian (1) does not result
in energy damping of the cavity mode system. This is a conse-
quence of the fact that the system Hamiltonian commutes with
the interaction Hamiltonian term. On the other hand, dephas-
ing does result for initial superpositions of energy eigenstates
of the cavity system; for this reason, Ref. [6] terms Eq. (1)
the “phase damped oscillator,” and provides a second-order
Born-Markov approximated solution to the cavity system
reduced density matrix dynamics via a master-equation
approach.

As we shall show, the effective dynamics for the cavity
system reduced density matrix can in fact be solved exactly up
to a summation over bath modes, while the latter summation
can be carried out approximately for certain bath spectral den-
sities; the method of solution is based on that of Refs. [7,8],
which consider a single cavity mode interacting with a single
mechanical mode, and which again utilizes the fact that the
system and interaction term Hamiltonians commute.

The present work is closely related to Ref. [9], which
considers the quantum dephasing and entanglement dynamics
of two distinct optical cavity systems, coupled via the optome-
chanical interaction to a common acoustic field environment.

Our interest in the Hamiltonian (1) and the resulting de-
phasing dynamics of the cavity mode system reduced state
stems from its analog connection with gravitationally induced
decoherence [10,11]. In the weak gravitational field regime,
the leading-order term in the interaction action involving
a scalar matter field φ(x) system and gravitational metric
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deviation hμν from Minkowski space environment takes the
form

SI =
√

8πG
∫

d4xT μν (φ)hμν (2)

in natural units h̄ = c = 1, where T μν (φ) is the scalar field
energy-momentum tensor. This interaction term can result
in the dephasing of scalar field energy superposition states
without energy damping [10,12], just as for the cavity mode
quantum dynamics following from Hamiltonian (1) [11].
Comparing the optomechanical interaction Hamiltonian in
Eq. (1) with the matter-weak gravity interaction term action
(2), the linearly coupled acoustic-phonon field plays the role
of the weak graviton field, while the quadratically coupled
cavity mode plays the role of the scalar matter field. As dis-
cussed in Ref. [11], exploring such optomechanical analogs
may shed light on gravitationally induced dephasing dynamics
of macroscopic matter-field superposition states.

However, the cavity system dynamics following from
Hamiltonian (1) interpreted as modeling cavity optomechani-
cal bath systems is of interest in its own right, particularly the
consequences of the acoustic environment spatial dimension
and size for the cavity mode energy quantum superposi-
tion dephasing dynamics. We shall find that, for one- and
two-dimensional (1D and 2D) elastic “string” and “mem-
brane” acoustic environments, respectively, the cavity system
dephasing dynamics depends on the geometric size of the
environment—a consequence of an infrared (IR) divergence
in the limit as the environment size tends to infinity. In
contrast, for a bulk, elastic three-dimensional (3D) acoustic
environment (which shares the same Ohmic spectral density
as for the gravitational wave environment [10]), the cavity
dephasing dynamics depends on the size of the optical cavity
system embedded within the 3D elastic medium—a conse-
quence of an ultraviolet (UV) divergence in the limit as the
size of the cavity tends to zero, i.e., becomes pointlike.

Infrared divergences arising from long-wavelength acous-
tic flexural modes of membrane-like structures in the
infinite-size limit are also encountered in other contexts, for
example, the thermal expansion of 2D crystals [13] and atom-
membrane surface interactions [14–19].

In Sec. II, we solve for the cavity system reduced den-
sity matrix evolution following from the time-dependent
Schrödinger equation with Hamiltonian (1) in the Fock state
(i.e., photon number) basis for both Ohmic (s = 1) and sub-
Ohmic (s = 0,−1) bath spectral densities [see Eq. (9)], and
with the oscillator environment in an initial thermal state.
This section extends the analysis of Ref. [11], which con-
siders only the Ohmic case and infinite-sized environment.

In Sec. III, we consider a model cavity-acoustic environment
optomechanical system realization involving an LC oscillator
capacitively coupled to a long, partially metalized, elastic strip
and show how this system maps onto the sub-Ohmic s = −1
case; several details of the model strip derivation are given
in an Appendix. Section IV considers another model system
consisting of an optical cavity interacting via light pressure
with a large, square elastic membrane [20], which maps onto
the sub-Ohmic s = 0 case; both Secs. III and IV explore
quantitatively by considering, for example, experimentally
feasible device parameter values and the cavity mode quantum
dephasing dynamics dependence on the acoustic environment
size, i.e., the elastic strip length and side dimension of the
square membrane. Section V gives a concluding discussion.

II. CAVITY DEPHASING DYNAMICS

Our starting point is the standard single cavity mode op-
tomechanical Hamiltonian (1), but with a bath of mechanical
oscillator modes labeled by the index i = 0, 1, 2, . . . , N ≫
1, instead of the usually considered single-mode case [1].
Hamiltonian (1) neglects cavity-mechanical oscillator bath
interaction terms of the form a2(bi + b†

i ) and a†2(bi + b†
i ),

which describe, for example, two photons annihilating and
creating a bath phonon (a2b†

i ), or conversely a bath phonon
annihilating and creating two cavity photons (a†2bi). As we
shall see later in Secs. III and IV, such terms can be neglected
since the coupling constant λi is suppressed for phonon wave-
lengths much smaller than the cavity size.

