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Higher-order exceptional point in a pseudo-Hermitian cavity optomechanical system
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Higher-order exceptional points (EPs), resulting from non-Hermitian degeneracies, have shown greater
advantages in sensitive enhancement than second-order EPs (EP2s). Therefore, seeking higher-order EPs in
various quantum systems is important for quantum information science. Here we propose a benchmark cavity
optomechanical (COM) system consisting of a mechanical resonator coupled to two cavities via radiation
pressure for predicting the third-order exceptional point (EP3). We first give the pseudo-Hermitian condition for
the non-Hermitian COM system by taking the bath effects into account. Then we consider the mechanical gain
effect, and we find that the pseudo-Hermitian COM system without PT symmetry can host both EP3 and EP2
for symmetric and asymmetric cavities. In the symmetric case, only EP3 or EP2 can be predicted in the parameter
space, but EP3 and EP2 can be transformed into each other by tuning the optomechanical coupling strength in the
asymmetric case. We further consider the case of one cavity with gain. For this case, the pseudo-Hermitian COM
system is PT symmetric and can also host EP3 or EP2. The influence of system parameters on them is discussed.
Our proposal provides a potential way to realize sensitive detection and study other physical phenomena around
higher-order EPs in non-Hermitian COM systems.
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I. INTRODUCTION

Recently, cavity optomechanical (COM) systems have
emerged as a field with numerous exciting prospects for
fundamental science and applications [1]. Generically, typ-
ical optomechanical systems are formed by a cavity with
two mirrors (one is fixed, and the other is movable) and
a mechanical resonator (MR). The radiation pressure pro-
portional to the cavity photon number acting on the MR
causes the movable mirror to vibrate. This vibration in turn
changes the length of the cavity (and thus the frequency of the
cavity modes) and gives rise to a nonlinearly optomechani-
cal coupling between the cavity and the mechanical modes.
Such an unconventional interaction results in rich back-
action effects, including sensing [2–5], ground-state cooling
[6,7], squeezed light generation [8–10], nonreciprocal trans-
port [11,12], optomechanically induced transparency [13–15],
coupling enhancement [16–18], and nonlinear behaviors (e.g.,
bi- and tristability and chaos) [19,20].

In addition, the realistic COM system is always inevitably
coupled to its surrounding environment, leading to the sys-
tem decoherence [21]. When considering its decoherence,
the open quantum system can be effectively described by a
non-Hermitian Hamiltonian H , which violates the Hermitian
condition (i.e., H �= H†) [22–24]. Generally speaking, the
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non-Hermitian Hamiltonian H does not have real eigenener-
gies. However, if a non-Hermitian Hamiltonian H satisfies the
pseudo-Hermitian condition UHU −1 = H†, with U being a
linear Hermitian operator, its eigenenergies can be either real
or complex-conjugate pairs [25,26]. The parity-time- (PT )
symmetric Hamiltonian, [H,PT ] = 0, is a special subset of
pseudo-Hermitian Hamiltonians [27]. By tuning one param-
eter of a pseudo-Hermitian system, the quantum phase tran-
sition from the PT -symmetric phase with real eigenenergies
to the PT -symmetry-broken phase with complex-conjugate
pairs eigenenergies can occur at the second-order exceptional
point (EP2), where the two eigenvalues and the correspond-
ing eigenvectors simultaneously coalesce [28–30]. During the
past few years, EP2s have been widely investigated in COM
systems [29,31–35] and other systems including, e.g., waveg-
uides [36], microcavities [37], cavity magnonics [38,39], and
superconducting circuits [40–42]. Around EP2s, lots of fasci-
nating phenomena like unidirectional invisibility [37,43,44],
single-mode lasing [45,46], sensitivity enhancement [47,48],
energy harvesting [49], protecting the classification of excep-
tional nodal topologies [50], and electromagnetically induced
transparency [51–54] can be realized. Besides EP2s, non-
Hermitian systems can also host higher-order EPs, where
more than two eigenmodes coalesce into one [55–63]. Very
recently, the fourth-order EP was demonstrated using optical
elements [64]. It has been shown that higher-order EPs can
exhibit greater advantages than EP2s in sensitive detection
[65–68], topological characteristics [60,69,70], and sponta-
neous emission enhancement [61]. With these superiorities,
higher-order EPs are being intensively studied in various
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TABLE I. The most important symbols and some formulas.

Symbol Meaning

ω1(2) Resonance frequency of cavity 1 (2)
ωm Resonance frequency of the MR
g1(2) Single-photon optomechanical coupling strength
α1(2) The steady-state value of cavity 1 (2)
β The steady-state value of the MR
G1(2) G1(2) = ∓g1(2)α1(2), enhanced optomechanical coupling strength
�1(2) The amplitude of the drive field in cavity 1 (2)
ω0 The frequency of the drive fields in cavities 1 and 2
δ1(2) δ1(2) = ω1(2) − ω0, detuning of cavity 1 (2) from the drive field
ω1(2),eff ω1(2),eff = δ1 ∓ g1(2)(β∗ + β ), the effective frequency of cavity 1 (2)
�1(2) �1(2) = ω1(2),eff − ωm, frequency detuning of the cavity from the MR
κ1(2) The decay rate of cavity 1 (2)
γm The decay rate of the mechanical resonator
η η = κ1/κ2, the ratio of decay rates κ1 and κ2

λ λ = G2/G1, the ratio of coupling strengths G1 and G2

� The discriminant of the characteristic equation
�0,± Eigenvalues of the pseudo-Hermitian system
MR Mechanical resonator
COM Cavity optomechanical
EP2(3) The second- (third-) order exceptional point

systems [71–80] but attract less attention in pseudo-Hermitian
COM systems. For this, seeking higher-order EPs in pseudo-
Hermitian COM systems is strongly demanded since they may
provide a new perspective to study conventional phenomena
in COM systems [2–20].

