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Diagrammatic theory of linear and nonlinear optics for composite systems
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We present a general formalism to model and calculate linear and nonlinear optical processes in composite sys-
tems, based on a graphical representation of light-matter interactions by loop diagrams associated with Feynman
rules. Through this formalism, we recover the usual second-order response of a simple system by drawing four
times fewer loop diagrams than doubled-sided ones. For composite systems, we introduce coupling Hamiltonians
between subsystems (for example, a molecule and a substrate), graphically represented by virtual bosons. In this
way, we enumerate all the diagrams describing the second-order response of the system and show how to select
those relevant for the calculation of the molecular second-order hyperpolarizabilities under the influence of the
substrate, including effective second-order contributions from the molecular third-order response. As it applies
to all nonlinear processes and an arbitrary number of interacting partners, this representation provides a general
frame for the calculation of the nonlinear response of arbitrarily complex systems.
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I. INTRODUCTION

Since the emergence of the quantum theory of light
[1] and for several decades now, nonlinear optics has un-
veiled the existence of couplings within matter [2,3] due to
many laser-based techniques of optical characterization, such
as second-harmonic generation (SHG) [4,5], sum-frequency
generation (SFG) [6-9], and coherent and incoherent Raman
scattering [10]. The popularity of these techniques lies in their
spectroscopic applications. As experimental tools, infrared-
visible SFG and Raman spectroscopies are routinely used in
various fields of chemical physics and physical chemistry,
largely employed for probing the vibrational structures of
molecules [11,12] and their vibronic structures for doubly
resonant SFG and resonant Raman spectroscopies [13-16].
Although SFG is a powerful technique, it requires ordered
and noncentrosymmetric samples. This is why the systems
are often voluntarily simplified and reduced to the deposition
of a molecular species onto a solid substrate which does not
exhibit any optical activity over the probed infrared (IR) and
visible (VIS) ranges. These fall within the family of sim-
ple systems made of a single IR or visible-active molecular
species, characterized by its own vibrational and electronic
structures. As a matter of fact, few publications have so far
tackled the less conventional family of composite and hy-
brid systems, made up of several IR or visible-active species.
These differ from simple systems as soon as the local envi-
ronment (e.g., the substrate) is capable of interacting with the
molecules or reacting to the IR or visible excitations. We may
cite, for instance, substrate-molecule interfaces wherein the
substrate may be an insulating [17] or a metallic plane surface
[18-25], an electrode [26], or a charged surface [27-30].
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Further, more complex samples can also be obtained by
adding IR or VIS-active inorganic species to the system. This
includes plasmonic nanostructures [31-36] and semiconduc-
tor quantum dots [37-39]. For all these composite systems,
the vibrational and electronic responses not only arise from
the molecular species, but are split between the various com-
ponents (i.e., the subsystems) of the sample. For example, the
IR beam may probe the vibrational structure of the molecules
while the visible light beam excites the electronic properties of
the substrate or the inorganic species. These shared processes
essentially differ from doubly resonant SFG for which the
molecular species alone experiences vibrational, electronic,
and vibronic resonances [40—42]. Experimentally, the shared
processes become essential when both the IR and visible col-
ors are tunable in a two-color SFG setup: Each subprocess
may become resonantly excited or remain nonresonant, at
will. The question is then to understand how the complete
SFG process is linked to (and thus induced, enhanced, or
modified by) the couplings between the respective vibrational
and electronic structures of the subsystems. In this article
we therefore establish the theoretical tools to account for the
nonlinear SFG response of any bipartite organic-inorganic
system, thus composed of two interacting subunits (Fig. 1).
This theory may be extended to an arbitrary number of inter-
acting subsystems and to other nonlinear optical processes.
To date, there is no global and generic formalism to
analytically compute the nonlinear responses of such bipar-
tite systems. Each team has developed its own methods, so
there are almost as many formalisms as samples [29,38,43].
For a bipartite system like a substrate-molecule interface,
the second- and third-order hyperpolarizabilities 8 and y
of each subsystem are modeled through phenomenologi-
cal approaches or approximate numerical techniques. With
two input frequencies w; and w,, the SFG second-order
hyperpolarizability B(w;, w2) is often simply described as
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FIG. 1. Diagrammatic modeling of composite systems. The dia-
grammatic theory is based on our ability to split a composite system
into several subunits whose interactions are then embodied by virtual
bosons deriving from well-known coupling Hamiltonians. Here we
illustrate our method with the case of nanoparticles capped by or-
ganic molecules and probed by sum-frequency generation consisting
in the combination of three photons (green, red, and blue, in the
picture).