We now briefly review the steps for solving the
time-dependent Schrödinger equation with Hamiltonian (1)
[7,8,11]; further details of the derivation are given in Ref. [11].
We assume that the cavity mode system can be prepared in an
initial product state with the bath, the latter of which is as-
sumed to be in a thermal state: ρinitial = ρc ⊗ ρbath. The cavity
system initial state is decomposed in terms of the Fock (i.e.,
number) state basis, ρc = ∑

n,n′ cnn′ |n〉〈n′|, and the thermal
bath state expressed in a coherent-state basis:

ρbath =
∏

i

1

π (eβ h̄ωi − 1)

∫
dα2

i exp[−|αi|2

× (eβ h̄ωi − 1)]|αi〉〈αi|, (3)

where β−1 = kBT , with kB being Boltzmann’s constant and T
the bath temperature. Solving first the Schrödinger equation
for an initial basis state |n, {αi}〉 and then tracing out the bath,
we obtain for the reduced state of the cavity mode: ρc(t ) =∑

n,n′ cnn′ |n(t )〉〈n′(t )|, where the time-dependent outer
product is [11]

|n(t )〉〈n′(t )| = |n〉〈n′| exp

{
− it

[
�(n − n′) − (n + n′ + 1)(n − n′)

∑
i

(�λi)2

ωi

]

− i(n + n′ + 1)(n − n′)
∑

i

(
�λi

ωi

)2

sin (ωit ) − 2(n − n′)2
∑

i

(
�λi

ωi

)2

coth

(
β h̄ωi

2

)
sin2

(ωit

2

)}
. (4)

Note that this outer product is time independent for
n = n′, a consequence of the fact that the system

oscillator Hamiltonian commutes with the system-bath inter-
action Hamiltonian.
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We now discuss the various terms appearing in Eq. (4).
The first imaginary term −i�(n − n′)t in the argument of the
exponential is just the free cavity oscillator system evolution.
The second imaginary term gives rise to a cavity frequency
renormalization �′ = � − ∑

i(�λi )2/ωi [from the (n − n′)
part], as well as an induced Kerr nonlinear self-interaction
[from the (n2 − n′2) part] in the oscillator Hamiltonian:

H = h̄�a†a + h̄�kerr (a
†a)2, (5)

where �kerr = −∑
i(�λi)2/ωi. The third imaginary term

cancels the just-described second imaginary term in the short-
time limit t → 0, while it decays to zero as t increases due to
the oscillating sine term; later below, we give a more quantita-
tive specification of the short- and long-time regimes. Finally,
the fourth, real term in the argument of the exponential in
Eq. (4) can result in dephasing, causing the off-diagonal terms
of the system reduced density operator in the number state
basis to decrease with increasing time.

To obtain a more quantitative understanding of the time-
dependent behavior of the various terms appearing in the outer
product of expression (4), we approximate the discrete sum
over the acoustic bath modes with a continuous frequency
integral as follows:

π
∑

i

λ2
i f (ωi ) ≈ C

∫ ∞

ω1

dωωs f (ω)e−ω/ωu , (6)

where the function f (ω) is determined by the ωi dependence
of a given term in the argument of the exponential in Eq. (4)
and C is a frequency-independent coupling strength constant;
approximation (4) necessarily requires N ≫ 1 for a suffi-
ciently dense bath frequency spectrum. Following common
convention [21], we term optomechanical cavity-acoustic bath
systems with exponent s = 1 “Ohmic” and systems with ex-
ponent s < 1 “sub-Ohmic.” The value of the exponent s is
determined by the combined frequency dependencies of the
acoustic bath mode spectral density and of the optomechanical
coupling λi. For the concrete example optomechanical model
realizations in Secs. III and IV, we will see that the exponents
s = −1 and s = 0 correspond to 1D and 2D acoustic environ-
ments, respectively.

Depending on the value of the exponent s and the form of
f (ω), an upper cutoff function with some characteristic cutoff
frequency ωu may be required in order to regularize a possible
UV divergence as ω → ∞. For the model realizations consid-
ered in the following sections, an upper cutoff arises naturally
through a suppression of the optical-mode system-acoustic
bath coupling when the acoustic-phonon wavelength becomes
smaller than a characteristic optical cavity system dimension.
Note that the functional form of the upper cutoff dependencies
for these model examples is not in fact of the same exponential
cutoff form as assumed in Eq. (6). Nevertheless, it is still
informative to consider the commonly used exponential cutoff
since it readily allows closed form analytical expressions for
the various summation terms appearing in Eq. (4) approxi-
mated as integrals.

Furthermore, a lower-frequency cutoff, which we denote
as ω1 (
 ωu) in Eq. (6), may be required depending on the
value of the exponent s and the form of the function f (ω)
in order to regularize a possible IR divergence as ω → 0.

For the model realizations considered in the following
sections, a lower frequency cutoff arises naturally as the
fundamental, lowest-frequency mode ω1 of the acoustic en-
vironment medium which has a finite size.

Using the integral approximation (6), the two imaginary,
induced phase terms in Eq. (4) can be evaluated approximately
analytically by expressing them in terms of the incomplete
Gamma function �(s, z) = ∫ ∞

z dxxs−1e−x:

it (n + n′ + 1)(n − n′)
∑

i

�2λ2
i

ωi

≈ it (n + n′ + 1)(n − n′)
C�2

π

∫ ∞

ω1

dωωs−1e−ω/ωu

= it (n + n′ + 1)(n − n′)
C�2ωs

u

π
�

(
s,

ω1

ωu

)
, (7)

and

− i(n + n′ + 1)(n − n′)
∑

i

�2λ2
i

ω2
i

sin (ωit )

≈ −i(n + n′ + 1)(n − n′)
C�2

π

∫ ∞

ω1

dωωs−2 sin (ωt )e−ω/ωu

= −i(n + n′ + 1)(n − n′)
C�2ωs−1

u

π

× Im

[
(1 − iωut )1−s�

(
s − 1,

ω1

ωu
(1 − iωut )

)]
. (8)

The real, induced dephasing term in Eq. (4), with integral
approximation (6), can only be expressed analytically in cer-
tain time-range limits; we will consider the high-temperature
limit defined as kBT � h̄/t (equivalently t � β h̄), for which
the coth function can be expanded to leading order. The de-
phasing term can then similarly be expressed approximately
in terms of incomplete Gamma functions:

− 2(n − n′)2
∑

i

(
�λi

ωi

)2

coth

(
β h̄ωi

2

)
sin

(ωit

2

)2

≈ −2C�2

π
(n − n′)2

∫ ∞

ω1

dωωs−2 coth

(
β h̄ω

2

)

× sin

(
ωt

2

)2

e−ω/ωu

≈ −2C�2

π
(n − n′)2

∫ ∞

ω1

dωωs−2 2

β h̄ω
sin

(
ωt

2

)2

e−ω/ωu

= −2C�2

π
(n − n′)2 ωs−2

u

β h̄

{
�

(
s − 2,

ω1

ωu

)

− Re

[
(1 − iωut )2−s�

(
s − 2,

ω1

ωu
(1 − iωut )

)]}
. (9)

In the following three sections, we explore the time de-
pendencies of Eqs. (8) and (9) for the values s = 1, 0,−1,
respectively. With the presence of the two frequency scales
ω1 and ωu (≫ω1), we have three different time range scales:
the short time limit range t 
 ω−1

u , intermediate time range
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FIG. 1. Sum of the two induced-phase terms (7) and (8) divided
by its long time (t � ω−1

1 ) analytical expression as a function of
dimensionless time ωut , where we set ω1/ωu = 0.001. The inset
gives the same normalized phase terms plotted over much longer
timescales, indicating the expected approach to 1, hence validating
the analytical approximation in the long-time limit.