In this paper, we theoretically propose a pseudo-Hermitian
COM system consisting of two cavities coupled to a common
MR via radiation pressure to predict the third-order excep-
tional point (EP3). First, we derive an effective non-Hermitian
Hamiltonian for the proposed COM system and analytically
give the pseudo-Hermitian condition of the non-Hermitian
Hamiltonian in the general case. Then, two scenarios are
specifically considered in the pseudo-Hermitian condition: (i)
the MR is active, but the two cavities are passive; (ii) one
of cavities is active, but the other cavity and the MR are
both passive. In case (i), the proposed pseudo-Hermitian COM
system without PT symmetry can host EP3 or EP2. We show
only EP3, and EP2 can be predicted in parameter space when
two symmetric cavities (i.e., two cavities have the same loss
rates) are considered. But when two cavities are asymmetric
(i.e., two cavities have different loss rates), not only can EP3
or EP2 be predicted, but also the transformation between EP3
and EP2 can be achieved by tuning the system parameters
such as the optomechanical coupling strength. But for case
(ii), the pseudo-Hermitian condition can be further reduced
to the PT -symmetric condition by neglecting the negligible
mechanical loss compared to the cavity loss rate. We show
such a PT -symmetric system can host EP3 as well as EP2 in
parameter space. We also investigate the effects of the system
parameters such as the frequency detuning and optome-
chanical coupling strength on EP3 and EP2. Our proposal
provides a promising path to engineer the pseudo-Hermitian
COM system with or without PT symmetry for predicting
higher-order EPs.

This paper is organized as follows. In Sec. II, the model
is described, and the system effective Hamiltonian is given.

Then we derive the pesudo-Hermitian condition for the con-
sidered non-Hermitian COM system in Sec. III. In Sec. IV,
EP3 and EP2 are studied using the pseudo-Hermitian COM
system without PT symmetry. In Sec. V, EP3 and EP2
are studied using the pseudo-Hermitian COM system with
PT symmetry, and the impacts of the system parameters on
EP3 and EP2 are discussed. Finally, a conclusion is given
in Sec. VI. A list of symbols and abbreviations is given in
Table I.

II. MODEL

We consider a COM system consisting of two cavities (la-
beled cavity 1 and cavity 2) with angular frequencies ω1 and
ω2 radially coupled to a common MR with frequency ωm (see
Fig. 1), where two cavities are subjected to two strong laser
fields with the same frequency ω0. This setup was achieved in
several experiments [81–83]. In the rotating frame of the laser
field, the total Hamiltonian of the COM system reads (setting
h̄ = 1) [84]

H = δ1a†
1a1 + δ2a†

2a2 + ωmb†b

− (g1a†
1a1 − g2a†

2a2)(b† + b)

+ i�1(a†
1 − a1) + i�2(a†

2 − a2), (1)

where δ1(2) = ω1(2) − ω0 is the frequency detuning of cavity
1 (2) from the laser field. g1 and g2 are the single-photon
optomechanical coupling strengths. a1(2) and a†

1(2) are the an-
nihilation and creation operators of cavity 1 (2). b and b† are
the annihilation and creation operators of the MR. The nor-
malized amplitudes of the laser fields to the photon flux at the
inputs of cavities 1 and 2 are, respectively, �1 = √

P1κ1/h̄ω1

and �2 = √
P2κ2/h̄ω2, where P1 and P2 correspond to the

powers of two laser fields and κ1 and κ2 denote the decay rates
of cavities 1 and 2. Using the quantum Langevin equation
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Loss Gain Loss

Loss Loss Gain

FIG. 1. (a) Schematic diagram of the proposed COM system
consisting of two cavities with frequencies ω1 and ω2 coupled to
a common MR with frequency ωm. The two cavities are driven by
two laser fields with the same frequency ω0. The corresponding
amplitudes are �1 and �2. (b) The MR with gain and both cavities
with loss are considered. (c) Cavity 1 with gain and both the MR
and cavity 2 with loss are considered. In both (b) and (c), κ1, κ2,
and γm are gain or loss rates for two cavities and the MR. g1(2) is
the single-photon optomechanical coupling strength between cavity
1 (2) and the MR.

approach [85], the dynamics of the composite system can be
expressed as

ȧ1 = − (iδ1 + κ1)a1 + ig1a1(b† + b) + �1 +
√

2κ1a1,in,

ȧ2 = − (iδ2 + κ2)a1 − ig2a2(b† + b) + �2 +
√

2κ2a2,in,

ḃ = − (iωm + γm)b + i(g1a†
1a1 − g2a†

2a2) +
√

2γmbin, (2)

where γm is the decay rate of the MR. a1(2),in and bin are
the input noises with zero expectation value, i.e., 〈a1,in〉 =
〈a2,in〉 = 〈bin〉 = 0. Under Markov approximation, two-time
correlation functions of these input noise operators are given
by

〈a†
1,in(t )a1,in(t ′)〉 = n1,thδ(t − t ′),

〈a1,in(t )a†
1,in(t ′)〉 = (n1,th + 1)δ(t − t ′),

〈a†
2,in(t )a2,in(t ′)〉 = n2,thδ(t − t ′),

〈a2,in(t )a†
2,in(t ′)〉 = (n2,th + 1)δ(t − t ′),

〈b†
in(t )bin(t ′)〉 = nm,thδ(t − t ′),

〈bin(t )b†
in(t ′)〉 = (nm,th + 1)δ(t − t ′). (3)

Here ns,th = (eh̄ωs/kBTs − 1)−1, with s = 1, 2, m, is the mean
photon or phonon number in the thermal bath, where kB is
the Boltzmann constant and Ts is the bath temperature. For
zero temperature, ns,th = 0. Now we write each operator of
the system as its steady-state value plus the corresponding
fluctuation, i.e., a1(2) → α1(2) + a1(2) and b → β + b. Substi-
tuting these transformations into Eq. (2) and neglecting the
higher-order fluctuation terms ensured by the strong laser
fields, i.e., |α1|, |α2| 
 1, the quantum Langevin equations

for the fluctuation operators can be linearized as

ȧ1 = − (iω1,eff + κ1)a1 − iG1(b† + b) +
√

2κ1a1,in,

ȧ2 = − (iω2,eff + κ2)a1 − iG2(b† + b) +
√

2κ2a2,in,

ḃ = − (iωm + γm)b − i(G∗
1a1 + G∗

2a†
2 + H.c.) +

√
2γmbin,

(4)

where ω1(2),eff = δ1 ∓ g1(2)(β∗ + β ) is the effective frequency
of cavity 1 (2) induced by the displacement of the MR.
G1(2) = ∓g1(2)α1(2) is the enhanced optomechanical coupling
strength, which can be tuned by changing the powers of
the laser fields. By rewriting the equations of motion in
Eq. (4) as ȧ1 = −i[a1, Heff ] + √

2κ1a1,in, ȧ2 = −i[a2, Heff ] +√
2κ2a2,in, and ḃ = −i[b, Heff ] + √

2γmbin, we obtain the ef-
fective non-Hermitian Hamiltonian

Heff = (ω1,eff − iκ1)a†
1a1 + (ω2,eff − iκ2)a†

2a2

+ (ωm − iγm)b†b + [(G1a†
1 + G2a†

2)b + H.c.]