ω−1
u 
 t 
 ω−1

1 , and the long time limit range t � ω−1
1 .

Note that the high-temperature limit corresponds to requir-
ing kBT � h̄ω1 for the intermediate time range. We shall
focus below on the intermediate and long time ranges, de-
riving analytical approximations to the induced phase and
dephasing terms by expanding in frequency ratio parameter
ω1/ωu (≪1). The numerically evaluated sum of the two
induced phase terms (7) and (8) is plotted versus time in Fig. 1,
while the numerically evaluated dephasing term integral ex-
pression given in the second line of Eq. (9) is plotted versus
time in Fig. 2. Both plots are normalized by their correspond-
ing analytical approximations derived below in the ω1t → ∞
limit, facilitating a check of the analytical approximations in
the long-time limit. The analytical approximations derived
below for the net induced phase and dephasing terms are
summarized in Table I.

FIG. 2. The numerically evaluated, exact integral expression for
the dephasing term given in Eq. (9) divided by its long-time (t �
ω−1

1 ) analytical expression as a function of the dimensionless time
ωut , with ω1/ωu = 0.001 and β h̄ωu = 10. The inset gives the same
normalized dephasing terms plotted over much longer timescales,
indicating the expected approach to 1, hence validating the analytical
approximation in the long-time limit.

A. Ohmic, s = 1 environment case

We begin with the Ohmic case s = 1, which corresponds to
a 3D acoustic environment medium. The first induced phase
term (7) is approximately it (n + n′ + 1)(n − n′)C�2ωu

π
, where

we have expanded the incomplete Gamma function to leading
order using the fact that ω1/ωu ≪ 1. We see that this term
diverges linearly with the upper frequency cutoff ωu.

In the intermediate time range (ω−1
u 
 t 
 ω−1

1 ), the sec-
ond induced phase term (8) gives approximately −i(n + n′ +
1)(n − n′)C�2

2 , while for the long time limit (t � ω−1
1 ) we ob-

tain approximately −i(n + n′ + 1)(n − n′)C�2

π

cos(ω1t )
ω1t ; in both

ranges, the second phase term is small compared with the
above first phase term, as remarked previously.

The dephasing term (9) in the high-temperature limit
and intermediate time range becomes approximately −(n −
n′)2C�2[ 1

π
ln( β h̄ωu

2π
) + (β h̄)−1t], with a leading linear depen-

dence on time t . Note that in order to obtain the correct,
logarithmically diverging term in ωu appearing in the latter
approximation, we instead used the exact solution to the de-
phasing term for ω1 = 0 derived in Ref. [11]. In the long-time
limit (t � ω−1

1 ), the dephasing term (9) becomes approxi-
mately −(n − n′)2 2C�2

πβ h̄ω1
. Interestingly, this result is finite and

independent of time, so that the final, reduced state ρc of
the cavity system mode will only be partially dephased in
the Fock state basis. This is a consequence of the finite-sized
volume of the acoustic environment medium, as signified by
the nonzero fundamental frequency ω1 of the medium. We
see in the following that partial dephasing also occurs for the
s = 0 and s = −1 cases, again a consequence of the finite
dimensions of the corresponding acoustic environments.

In Fig. 2, the approach to the above-described, constant
long-time limit displays oscillatory behavior. This arises from
the subleading contribution to the dephasing term, which takes
the form −(n − n′)2 2C�2

πβ h̄ω1

sin(ω1t )
ω1t . Oscillatory behavior also

occurs for the s = 0 and s = −1 cases, as seen in Fig. 2,
arising from similar subleading terms.

B. Sub-Ohmic, s = 0 environment case

For the sub-Ohmic s = 0 case, which corresponds to a 2D
acoustic environment medium, the first induced phase term (7)
is approximately −it (n + n′ + 1)(n − n′)C�2

π
[ln( ω1

ωu
) + γ ], to

leading order in an ω1/ωu (≪1) expansion, where γ ≈
0.5772 . . . is the Euler-Mascheroni constant. Note that this
phase term is both logarithmically UV (ωu → ∞) and IR
(ω1 → 0) divergent.

For the intermediate time range (ω−1
u 
 t 
 ω−1

1 ), the sec-
ond induced phase term (8) gives approximately it (n + n′ +
1)(n − n′)C�2

π
[ln(ω1t ) − 1 + γ ]. Combining with the above

approximate expression for the first phase term, we obtain
it (n + n′ + 1)(n − n′)C�2

π
[ln(ωut ) − 1], so that the net in-

duced phase term is logarithmically divergent in the upper
frequency cutoff ωu for the intermediate time range. In the
long-time limit (t � ω−1

1 ) the phase term (8) approximates to
−i(n + n′ + 1)(n − n′)C�2

π
cos ω1t

ω2
1t

. Again, we note that, in the
long-time limit, this phase term becomes negligible compared
with the first induced-phase term.
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TABLE I. Leading order in ω1/ωu expansion approximations to the (a) net induced phase terms and (b) dephasing terms in the intermediate
time range (ω−1

u 
 t 
 ω−1
1 ) and long-time range (t � ω−1

1 ) for Ohmic (s = 1) and sub-Ohmic (s = 0, −1) bath spectral densities.

(a) Net induced phase (intermediate time range) Net induced phase (long time range)

s = 1 it (n + n′ + 1)(n − n′)C�2ωu
π

it (n + n′ + 1)(n − n′)C�2ωu
π

s = 0 it (n + n′ + 1)(n − n′)C�2

π
[ln(ωut ) − 1] −it (n + n′ + 1)(n − n′)C�2

π
[ln(ω1/ωu) + γ ]

s = −1 it2(n + n′ + 1)(n − n′)C�2

4 it (n + n′ + 1)(n − n′)C�2

πω1

(b) Dephasing term (intermediate time range) Dephasing term (long time range)

s = 1 −(n − n′)2C�2
[

1
π

ln(β h̄ωu/2π ) + (β h̄)−1t
] −(n − n′)2 2C�2

πβ h̄ω1

s = 0 −(n − n′)2 C�2

πβ h̄

[
3
2 − γ − ln(ω1t )

]
t2 −(n − n′)2 C�2

πβ h̄ω2
1

s = −1 −(n − n′)2 C�2

πω1β h̄ t2 −(n − n′)2 2C�2

3πβ h̄ω3
1

The dephasing term (9) in the high-temperature limit
and intermediate time range becomes approximately −(n −
n′)2 C�2

πβ h̄ [ 3
2 − γ − ln(ω1t )]t2. In contrast with the correspond-

ing s = 1 dephasing term given in the previous section, the
s = 0 dephasing term is not UV divergent, but instead is
IR divergent in the limit ω1 → 0. In the long-time limit
(t � ω−1

1 ), the dephasing term (9) becomes approximately
−(n − n′)2 C�2

πβ h̄ω2
1
.

C. Sub-Ohmic, s = −1 environment case

For the sub-Ohmic s = −1 case, which corresponds to
a 1D acoustic environment medium, the first induced phase
term (7) is approximately it (n + n′ + 1)(n − n′)C�2

πω1
. In con-

trast to the corresponding s = 0 phase term given in the
previous section, this s = −1 phase term is IR divergent but
not UV divergent.

For the intermediate time range (ω−1
u 
 t 
 ω−1

1 ), the sec-
ond induced phase term (8) gives approximately −it (n + n′ +
1)(n − n′)C�2

πω1
[1 − π

4 ω1t]. Combining with the above approx-
imate expression for the first phase term, we obtain for the net
phase term: it2(n + n′ + 1)(n − n′)C�2

4 , which is neither UV
nor IR divergent. In the long-time limit (t � ω−1

1 ) the phase
term (8) approximates to −i(n + n′ + 1)(n − n′)C�2

π
cos ω1t

ω3
1t

,
which becomes negligible compared with the first induced-
phase term.

The dephasing term (9) in the high-temperature limit
and intermediate time range becomes approximately −(n −
n′)2 C�2

πω1β h̄ t2. Similarly to the corresponding s = 0 dephasing
term given in the previous section, the s = −1 dephasing
term, is IR divergent. In the long-time limit (t � ω−1

1 ), the
dephasing term (9) becomes approximately −(n − n′)2 2C�2

3πβ h̄ω3
1
.

III. LC CIRCUIT-ELASTIC STRIP MODEL

In this section we consider a model of an LC circuit ca-
pacitively coupled to a long mechanical strip (Fig. 3), with
several details of the derivation given in the Appendix. We
show that this model system maps onto the sub-Ohmic s =
−1 case considered in Sec. II C (although with a different
cutoff function and with some modifications to the integral
approximation over the bath degrees of freedom). We only
consider dephasing, omitting the induced phase terms, i.e.,

cavity frequency renormalization and induced Kerr nonlinear-
ity; the latter phase terms are orders of magnitude smaller than
the bare LC circuit frequency phase term for the parameters
considered later below in this section. We shall furthermore
focus primarily on dephasing during the intermediate time
range, where most of the dephasing occurs for the considered
parameter values.

Referring to Fig. 3, the lower conductor of the capacitor
forming the LC circuit is assumed fixed, while the upper con-
ductor is a flexing, metalized segment (length �L) of a long
elastic mechanical strip (length L ≫ �L). The transverse
width W and thickness T dimensions satisfy T 
 W ≪ L.
The lower capacitor plate is assumed also to have length �L
and the same width W as the strip, with a small equilibrium
vacuum gap between the upper and lower plates: d 
 W, �L.
The approximate mutual capacitance between the LC circuit
and the undisplaced strip is approximately C0 = ε0W �L/d
and we denote the circuit inductance as L.

Neglecting motion in the transverse y and longitudinal x
directions, we denote the flexing mechanical displacement
field of the strip in the transverse z direction by uz(x, t ). For
sufficiently large tensile forces F applied at the clamped strip
ends such that the elastic bending contribution can be ne-
glected, the Lagrangian for the model, LC circuit-mechanical
strip system in the resulting string-like limit is as follows:

L = ρmW T

2

∫ L

0
dx

(
∂uz

∂t

)2

− F

2

∫ L

0
dx

(
∂uz

∂x

)2

+ 1

2
C[uz]

(
d�

dt

)2

− �2

2L
, (10)

FIG. 3. Effectively 1D optomechanical scheme comprising an
LC circuit oscillator (system) capacitively coupled to a long oscil-
lating strip with (bath) via a metalized length �L.
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where C[uz] denotes the mechanical displacement-dependent
capacitance (with C[uz = 0] ≡ C0, the equilibrium capac-
itance), � is the inductor flux coordinate, and ρm is the
mechanical strip mass density. Note that Eq. (10) neglects
attractive van der Waals-Casimir forces or the possibility of
stray, excess charges on the capacitor plates.

Imposing fixed displacement field boundary conditions at
the strip ends, uz(0) = uz(L) = 0 and solving for the free
mechanical normal-mode frequencies (see the Appendix), we
have

ωi = π i

√
F

2mL
, i = 1, 2, . . . , (11)

with m = ρmW T L/2 being the effective mass of the me-
chanical modes. Performing a Legendre transformation to
obtain the Hamiltonian from Lagrangian (10), introducing the
mechanical mode and LC circuit creation and annihilation op-
erators, and expanding the LC circuit frequency � = 1/

√
LC

and creation and annihilation operators to first order in the dis-
placement field uz, we obtain the optomechanical Hamiltonian
(1) after a rotating wave approximation, where the coupling
constant λi takes the following form (see the Appendix for
derivation details):

λi = − 1

2d

(
h̄

2mωi

)1/2

sin

(
π i

2

)
sinc

(
ωi

ωu

)
, i = 1, 2, . . . .