+ [(G1a†
1 + G2a†

2)b† + H.c.]. (5)

When δ1, δ2 > 0, two cavities are in the red-detuning regime,
where the rotating-wave approximation is allowed, i.e., fast
oscillating terms in Eq. (5) are neglected. Thus, Eq. (5) re-
duces to

Heff = (ω1,eff − iκ1)a†
1a1 + (ω2,eff − iκ2)a†

2a2

+ (ωm − iγm)b†b + [(G1a†
1 + G2a†

2)b + H.c.], (6)

which is the typically ideal Hamiltonian for the sideband
cooling and energy conversion. For simplicity, G1 and G2 are
assumed to be real hereafter, which can be achieved by tuning
two laser fields.

III. PSEUDO-HERMITIAN CONDITION

In matrix form, Eq. (6) can be expressed as

Heff =
⎛
⎝ω1,eff − iκ1 0 G1

0 ω2,eff − iκ2 G2

G1 G2 ωm − iγm

⎞
⎠. (7)

For this considered Hamiltonian, three eigenvalues can be
predicted. In particular, when three eigenvalues are all real
or one of the three eigenvalues is real and the other two are
a complex-conjugate pair, the system governed by the Hamil-
tonian in Eq. (7) is a pseudo-Hermitian system. According to
the energy-spectrum properties of pseudo-Hermitian systems,
the solutions of the characteristic equation |Heff − �I| = 0
are the same as that of |H∗

eff − �I| = 0, where I is an identity
matrix and � is the eigenvalue of the Hamiltonian Heff . These
two equations give rise to the pseudo-Hermitian conditions of
the Hamiltonian (7) as

γm + (1 + η)κ2 = 0, �1η + �2 = 0,

(1 + ηλ2)G2
1κ2 + γm

(
�2

1 + κ2
2

)
η = 0, (8)

where �1(2) = ω1(2),eff − ωm is the detuning of the effective
cavity frequency from the resonator. η = κ1/κ2 is introduced
to characterize the symmetry (η = 1) and asymmetry (η �= 1)
between κ1 and κ2, and λ = G2/G1 is the relative strength
of G2 and G1. Equation (8) shows that the proposed system
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is pseudo-Hermitian only when these three conditions are
simultaneously satisfied. The first condition requires that the
total decay rates of the system are zero, which shows that the
gain effect must be introduced. The second condition reveals
that the ratio of �2/�1 must match the ratio of κ1/κ2, which
can be realized in our considered system due to the tunable
�1 and �2. The third condition in Eq. (8) indicates that the
enhanced coupling strengths G1 and G2 are bounded by other
system parameters, which can also be achieved here owing to
the controllable parameters G1, G2, �1, and �2.

With the conditions in Eq. (8) (i.e., the system is pseudo-
Hermitian), the characteristic equation |Heff − �I| = 0 can be
specifically written as

(� − ωm)3 + c2(� − ωm)2 + c1(� − ωm) + c0 = 0, (9)

where

c0 = (λ2 − η)G2
1�1 + γm(1 − η2)�1κ2,

c1 = γ 2
m − η

(
�2

1 + κ2
2

) − (1 + λ2)G2
1,

c2 = (η − 1)�1. (10)

According to Cardano’s formula method [86], the solutions of
this characteristic equation can be determined by the discrim-
inant

� = B2 − 4AC, (11)

with

A = c2
2 − 3c1, B = c1c2 − 9c0, C = c2

1 − 3c0c2. (12)

For � < 0, Eq. (9) has three real roots. But when � > 0, only
one real root survives, and the other two become complex
conjugates. In the critical case, i.e., � = 0, three real roots
coalesce to the same value, � = �EP3, when A = B = 0, cor-
responding to EP3. But when A �= 0 and B �= 0, only two real
roots of Eq. (9) coalesce to a certain value, � = �EP2, which
is the typical EP2.

IV. EP3 IN A PSEUDO-HERMITIAN COM SYSTEM
WITHOUT PT SYMMETRY

From the first condition in Eq. (8), the gain effect must be
introduced to the proposed system to keep the gain-loss bal-
ance. For this, we here consider that the MR is active and two
cavities are passive, i.e., γm < 0 and κ1, κ2 > 0. According
to above analysis, conditions in Eq. (8) convert the non-
Hermitian Hamiltonian in Eq. (7) into a pseudo-Hermitian
Hamiltonian. Such a Hamiltonian does not have PT symme-
try, but it can be used to predict the EPs such as EP3 and
EP2. To prove this, in Fig. 2(a) we plot the phase diagram
determined by the sign of the discriminant in Eq. (11), where
the yellow (white) area denotes � < 0 (� > 0), and the red
dashed line represents � = 0. Note that the region circled by
a green curve must be taken out, where the parameter value
of �2

2 < 0 is inaccessible in the realistic COM system. Also
A = 0 and B = 0 are shown by the blue and black dashed
lines, respectively, in Fig. 2(a). According to Cardano’s for-
mula [86], the crossing points produced by the red, blue, and
black lines denote EP3s, and the points determined by only
the red line are EP2s. Obviously, EP3s (denoted by the green
dot) can be predicted by tuning the couplings G1 and G2.

FIG. 2. (a) The phase diagram of the discriminant given by
Eq. (11) with γm = −(κ1 + κ2) < 0 vs the normalized parameters
G1/κ2 and G2/κ2. (b) The ranges of 2.2 � G1/κ2 � 2.5 and 1.0 �
G2/κ2 � 1.4 are plotted to show EP2 along the red curve. One EP2
is predicted at the crossing point of the red and gray curves.

Below we analytically derive the critical parameters for
observation of EP3. We assume that EP3 is predicted at
� = �EP3, which means (� − �EP3)3 = 0. Comparing this
equation with Eq. (9), we have

−3(�EP3 − ωm) = c2, 3(�EP3 − ωm)2 = c1,

−(�EP3 − ωm)3 = c0. (13)

The first equation in Eq. (13) directly gives

�EP3 = 1
3 (1 − η)�1,EP3 + ωm. (14)

Using the second equation in Eq. (13) and the third condition
in Eq. (8), the coupling strength G1 between cavity 1 and the
MR at EP3 is

G1,EP3 =2κ2

[
3
(
1 + λ2

EP3

)
1 + η + η2

+ 1 + ηλ2
EP3

(1 + η)η

]−1/2

, (15)
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where

λEP3 =
[

1 + 2η

(2 + η)η

]3/2

(16)

is given by the third equation in Eq. (13). This indicates that
the coupling strength G2 between cavity 2 and the MR at EP3
is

G2,EP3 = λEP3G1,EP3. (17)

When the optomechanical coupling strengths G1 and G2 are
tuned to satisfy Eq. (17), one EP2 can also be predicted [see
the green point formed by the red and gray curves in Fig. 2(b)],
at which � = 0 but A �= 0 and B �= 0. When Eqs. (15)–(17)
are kept, the parameter �1 at EP3 accordingly becomes

�2
1,EP3 = 1 + ηλ2

EP3

η(1 + η)
G2

1,EP3 − κ2
2 , (18)

which gives rise to the minimal G1,EP3 for predicting EP3,

Gmin
1,EP3 =

√
η(1 + η)

1 + ηλ2
EP3

κ2. (19)

When conditions in Eqs. (15)–(19) are simultaneously sat-
isfied, the pseudo-Hermitian COM system can be used to
predict EP3.

A. η = 1

Now we further discuss the effect of the parameter η on the
EP of the proposed COM system. For the simplest case, we
consider two symmetric cavities with the identical decay rates,
κ1 = κ2, corresponding to η = 1. In this symmetric case, the
pseudo-Hermitian conditions in Eq. (8) reduce to

γm = −2κ2, �2 = −�1,

�2
1 = 1

2 (1 + λ2)G2
1 − κ2

2 . (20)

Correspondingly, the coefficients in Eq. (10) become

c0 = c2 = 0, c1 = 4κ2
2 − 3

2 (1 + λ2)G2
1, (21)

and the discriminant is

� = B2 − 4AC = 12c3
1. (22)

When � = 0, c1 = 0, which leads to A = B = 0. This indi-
cates that only EP3 can be predicted in the proposed COM
system with two symmetric cavities.

More specifically, we substitute the coefficients in Eq. (21)
into Eq. (9), and we have

[(� − ωm)2 + c1](� − ωm) = 0. (23)

This immediately gives rise to three roots,

�0 = ωm, �± = ωm ± √−c1. (24)

Obviously, Eq. (23) has three different real roots for c1 < 0
(i.e., � < 0). For c1 > 0 (i.e., � > 0), Eq. (23) has one real
root �0 = ωm and two complex roots �±. This indicates that
the polariton mode with the eigenvalue �0 has a zero loss
rate, and the upper (lower) polariton mode with the eigenvalue
�+ (�−) has a gain (loss) rate. In particular, three real roots
coalesce into one when c1 = 0, which is EP3 of the proposed

FIG. 3. The real and imaginary parts of the eigenvalues given
by Eq. (9) with γm = −(1 + η)κ2 < 0 vs the normalized parameter
G1/κ2. In (a) and (b), η = 1 corresponds to the symmetric case. In
(c) and (d), η = 2 corresponds to the asymmetric case.

COM system. To show this prediction, we plot the real and
imaginary parts of the eigenvalue � of the Hamiltonian (7)
with η = 1 as a function of the normalized parameter G1/κ2 in
Figs. 3(a) and 3(b), respectively. When κ2 = Gmin

1,EP3 � G1 <

G1,EP3, �0 is real (see the red curve), and �± are a complex-
conjugate pair (see the black and blue curves). At G1 =
G1,EP3, three eigenvalues (�0, �±) coalesce into �EP3 = ωm.
By increasing G1, the three eigenvalues are all real but bi-
furcate into three different values. At EP3, the corresponding
parameters are

λEP3|η=1 = 1, G1,EP3|η=1 = 2√
3
κ2,

�1,EP3|η=1 = − 1√
3
κ2. (25)

B. η �= 1

In practice, fabricating two cavities with the same decay
rates is hard due to the experimental errors. Hence, study-
ing the EP in the proposed COM system using two cavities
with different decay rates is full of realistic significance. For
this, we here consider two asymmetric cavities with κ1 �= κ2,
i.e., η �= 1. As an example, we take η = 2, which leads to
λEP3 = 0.494 and Gmin

1,EP3 = 2. As the analytical solution of
Eq. (9) is tedious, we numerically plot the real and imaginary
parts of the eigenvalue � of the Hamiltonian (7) with η = 2
as a function of the normalized parameter G1/κ2 in Figs. 3(c)
and 3(d), respectively. It is not difficult to find one of the
eigenvalues (�0) is real for arbitrary G1 (see the black curve).
The other two eigenvalues (�±) are a complex-conjugate pair
(see the blue and red curves) when 2κ2 � G1 < G1,EP3 =
2.263κ2. At G1 = G1,EP3 = 2.263κ2, three eigenvalues coa-
lesce to �EP3 = ωm − 0.173κ2. By sequentially increasing G1

to G1,EP3 � G1 < G1,EP2 = 2.4κ2, �± become complex again
(see the blue and red curves). At G1 = G1,EP2, these two
eigenvalues coalesce into �EP2 = ωm − 0.842κ2. When G1 >

G1,EP2, �± are real but bifurcate into two different values. For
other values of η ( �=1), similar results can also be numerically
obtained, which can easily be demonstrated.
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FIG. 4. (a) The real and (b) imaginary parts of the eigenval-
ues given by Eq. (9) with γm = −(1 + η)κ2 < 0 vs the normalized
parameter G1/κ2. Here λ = 2 is chosen to break the parameter con-
dition at EP3 in Eq. (16) and η = 1.