(12)

Here, sincx := sin x/x and the upper cutoff frequency is

ωu = 2

�L

√
FL

2m
. (13)

Comparing Eq. (13) with the mode-frequency expression
(11), we see that the upper cutoff frequency corresponds to
the characteristic wavelength π�L; in the limit where the
mechanical mode wavelength becomes much smaller than the
capacitor length �L, the coupling between the cavity and
mechanical strip spatially averages to zero, as expressed by
the decaying sinc function appearing in Eq. (12).

With equally spaced, harmonic mode frequencies as given
by Eq. (11), we see from Eq. (4) that the dephasing
term oscillates, completely vanishing at times t = 2πn/ω1,
n = 0, 1, 2, . . . , where from Eq. (11) the lower cutoff
frequency is

ω1 = π

√
F

2mL
. (14)

We note that such a full rephasing effect is a consequence of
having a 1D, harmonic acoustic environment of finite length
L with uniformly distributed, discrete modes. This periodic,
full rephasing is to be contrasted with the nonzero, long-time-
constant dephasing expressions obtained in Sec. II. The origin
for this discrepancy is the breakdown of the integral approx-
imation for the mode sums due to the strongly IR divergent
nature of the latter appearing in Eq. (4) for the elastic strip
model.

An improved integral approximation for the mode sums
can be obtained by employing the Euler-Maclaurin series
formula to the desired order. In particular, utilizing Eq. (12)
for λi and the Euler-Maclaurin series approximation to first

order, for example, the integral of the bath spectral den-
sity approximation (6) in the large-strip-length-L limit is
replaced by

π
∑

i

λ2
i f (ωi ) ≈ C

∫ ∞

ω1

dω ω−1 f (ω)sinc2

(
ω

ωu

)
+ C f (ω1),

(15)

where the coupling strength constant is

C = h̄

8d2
√

FρmW T
, (16)

and we have approximated sinc(ω1/ωu) ≈ 1 since ω1 
 ωu.
Comparing the integral term in Eq. (15) with Eq. (6), we

see that the LC circuit-elastic strip (string) model corresponds
to the s = −1 sub-Ohmic case, but with an upper cutoff of the
form sinc2(ω/ωu) instead of the previously considered expo-
nential cutoff form exp(−ω/ωu). Equation (15) gives for the
dephasing term in the intermediate time range (ω−1

u 
 t 

ω−1

1 ): −(n − n′)2 2C�2

πω1β h̄ t2, approximately independent of the
form of the upper cutoff. Note that the factor of two difference
from the corresponding s = −1 dephasing expression given
in Table I(b) arises from the additional correction term in
Eq. (15); including higher-order terms in the Euler-Maclaurin
series approximation gives a factor closer to 2.5.

From the ω−1
1 dependence of the analytical approxima-

tion to the s = −1 dephasing term [see Table I(b)], it would
seem that the dephasing rate can be made arbitrarily large by
progressively increasing the strip length L. However, given
that the optomechanical Hamiltonian approximation (1) re-
sults from expanding the LC circuit frequency to first order
in the mechanical displacement field (i.e., weak-coupling ap-
proximation), we necessarily require that mechanical induced
fluctuations in the cavity frequency satisfy �� 
 �. From
Eqs. (1) and (12), and assuming a thermal equilibrium state
for the mechanical strip modes, the latter requirement gives
(see the Appendix for the derivation details)

∞∑
i=1

h̄

8mωid2
sin2

(
π i

2

)
sinc2

(
ωi

ωu

)
coth

(
β h̄ωi

2

)

 1,

(17)

with ωi and ωu given by Eqs. (11) and (13), respectively.
To gain a sense of the dephasing rate magnitudes, we

assume example parameter values similar to the silicon ni-
tride vibrating string device of Ref. [22] (although allowing
for much longer lengths L than the actual 60 μm), and also
assume typical superconducting microwave LC circuit param-
eters. In particular, we adopt the values ρm = 103 kg/m3,
F = 10−5 N, W = 1 μm, T = 0.1 μm, and L � 1 cm.
For the capacitor dimensions, we assume �L = 10 μm and
d = 0.1 μm. The circuit mode frequency is assumed to
be �/(2π ) = 5 GHz, and the acoustic bath temperature is
taken to be 50 mK. With these assumed values, we have
ωi/(2π ) = 1.6i 10 cm

L kHz and ωu/(2π ) = 10 MHz, giving
ω1/ωu = 2 × 10−4 10 cm

L . The dephasing term then becomes

approximately −21(n − n′)2 L
10 cm

t2

μs2 in the intermediate time

range 0.02 μs 
 t 
 100 L
10cm μs. Thus we see that the phase

interference between initial energy superposition states of the
LC circuit mode is exponentially suppressed on timescales
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FIG. 4. Optomechanical scheme comprising a cavity light mode
(system) trapped between oppositely facing mirrors interacting via
light pressure with a thin dielectric membrane of large transverse
extent and undergoing transverse flexural oscillations (bath).

of microseconds for few-centimeter-long acoustic strip res-
onators; we note that such dephasing timescales are roughly
of the same order as relaxation and decoherence timescales
for superconducting circuits reported in recent experiments
[23–25]. Rephasing occurs after a time ≈0.6 L

10 cm msec, ne-
glecting other dephasing mechanisms.