We note that EP2 is predicted in Figs. 3(c) and 3(d) when
Eq. (16) is satisfied, which is one of the conditions for observ-
ing EP3. Actually, this condition is not a necessary condition
for predicting EP2. In Fig. 4, we numerically plot the real
and imaginary parts of the eigenvalue � of the Hamiltonian
(7) with η = 1 as a function of the normalized parameter
G1/κ2 when λ = 2 �= λEP3 (i.e., G2 = 2G1). We find EP2
still appears at G1/κ2 = 1.22. For the case of η = 2, we also
numerically check it, and the same result is obtained.

V. EP3 IN A PSEUDO-HERMITIAN COM SYSTEM
WITH PT SYMMETRY

As a special case of the pseudo-Hermitian systems, the
PT -symmetric system with EPs exhibits amazing characteris-
tics and has wide applications in quantum information science
[87–90]. Next, we investigate the EPs in the pseudo-Hermitian
COM system with PT symmetry. We here consider the case
that one cavity (cavity 2) and the mechanical resonator are
passive and the other cavity (cavity 1) is active, i.e., γm, κ2 >

0 and κ1 < 0. For experimental COM systems, γm � κ2 in
general, so we can safely ignore the effect of γm by assuming
γm = 0. To meet the first condition in Eq. (8), η = −1 is
taken; that is, κ1 = −κ2. This leads to �2 = �1, and the third
condition in Eq. (8) is always valid for arbitrary parameters.
With these parameters, the Hamiltonian of the proposed sys-
tem given by Eq. (7) reduces to

HPT =
⎛
⎝ω1,eff + iκ2 0 G1

0 ω2,eff − iκ2 G2

G1 G2 ωm

⎞
⎠. (26)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

EP2

EP3

PT symmetry 

broken

PT symmetry

FIG. 5. The phase diagram of the discriminant given by Eq. (11)
with γm � κ2 = −κ1 vs the normalized parameters G1/κ2 and
�1/κ2, where κ1 denotes the gain of cavity 1. Here G2 = G1 is
chosen.

Obviously, this Hamiltonian is PT symmetric due to the
invariant by simultaneously performing the following opera-
tions: a1 ↔ a2 (corresponding to the P operation) and i ↔
−i, a1(2) ↔ −a1(2), b ↔ −b (corresponding to the T oper-
ation). To judge EPs in such a system, we plot the phase
diagram of the discriminant given by Eq. (11) in Fig. 5, where
λ = 1 (i.e., G1 = G2) is chosen. � < 0 indicates the system is
in the PT -symmetric phase (see the blue area), where all three
eigenvalues for the Hamiltonian (7) are real. � > 0 means the
system is in the PT -symmetry-broken phase (see the yellow
area), where only one real eigenvalue survives and the other
two become complex conjugates for the Hamiltonian (7). Crit-
ically, � = 0 is denoted by the red dashed curve. Also, A = 0
and B = 0 are plotted, respectively, by blue and black dashed
lines. Clearly, the three curves (red, blue, and black) give two
crossing points, which correspond to two EP3s. EP2 can be
predicted along the red curve, where A �= 0 and B �= 0.

More specifically, we plot the real and imaginary parts of
the eigenvalues versus the normalized parameter G1/κ2 with
�1 = 2κ2 and �1 = 0 in Fig. 6. From Figs. 6(a) and 6(b),
we find that the system can have only EP2. By changing
G1, the three eigenvalues can have different characteristics.
The eigenvalue denoted by the blue curve is real for arbitrary
G1, while the other two eigenvalues (denoted by the black
and red curves) are real only when |G1| > G1,EP2 = 1.692κ2.
For |G1| � G1,EP2, these two eigenvalues become a complex-
conjugate pair, where the equality means two eigenvalues
coalesce into one real value, �± = �EP2 = 2.755κ2. When
�1 = 0 in Figs. 6(c) and 6(d), the eigenvalue �0 is real
for arbitrary G1, while �± are real for only |G1| > G1,EP3.
When |G1| < G1,EP3, �± are a complex-conjugate pair. At
the critical value G1 = G1,EP3, three eigenvalues coalesce into
� = �EP3 = ωm, corresponding to EP3.

In Fig. 7, we plot the real and imaginary parts of the eigen-
values versus the normalized parameter �1/κ2 with

√
2|G1| =
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FIG. 6. The real and imaginary parts of the eigenvalues given by
Eq. (26) with γm � κ2 = −κ1 vs the normalized parameter G1/κ2 for
different �1. In (a) and (b), �1 = 2κ2 for predicting EP2. In (c) and
(d), �1 = 0 for predicting EP3.

κ2 and |G1| = κ2. For |G1| = κ2/
√

2 in Figs. 7(a) and 7(b), we
find EP3 can be predicted at �1,EP3 = 0, where three eigen-
values coalesce to a certain value. When �1 < �1,EP3, the
eigenvalue marked in red is real, and the eigenvalues marked
in blue and black are a complex-conjugate pair. However, the
eigenvalue marked in blue becomes real, and the other two
eigenvalues are a complex-conjugate pair for �1 > �1,EP3.
When |G1| = κ2, the system can exhibit EP2, as shown in
Figs. 7(c) and 7(d). For �1 < �

(−)
1,EP2 = −0.3, the eigenvalue

marked in red is real, and the other two eigenvalues, marked
in blue and black, are a complex-conjugate pair. But for
�1 > �

(+)
1,EP2 = 0.3, the eigenvalue denoted by the blue curve

is real, and the eigenvalues plotted in black and red become
a complex-conjugate pair. When �

(−)
1,EP2 < �1 < �

(+)
1,EP2, the

three eigenvalues are all real but have different values. At
the point �1 = �

(−)
1,EP2, the two eigenvalues marked in black

and blue coalesce to the value �EP2 = ωm − 0.8κ2, which is
EP2. In addition, we find eigenvalues marked in black and

FIG. 7. The real and imaginary parts of the eigenvalues given by
Eq. (26) with γm � κ2 = −κ1 vs the normalized parameter �1/κ2

for different G1. In (a) and (b), |G1| = κ2/
√

2 for predicting EP3. In
(c) and (d), |G1| = κ2 for predicting EP2.

red coalesce to the value �EP2 = ωm + 0.8κ2 at the point
�1 = �

(+)
1,EP2, which is also EP2.

VI. CONCLUSION

In summary, we have proposed a pseudo-Hermitian COM
system consisting of two cavities coupled to a common MR
via radiation pressure for predicting EP3s. We showed that
under certain conditions the non-Hermitian COM system can
be equivalent to a pseudo-Hermitian system without PT sym-
metry hosting both EP3 and EP2 in the parameter space when
mechanical gain is taken into account. In this case, only EP3
or EP2 can be predicted when two symmetric cavities are
considered. But for asymmetric cavities, EP3 and EP2 can
be transformed into each other by tuning the COM coupling
strength. In another case, the non-Hermitian COM system can
be reduced to a pseudo-Hermitian system with PT symmetry
when one of the cavities with gain is considered. Such a PT -
symmetric Hamiltonian can be used to predict EP3 and EP2
in the parameter space. We further specifically considered the
impacts of the system parameters such as the optomechanical
coupling strength and frequency detuning on them. Our pro-
posal may provide a path to study physical phenomena around
higher-order EPs in COM systems.
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APPENDIX A: EIGENVECTORS OF THE PROPOSED
SYSTEM WITHOUT PT SYMMETRY

In the main text, only the eigenvalues of the effective
Hamiltonian given by Eq. (7) are discussed. As is well known,
eigenvalues and eigenvectors at EPs are required to coalesce
simultaneously. For this, we further show that the eigenvectors
of the effective Hamiltonian (7) coalesce at EP3 and EP2 in
this Appendix.

We first study the eigenvectors of the pseudo-Hermitian
COM system without PT symmetry. Two cases are consid-
ered: the symmetric case (η = 1) and the asymmetric case
(η �= 1). For simplicity, we assume ωm = 0 in this Appendix,
which is equivalent to rotating the system governed by Eq. (6)
at the mechanical frequency ωm.

1. The case of η = 1

For the symmetric case of η = 1, the effective Hamiltonian
in Eq. (7) at EP3 can be written as

H (η=1)
EP3 =

⎛
⎝−1/

√
3 − i 0 2/

√
3

0 1/
√

3 − i 2/
√

3
2/

√
3 2/

√
3 2i

⎞
⎠κ2. (A1)

The eigenvalues of H (η=1)
EP3 are �± = �0 = 0,

and the corresponding eigenvectors are |�±〉 =
|�0〉 = (0.5 − 0.866025i,−0.5 − 0.866025i, 1)T . This
indicates that the three eigenvectors and the corresponding
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eigenvalues actually coalesce simultaneously at EP3 shown
in Figs. 3(a) and 3(b) of the main text.

2. The case of η �= 1

For the asymmetric case of η �= 1, we take η = 2 as an
example, which is consistent with the situation discussed in
Figs. 3(c) and 3(d) of the main text. At EP3, the effective
Hamiltonian in Eq. (7) of the main text becomes

H (η=2)
EP3 =

⎛
⎝0.520 − 2i 0 2.263

0 −1.039 − i 1.118
2.263 1.118 3i

⎞
⎠κ2. (A2)

By diagonalizing this Hamiltonian, we find three eigenval-
ues coalesce into �± = �0 = −0.173κ2. Correspondingly,
the three eigenvectors are |�±〉 = |�0〉 = (0.632, 0.250 +
0.433i,−0.194 + 0.559i)T , indicating that the three eigen-
vectors actually coalesce at EP3 where the three eigenvalues
degenerate.

We next investigate the eigenvectors at EP2 shown in
Figs. 3(c) and 3(d). At this point, the effective Hamiltonian
in Eq. (7) reduces to

H (η=2)
EP2 =

⎛
⎝0.520 − 2i 0 2.263

0 −1.039 − i 1.118
2.263 1.118 3i

⎞
⎠κ2. (A3)

For this Hamiltonian, its three eigenvalues are �0 = 1.029κ2,
�+ = �− = −0.842κ2, which shows two eigenvalues
coalesce. The three corresponding eigenvectors are |�0〉 =
(0.730, 0.160 + 0.240i, 0.114 + 0.609i)T and |�+〉 =
|�−〉 = (0.258 − 0.483i, 0.612, 0.242 + 0.516i)T . This
indicates two eigenvectors coalesce at the point where �±
degenerate.

APPENDIX B: EIGENVECTORS OF THE PROPOSED
SYSTEM WITH PT SYMMETRY

We now study the eigenvectors of the pseudo-Hermitian
COM system with PT symmetry. In this situation, η = −1
(or κ1 = −κ2), λ = 1 (i.e., G2 = G1), and �2 = �1 are re-
quired, and the system Hamiltonian is governed by Eq. (26).
Here we take only Fig. 6 as an example for investigating the
eigenvectors of the Hamiltonian in Eq. (26). In Fig. 6, �1 =
2κ2 and �1 = 0 are discussed. When �1 = 2κ2, Eq. (26)
becomes

H (�1=2κ2 )
EP2 =

⎛
⎝2 + i 0 1.692

0 2 − i 1.692
1.692 1.692 0

⎞
⎠κ2. (B1)

The eigenvalues are �0 = −1.510κ2 and �+ = �− =
2.755κ2. The corresponding eigenvectors are |�0〉 =
(−0.373 + 0.106i,−0.373 − 0.106i, 0.836) and |�+〉 =
|�−〉 = (0.626,−0.172 − 0.602i, 0.279 − 0.370i). This
shows that two eigenvalues and the corresponding
eigenvectors of the PT -symmetric Hamiltonian in Eq. (26)
simultaneously coalesce at EP2 discussed in Figs. 6(a) and
6(b) of the main text.

For �1 = 0, Eq. (26) can be written as

H (�1=0)
EP3 =

⎛
⎝ i 0

√
2/2

0 −i
√

2/2√
2/2

√
2/2 0

⎞
⎠κ2. (B2)

Such a Hamiltonian has three degenerate eigenvalues, �± =
�0 = 0. The corresponding eigenvectors are |�±〉 = |�0〉 =
(0.707i,−0.707i, 1)T . Thus, the three eigenvalues and eigen-
vectors coalesce simultaneously at EP3.