Given that the LC circuit mode frequency satisfies � =
500ωu, the cavity-mechanical oscillator bath interaction terms
of the form a2(bi + b†

i ) and a†2(bi + b†
i ) may be neglected

as discussed in the beginning of Sec. II (corresponding
to the rotating wave approximation made in the derivation
of the Hamiltonian given in the Appendix). Furthermore,
condition (17) on the strip length can be approximated as
L 
 16βd2F ≈ 2 × 106 m, which is orders of magnitude
longer than in any conceivable circuit optomechanical de-
vice operating at cryogenic temperatures, and so the standard
optomechanical interaction term in Eq. (1) is well justified.
Finally, we note that, e.g., a strip length L = 10 cm, the
LC-induced phase term

∑
i �

2λ2
i /ωi is approximately 3 ×

103 s−1, which is seven orders of magnitude smaller than the
bare LC frequency � = 2π × 5 × 109 s−1; the LC frequency
renormalization and induced Kerr nonlinearity are therefore
negligible.

IV. OPTICAL CAVITY-ELASTIC MEMBRANE MODEL

In this section we consider a model of a 3D optical cavity
coupled to a large, square mechanical membrane (Fig. 4)
[20]. We show that this model system maps onto the sub-
Ohmic s = 0 case considered in Sec. II C. As in the previous
section, we will only consider in detail the dephasing term
in the intermediate time range, omitting the induced phase
term (i.e., cavity frequency renormalization and induced Kerr
nonlinearity).

The cavity-membrane model system can be approximately
described by the optomechanical Hamiltonian (1) (see, e.g.,
Ref. [26]), with the mechanical normal-mode frequencies of
the vibrating membrane given by

ωix iy = π

√
F
4m

(
i2
x + i2

y

)
, ix, iy = 1, 2, . . . , (18)

where ix, iy are the mode labels marking the spatial depen-
dencies of the modes in the transverse x and y coordinate
dimensions of the membrane surface, F is the tensile force
per unit length applied at the clamped membrane edges and m
is the effective mass of the mechanical modes:

m = ρmL2T/4, (19)

with the membrane having side dimension L and thickness T ;
the tensile force is here assumed to be sufficiently large that
the stretching potential energy dominates over the bending
potential energy of the mechanical structure, hence defining
the so-called membrane limit.

Restricting to cavity Gaussian beam modes, the cavity
normal-mode frequencies are approximately given by the fol-
lowing expression [27]:

�σ = σπc

l
+ 2c

l
tan−1

(
l

2 f

)
, σ = 1, 2, . . . , (20)

where l is the cavity length, f is a length parameter termed the
“Rayleigh range” that characterizes the mode beam profile,
and c is the speed of light in vacuum.

The optomechanical coupling between the Gaussian beam
cavity modes (labeled by σ ) and mechanical membrane
modes (labeled by ix, iy) can be approximated as follows [26]:

λσ,ix iy = (−1)σ
√

h̄

2mωix iy

(n2 − 1)T �σ

lc
sin

(
2�σ z0

c

)

× exp

(
−

ω2
ix iy

ω2
u

)
sin

(
ixπ

2

)
sin

(
iyπ

2

)
, (21)

where z0 is the location of the membrane on the cavity’s longi-
tudinal axis, with the membrane positioned such that its center
coincides with the center of the cavity mode beam “waist”
(i.e., the cavity midpoint with narrowest optical beam width
defined as wσ = √

2 f c/�σ ), n here denotes the membrane
material optical index of refraction, and

ωu =
√

8F
ρmT w2

σ

(22)

is the upper frequency cutoff. Expression (21) assumes that
the beam waist wσ is much smaller than the membrane side
dimension L.

Comparing Eq. (22) with the mechanical mode frequency
expression (18), we see that the upper cutoff frequency cor-
responds to a mechanical mode wavelength comparable to
the optical beam waist wσ ; in the limit where the mechanical
mode wavelength becomes much smaller than the beam waist,
the coupling between the cavity and mechanical membrane is
exponentially suppressed as the square of the mode frequency.
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The integral approximation (6) gives

π
∑
ix,iy

λ2
σ,ix iy f

(
ωix iy

) ≈ C
∫ ∞

ω1

dω f (ω) exp

(
−2ω2

ω2
u

)
, (23)

where, from Eq. (18), the lower cutoff frequency is

ω1 = π

√
F
2m

, (24)

and the coupling strength constant is

C = h̄

F

[
(n2 − 1)�σ T sin

( 2�σ z0
c

)
2lc

]2

. (25)

Comparing the right-hand sides of Eqs. (23) and (6), we see
that the optical cavity-elastic membrane model corresponds
to the s = 0 sub-Ohmic case, but with an upper cutoff of
the form exp(−2ω2/ω2

u ) instead of the previously considered
exponential cutoff form exp(−ω/ωu).

Equation (23) gives for the dephasing term in the inter-

mediate time range (ω−1
u 
 t 
 ω−1

1 ) −(n − n′)2 1.3C�2
σ

πβ h̄ [ 3
2 −

γ − ln(ω1t )]t2, approximately independent of the form of the
upper cutoff. The factor 1.3 difference with the correspond-
ing s = 0 dephasing expression given in Table I(b) accounts
for the error in the continuous frequency integral approxi-
mation to the discrete sum over membrane modes given by
Eq. (23). This factor 1.3 correction was simply determined
by trial numerical fitting of the integral approximation over
the intermediate time range, since there is no straightforward
counterpart to the Euler-Maclaurin formula that gives the cor-
rection to the integral approximation of a double sum [28].

To gain a sense of the dephasing rate magnitudes, we as-
sume example parameter values similar to the silicon nitride
vibrating membrane device of Ref. [29] (although allowing
for much longer membrane side dimensions L than the ac-
tual 1 mm). In particular, we adopt the values n = 2, ρm =
3.4 × 103 kg/m3, F = 43 N/m, T = 50 nm, and L � 1 cm.
For the optical mode, we assume a cavity length l = 3.7 cm
and infrared wavelength λσ = 1064 nm, corresponding to
frequency �σ/(2π ) = 2.8 × 1014 Hz and beam waist wσ =
90 μm, and suppose that the z0 location of the membrane in
the cavity is chosen such that the factor | sin(2�σ z0/c)| = 1 in
the coupling strength constant expression (25). With these as-
sumed values, we have ωix iy/(2π ) = 2.5(i2

x + i2
y )1/2 10 cm

L kHz
and ωu/(2π ) = 2.5 MHz, giving ω1/ωu = 1.4 × 10−3 10 cm

L .
The dephasing term then becomes approximately −6 ×
10−6(n − n′)2[0.9 − ln(0.02 10 cm

L
t

μs )] T
K

t2

μs2 in the intermedi-

ate time range 0.06 μs 
 t 
 45 L
10cm μs, where T

K refers to
the membrane temperature expressed in kelvin. In the long
time range ω−1

1 
 t , the dephasing term oscillates strongly
but does not completely vanish, in contrast with the strip case
considered in Sec. III; due to the nonuniform distribution of
the membrane vibrational modes, complete rephasing does
not occur.