APPENDIX C: CUBIC ROOT DEPENDENCE
OF EIGENVALUES NEAR EP3

In this Appendix, we consider the case in which the
pseudo-Hermitian COM system is disturbed by a small
parameter ε near the EPs to predict the behavior of the eigen-
values with this perturbation. Without loss of generality, we
assume the perturbation is applied on the frequency of cavity
1. We start from the general non-Hermitian Hamiltonian given
by Eq. (7). Thus, the perturbation Hamiltonian of the system
can be written as

H̃ =
⎛
⎝�1 − iκ1 + ε 0 G1

0 �2 − iκ1 G2

G1 G2 −iγm

⎞
⎠. (C1)

The corresponding characteristic equation |H̃ − �̃I| = 0 can
be specifically expressed as

�̃3 + C2�̃
2 + C1�̃ + C0 = 0, (C2)

where

C2 = �1 + �2 + ε − i(κ1 + κ2 + γm),

C1 = G2
1 + G2

2 + κ1(κ2 + γm + i�2) + κ2[γm + i(�1 + ε)]

− [�2(�1 + ε) − iγm(�1 + �2 + ε)],

C0 = iG2
1(κ2 + i�2) + i

[
G2

2 + γm(κ2 + i�2)
]

× [κ1 + i(�1 + ε)]. (C3)

Without the perturbation ε, the considered system is a pseudo-
Hermitian system when the condition in Eq. (8) is satisfied.
Using the pseudo-Hermitian condition, the coefficients of the
characteristic equation (C3) can be rewritten as

C2 = (η − 1)�1 − ε,

C1 = (1 + η+η2)κ2
2 − G2

1(1+λ2)+η�1(�1 + ε) − iηκ2ε,

C0 = G2
1[(�1 + ε)λ2 − η�1]

− κ2(1 + η)[(�1 + ε)κ2 − η2�1κ2 − iη�1ε]. (C4)

Equation (C2) can be perturbatively expanded using a
Newton-Puiseux series [65]. Considering only the first two
terms, �̃ ∼ d1ε

1/3 + d2ε
2/3, with the coefficients d1 and d2

being complex constants, results in
p1ε + p1/3ε

1/3 + p2/3ε
2/3 + p4/3ε

4/3 + p5/3ε
5/3

+ p6/3ε
6/3 + p7/3ε

7/3 + p0 = 0, (C5)
where

p0 = κ2(1 + η)(�1 − iηκ2)(κ2 − iη�1)

+ G2
1[�1(η − λ2) + iκ2(1 + ηλ2)],
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p1 = −d3
1 − 2d1d2�1(η − 1)

+ κ2(1 + η)(κ2 − iη�1) − λ2G2
1,

p1/3 = d1
[
η�2

1 − κ2
2 (1 + η + η2) + (1 + λ2)G2

1

]
,

p2/3 = d2
1 �1(1 − η) + p1/3d2/d1,

p4/3 = −3d2
1 d2 + d2

2 �1(1 − η) + d1η(�1 − iκ2),

p5/3 = d2
1 − 3d1d2

2 + d2η(�1 − iκ2),

p6/3 = 2d1d2 − d3
2 ,

p7/3 = d2
2 . (C6)

For a specific case, we take the symmetric situation (i.e.,
η = 1) of the pseudo-Hermitian COM system without PT
symmetry, for instance, to illustrate the behavior of the eigen-
values near EP3. At EP3, we have λ = 1, G1 = 2/

√
3κ2, and

�1 = −1/
√

3κ2. Thus, the parameters in Eq. (C6) become

p0 = 0, p1 = 2

3
(1 + i

√
3) − d3

1 , p1/3 = 0, p2/3 = 0,

p4/3 = −−d1√
3

(1 + i
√

3) − 3d2
1 d2,

p5/3 = d2
1 − d2√

3
(1 + i

√
3) − 3d1d2

2 ,

p6/3 = 2d1d2 − d3
2 , p7/3 = d2

2 . (C7)

This indicates that the second and third terms in Eq. (C5)
vanish. Forcing the coefficients of the first and fourth terms
in Eq. (C5) to be zero, we obtain three sets of values for the

coefficients d1 and d2, corresponding to the three eigenvalues:

(d1, d2) = (
d (1)

1 , d (1)
2

)
,
(
d (2)

1 , d (2)
2

)
,
(
d (3)

1 , d (3)
2

)
, (C8)

where d (1)
1 = 1.10eiπ/9, d (2)

1 = −(0.550 − 0.953i)eiπ/9,
d (3)

1 = −(0.550 + 0.953i)eiπ/9, d (1)
2 = −(0.175 + 0.303i)

e−iπ/9, d (2)
2 = −(0.175 − 0.303i)e−iπ/9, and d (3)

2 =
0.350e−iπ/9. The bifurcations in the eigenvalues now acquire
the following form:

�̃0 ∼ d (1)
1 ε1/3 + d (1)

2 ε4/3, �̃+ ∼ d (2)
1 ε1/3 + d (2)

2 ε4/3,

�̃− ∼ d (3)
1 ε1/3 + d (3)

2 ε4/3. (C9)

This indicates that the changes in the eigenvalues �̃0 and
�̃± follow the cube root of ε because ε is very small. Such
behavior can be characterized experimentally in the spectral
domain by monitoring the resonant frequency splitting of, for
example, �̃+ and �̃0 [65], which can be expressed as

Re[��̃EP3] ∼ 1.225ε1/3. (C10)

For the case of η = 2 in the pseudo-Hermitian COM system
without PT symmetry, results similar to those in Eqs. (C9)
and (C10) can be obtained by repeating the above processes
when the system is driven to EP3 in the absence of the per-
turbation. For the case of the pseudo-Hermitian COM system
with PT symmetry, the frequency splitting is the cubic-root
dependence of the perturbation ε, which was investigated
previously [65]. H. Hodaei et al. also show that the frequency
splitting is the square-root dependence of the perturbation ε

when the system is operated near EP2 [65].

[1] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity
optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

[2] S. Schreppler, N. Spethmann, N. Brahms, T. Botter, M. Barrios,
and D. M. Stamper-Kurn, Optically measuring force near the
standard quantum limit, Science 344, 1486 (2014).

[3] M. Wu, N. L. Y. Wu, T. Firdous, F. F. Sani, J. E. Losby,
M. R. Freeman, and P. E. Barclay, Nanocavity optomechanical
torque magnetometry and radiofrequency susceptometry, Nat.
Nanotechnol. 12, 127 (2017).

[4] E. Gil-Santos, J. J. Ruz, O. Malvar, I. Favero, A. Lemaître, P. M.
Kosaka, S. García-López, M. Calleja, and J. Tamayo, Optome-
chanical detection of vibration modes of a single bacterium,
Nat. Nanotechnol. 15, 469 (2020).

[5] R. Fischer, D. P. McNally, C. Reetz, G. G. T. Assumpção,
T. Knief, Y. Lin, and C. A. Regal, Spin detection with a
micromechanical trampoline: Towards magnetic resonance mi-
croscopy harnessing cavity optomechanics, New J. Phys. 21,
43049 (2019).

[6] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A.
Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Laser
cooling of a nanomechanical oscillator into its quantum ground
state, Nature (London) 478, 89 (2011).

[7] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman,
K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and
R. W. Simmonds, Sideband cooling of micromechanical mo-

tion to the quantum ground state, Nature (London) 475, 359
(2011).

[8] T. P. Purdy, P. L. Yu, R. W. Peterson, N. S. Kampel, and C. A.
Regal, Strong Optomechanical Squeezing of Light, Phys. Rev.
X 3, 031012 (2013).

[9] A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M.
Aspelmeyer, and O. Painter, Squeezed light from a silicon mi-
cromechanical resonator, Nature (London) 500, 185 (2013).

[10] N. Aggarwal, T. J. Cullen, J. Cripe, G. D. Cole, R. Lanza,
A. Libson, D. Follman, P. Heu, T. Corbitt, and N. Mavalvala,
Room-temperature optomechanical squeezing, Nat. Phys. 16,
784 (2020).

[11] H. Xu, L. Jiang, A. A. Clerk, and J. G. E. Harris, Nonreciprocal
control and cooling of phonon modes in an optomechanical
system, Nature (London) 568, 65 (2019).

[12] Z. Shen, Y. L. Zhang, Y. Chen, C. L. Zou, Y. F. Xiao, X. B.
Zou, F. W. Sun, G. C. Guo, and C. H. Dong, Experimental
realization of optomechanically induced non-reciprocity, Nat.
Photonics 10, 657 (2016).

[13] A. Kronwald and F. Marquardt, Optomechanically Induced
Transparency in the Nonlinear Quantum Regime, Phys. Rev.
Lett. 111, 133601 (2013).

[14] S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A.
Schliesser, and T. J. Kippenberg, Optomechanically induced
transparency, Science 330, 1520 (2010).

063508-9

https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1126/science.1249850
https://doi.org/10.1038/nnano.2016.226
https://doi.org/10.1038/s41565-020-0672-y
https://doi.org/10.1088/1367-2630/ab117a
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10261
https://doi.org/10.1103/PhysRevX.3.031012
https://doi.org/10.1038/nature12307
https://doi.org/10.1038/s41567-020-0877-x
https://doi.org/10.1038/s41586-019-1061-2
https://doi.org/10.1038/nphoton.2016.161
https://doi.org/10.1103/PhysRevLett.111.133601
https://doi.org/10.1126/science.1195596


XIONG, LI, SONG, CHEN, ZHANG, AND WANG PHYSICAL REVIEW A 104, 063508 (2021)

[15] Y. Liu, M. Davanço, V. Aksyuk, and K. Srinivasan, Electro-
magnetically Induced Transparency and Wideband Wavelength
Conversion in Silicon Nitride Microdisk Optomechanical Res-
onators, Phys. Rev. Lett. 110, 223603 (2013).

[16] W. Xiong, J. Chen, B. Fang, M. Wang, L. Ye, and J. Q. You,
Strong tunable spin-spin interaction in a weakly coupled nitro-
gen vacancy spin-cavity electromechanical system, Phys. Rev.
B 103, 174106 (2021).

[17] X. Y. Lü, W. M. Zhang, S. Ashhab, Y. Wu, and F. Nori,
Quantum-criticality-induced strong Kerr nonlinearities in op-
tomechanical systems, Sci. Rep. 3, 2943 (2013).

[18] J. Chen, Z. Li, X. Q. Luo, W. Xiong, M. Wang, and H. C.
Li, Strong single-photon optomechanical coupling in a hybrid
quantum system, Opt. Express 29, 32639 (2021).

[19] W. Xiong, D. Y. Jin, Y. Qiu, C. H. Lam, and J. Q. You, Cross-
Kerr effect on an optomechanical system, Phys. Rev. A 93,
023844 (2016).

[20] X. Y. Lü, H. Jing, J. Y. Ma, and Y. Wu, PT -Symmetry Break-
ing Chaos in Optomechanics, Phys. Rev. Lett. 114, 253601
(2015).

[21] U. Weiss, Quantum Dissipative Systems (World Scientific,
Singapore, 2012).

[22] F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori,
Quantum exceptional points of non-Hermitian Hamiltonians
and Liouvillians: The effects of quantum jumps, Phys. Rev. A
100, 062131 (2019).

[23] G. Q. Zhang, Z. Chen, D. Xu, N. Shammah, M. Liao, T. F. Li,
L. Tong, S. Y. Zhu, F. Nori, and J. Q. You, Exceptional point
and cross-relaxation effect in a hybrid quantum system, PRX
Quantum 2, 020307 (2021).

[24] S. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Parity-time
symmetry and exceptional points in photonics, Nat. Mater. 18,
783 (2019).

[25] A. Mostafazadeh, Pseudo-Hermiticity versus PT -symmetry:
The necessary condition for the reality of the spectrum
of a non-Hermitian Hamiltonian, J. Math. Phys. 43, 205
(2002).

[26] A. Mostafazadeh, Pseudo-Hermiticity versus PT -symmetry II:
A complete characterization of non-Hermitian Hamiltonians
with a real spectrum, J. Math. Phys. 43, 2814 (2002).

[27] V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear
waves in PT -symmetric systems, Rev. Mod. Phys. 88, 035002
(2016).

[28] C. M. Bender, B. K. Berntson, D. Parker, and E. Samuel, Obser-
vation of PT phase transition in a simple mechanical system,
Am. J. Phys. 81, 173 (2013).

[29] Y. L. Liu, R. B. Wu, J. Zhang, Ş. K. Özdemir, L. Yang, F. Nori,
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