From the just-derived expression for the dephasing term,
we see that it scales approximately quadratically with the
membrane edge length L close to the upper limit ω−1

1 of the
intermediate time range. The resulting estimated dephasing
term magnitudes for few centimeter scale-sized membranes
are such that the contribution to dephasing of the optical mode

initial Fock state superposition states due to the membrane
environment is expected to be negligible compared with that
of other sources, such as photon loss from the cavity.

From the form of the coupling strength constant (25), de-
phasing due to the membrane can also be increased somewhat
by reducing the tensile force per unit length F applied to
the membrane edges. However, the membrane approximation
assumed in the present investigation eventually breaks down
as F is reduced; the bending potential-energy contribution to
the mechanical structure would need to be taken into account,
with the structure behaving instead as a so-called plate having
a qualitatively different flexural vibration mode spectrum.

Given that the cavity mode frequency satisfies �σ =
108ωu, the cavity-mechanical oscillator bath interaction terms
of the form a2(bi + b†

i ) and a†2(bi + b†
i ) may be neglected,

as discussed in the beginning of Sec. II. In contrast with
the cavity-strip system considered in Sec. III, the membrane-
induced fluctuations in the cavity mode frequency remain
constant with increasing membrane edge length L (with the
tensile force per unit length, F , kept fixed) and are negligible
compared with the cavity mode frequency, so that there is
no upper limit on the membrane edge length for the validity
of the standard optomechanical interaction term in Eq. (1).
For example, for a membrane edge length L = 10 cm, the
induced phase term

∑
ix,iy

�2
σ λ2

σ,ix iy/ωix iy is approximately 2 ×
10−3 s−1, which is eighteen orders of magnitude smaller than
the bare LC frequency �σ = 2π × 2.8 × 1014 s−1; the cavity
frequency renormalization and induced Kerr nonlinearity are
therefore negligible.

V. CONCLUSION

In the present work, we have investigated the quantum
dynamics of optomechanical systems in the unusual situation
where the mechanical subsystem comprises a dense spectrum
of acoustic modes, functioning effectively as an environment
for a single optical mode; in particular, the standard optome-
chanical interaction results in dephasing without dissipation
of initial photon number superposition states of the optical
mode.

We found that the optical-mode effective dynamics is qual-
itatively affected by the spatial dimension of the mechanical
subsystem, with the dynamics for one-dimensional mechani-
cal environments (which can be realized, for example, as long
elastic strings) exhibiting strong power-law infrared diver-
gences, two-dimensional mechanical environments (such as
large-area elastic membranes) exhibiting weakly logarithmic
infrared and ultraviolet divergences, and three-dimensional
mechanical environments (such as large volume elastic solids)
exhibiting strong power-law ultraviolet divergences. The in-
frared divergences are regularized by accounting for the
actual, finite size of the mechanical structures, characterized
by the lowest mechanical mode frequency ω1. On the other
hand, the ultraviolet divergences are regularized by the sup-
pression of the optomechanical interaction on length scales
smaller than the dimensions of the optomechanical interaction
region, characterized by a given upper cutoff frequency ωu

(�ω1).
We furthermore found that the cavity mode effective dy-

namics depends qualitatively on the timescales considered,

063509-8



CAVITY MODE DEPHASING VIA THE OPTOMECHANICAL … PHYSICAL REVIEW A 104, 063509 (2021)

with three different ranges delineated by the inverse frequen-
cies ω−1

1 and ω−1
u . Dephasing predominantly occurs during

the so-called “intermediate” range ω−1
u 
 t 
 ω−1

1 , with a
certain degree of rephasing occurring during the so-called
long time range ω−1

1 
 t .
Two possible realizations were considered in some detail,

the first being a long elastic strip capacitively coupled to an
LC circuit over a short segment of the strip, and an opti-
cal cavity mode coupled via light pressure to a large area
elastic membrane. While the estimated dephasing rates re-
sulting from these realizations are relatively small compared
with photon loss rates from the cavities, they nevertheless
afford useful model systems for clarifying our understanding
of system-environment quantum dynamics for the unusual
optomechanical type of interaction, where dephasing occurs
without dissipation.

The optomechanical models considered in the present
work may be interpreted as analogs for investigating various
relativistic quantum information processes, including gravita-
tionally induced dephasing (as briefly discussed in the present
work) [10–12] and gravitationally induced entanglement gen-
eration [30], discussed in a related paper [9]. By being able
to carry out exact analytical calculations in the case of the
optomechanical coupling, useful insights may be gained con-
cerning the combined dephasing and entanglement dynamics
of gravitationally coupled quantum matter systems [30].
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APPENDIX: LC CIRCUIT-ELASTIC STRIP MODEL

1. Derivation of the model Hamiltonian

Starting from the Lagrangian in Eq. (10) and performing a
Legendre transformation, the Hamiltonian for the model can
be found as

H =
∫ L

0
dx

[
πz(x, t )2

2ρmW T
+ F

2

(
∂uz

∂x

)2]
+ Q2

2C[uz]
+ �2

2L
,

(A1)

where Q and π are the corresponding conjugate momenta for
the flux and the displacement field:

Q = δL

δ�̇
, (A2a)

πz = δL

δu̇z
. (A2b)

Since we require that both ends of the strip are fixed with an
applied tensile force F , the field uz then satisfies the boundary
condition: uz(0) = uz(L) = 0, and we can expand it in the
normal-mode basis as

uz(x, t ) =
∞∑

i=1

xi(t )ui(x), (A3)

where ui(x) = sin( π ix
L ), i = 1, 2, . . . . Substituting Eq. (A3)

into Eq. (A1), the strip Hamiltonian takes the independent

harmonic-oscillator form:

H =
∑

i

(
1

2m
p2

i + 1

2
mω2

i x2
i

)
+ Q2

2C
+ �2

2L
, (A4)

where pi = m dxi
dt , m is the mechanical mode effective strip

mass:

m = 1
2ρmW T L, (A5)

and ωi is the normal-mode frequency:

ωi = π i

L

√
F

ρmW T
. (A6)

Quantization proceeds by promoting the coordinates �,
xi and their conjugate momenta into operators and imposing
the usual commutation rules. Introducing the creation and
annihilation operators defined by

Q = −i

(
h̄

2

√
C
L

)1/2

(a − a†), (A7a)

� =
(

h̄

2

√
L
C

)1/2

(a + a†), (A7b)

xi =
(

h̄

2mωi

)1/2

(bi + b†
i ), (A7c)

pi = −i

(
mh̄ωi

2

)1/2

(bi − b†
i ), (A7d)

the Hamiltonian simplifies to

H = h̄�

(
a†a + 1

2

)
+

∑
n

h̄ωi

(
b†

i bi + 1

2

)
, (A8)

where � = 1/
√

LC; both � and the creation and annihi-
lation operators a†, a are functionals of the elastic strip
displacement field uz through their dependence on the strip
capacitance C[uz].

2. Derivation of the coupling constant λi

To obtain the optomechanical coupling between the LC
circuit and the mechanical mode, we expand � to first order
in the normal-mode displacement coordinates:

� ≈ �0 +
∑

i

∂�

∂xi

∣∣∣∣
xi=0

xi

= 1√
LC0

−
∑

i

�0

2C0

∂C
∂xi

∣∣∣∣
xi=0

(
h̄

2mωi

)1/2

(bi + b†
i )

= 1√
LC0

+
∑

i

�0λi(bn + b†
n), (A9)

where we define the coupling constant λi through the last line
of Eq. (A9). To be consistent with this linear approximation,
we must also expand to first order the LC oscillator creation
and annihilation operators in the displacement coordinates.
This results in additional interaction terms of the form a2(bi +
b†

i ) and a†2(bi + b†
i ), which are usually neglected through the
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so-called “rotating wave approximation” [31], hence resulting
in the Hamiltonian (1).

To determine the explicit form of the coupling constant λi,
we require the mode coordinate derivative of the capacitance.
Assuming a positive charge +Q placed on the upper con-
ductor of the capacitor and a negative charge −Q placed on
the lower conductor, the electric field between the conductors
can be found by solving the Laplace equation for the electric
potential φ:

∂2φ

∂z2
= 0, (A10)

where we neglect edge effects and approximate the electric
field to be along the z direction within the capacitor. With
the lower strip at z = −d and upper strip at z = uz(x), the
boundary conditions for the electric potential are

φ(x, z = −d ) = Vl , (A11a)

φ(x, z = uz(x)) = Vu, (A11b)

where Vl , Vu are the voltages on the lower and upper conduc-
tors. Since the displacement field uz is assumed to be much
smaller than d0, we can write the electric potential as a series
expansion φ = φ(0) + φ(1) + · · · . Substituting this series into
the boundary conditions (A11), we have

φ(0)(x,−d ) = Vl , (A12a)

φ(0)(x, 0) = Vu, (A12b)

and

φ(1)(x,−d ) = 0, (A13a)

φ(1)(x, 0) = −∂φ(0)(x, z)

∂z

∣∣∣∣
z=0

uz(x). (A13b)

Solving the Laplace equation for φ(0) and φ(1) and taking
the gradient, we obtain the electric field:

E = −∇(φ(0) + φ(1) )

= −�V

d

(
1 − uz(x)

d

)
ẑ, (A14)

where �V = Vu − Vl . To determine the relationship between
the charge Q and the voltage difference �V , we apply Gauss’s
law to a surface that just encloses the upper surface charge and
we have:

Q =ε0�VW �L

d
− ε0�VW

d2

∫ L+�L
2

L−�L
2

dxuz(x)

=C0�V − C0

�Ld

∫ L+�L
2

L−�L
2

dxuz(x). (A15)

With Eq. (A15), we have the expression for the capacitance:

C = Q

�V
= C0 − 1

�Ld

∫ L+�L
2

L−�L
2

dxuz(x). (A16)

Using the expansion for the displacement field Eq. (A3) and
substituting Eq. (A16) into Eq. (A9), we find

λi = − L

π id�L
sinc

(
π i�L

2L

)
sin

(
π i

2

)(
h̄

2mωi

)1/2

, (A17)

where sincx := sin x/x. Expressing the coupling constant λi

in a frequency-dependent form, we finally have the expression
for λi given by Eq. (12):

λi = − 1

2d
sinc

(
ωi

ωu

)
sin

(
π i

2

)(
h̄

2mωi

)1/2

, (A18)

where the upper cutoff frequency is

ωu = 2

�L

√
F

ρmW T
. (A19)

3. Derivation of the strip-length condition

From Eq. (A9), we have

� ≈ �0 +
∑

i

�0λi

(
2mωn

h̄

)1/2

xn. (A20)

Requiring that the variance of the capacitor frequency to be
small compared with the square of its bare frequency �2

0, we
have 〈(∑

i

�0λi

(
2mωi

h̄

)1/2

xi

)2〉

 �2

0. (A21)

For a thermal harmonic oscillator with mass m and frequency
ω, the variance for x is

〈x2〉 = h̄

2mω
coth

(
β h̄ω

2

)
, (A22)

so that Eq. (A21) becomes∑
i

λ2
i coth

(
β h̄ωi

2

)

 1, (A23)

where we use the fact that different mechanical modes are
statistically independent. Substituting the expression (12) for
λi into Eq. (A21), we obtain condition (17):

∑
i

h̄

8mωid2
sinc2

( ωi

ωu

)
sin2

(
π i

2

)2

coth

(
β h̄ωi

2

)

 1.

(A24)
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