deriving from the sum of two contributions associated with the
substrate and the molecules [6,20,33,44], respectively,

/3 = ﬁsub + IBmol- (D

First, this equation does not have a firmly established theoret-
ical rationale as both subsystems interact with each other. A
third B component is sometimes added to account for these
interactions [44]. Second, this arbitrary splitting is mislead-
ing because the amplitude of the molecular contribution By
itself depends on the substrate response, as evidenced by
previous experimental works in IR-VIS SFG spectroscopy
[19,20,25,33,37]. This is why B, usually modeled by a
Lorentzian resonance (with respect to the IR frequency w,), is
sometimes modulated by an unknown coefficient A, (w1, w>)
coming from the interactions between the substrate and the
molecules [20]

Bmol(@1, @2) = Z

- wy —wy +11,°

AU(wl s CU2)

2

where w, is the eigenfrequency of the molecular vibration
mode |v) and I, is the associated damping constant. In addi-
tion, in the presence of a static electric field E arising from an
interfacial potential, a third contribution is commonly added
to Eq. (1) [27.,45],

B(wi1, w2) = Bsuv(@1, @2) + Pmol(@1, ®2)
+ y (w1, wa, 0)Ey, 3)

where y is the third-order hyperpolarizability of the interface,
which is not explicitly known since it may also depend on the
interplay between the substrate and the molecules.

Quantum mechanics provides in principle an effective
formalism to derive the analytical expressions of § and y
through the perturbation expansion of the density matrix of the

system [46]. This theoretical approach is operative in the case
of simple systems, for example, purely molecular. In addition,
a diagrammatic formalism has been developed in order to
lead the calculations. These graphical depictions, known as
double-sided Feynman diagrams, reproduce the mechanism
of perturbation expansion of the density matrix [46—48].
However, this diagrammatic representation of nonlinear optics
fails to account for the complex case of the aforementioned
composite systems because it is difficult to determine the total
density matrix of such a system, that is, to deduce the quantum
eigenstates of the whole system from those of its subunits.
The issue lies in the treatment of the interactions between the
subsystems. The problem could be overcome by considering
each subunit as described by a double-sided Feynman diagram
interacting with the others. Hence, the idea would consist of
building a complex diagram, accounting for the composite
system, from the double-sided diagrams assigned to each
subunit. However, a combination of double-sided diagrams is
not a double-sided diagram, so it is impossible to apply the
computation method established for the subunits to the com-
posite system. Given this framework, we have decided to leave
aside the double-sided diagrams and return to the foundation
of Feynman diagrams as introduced in solid-state physics
in order to treat the many-body problem [49-52]. The loop
Feynman diagrams, as introduced in this context, have two
great advantages: First, the combination of loop diagrams is a
loop diagram and, second, the implementation of interactions
between loops only requires the knowledge of the coupling
Hamiltonians. Henceforth, these loop diagrams enable us to
explicitly couple nonlinear optics (i.e., light) with solid-state
physics (i.e., matter), accounting for light-matter interactions
(between light and a composite system) and matter-matter
interactions (between the subunits of this system).

In this paper we present a global method to analytically
compute the exact nonlinear response functions f and y
for any composite system through the use of loop Feyn-
man diagrams. In particular, we formally show that all the
phenomenological contributions Bsyp, Bmol, and ¥ can be de-
rived from a single formalism, independently of the natures
of the subsystems. Indeed, we give meaning to Eq. (3) and
demonstrate that it is possible to explicitly determine coupling
coefficients such as A, [Eq. (2)]. Even though we illustrate the
method in the practical case of substrate-molecule bipartite
systems probed by IR-VIS SFG spectroscopy, by enumerat-
ing, drawing, and calculating all the Feynman diagrams that it
is possible to generate, it can be generalized to other kinds
of hybrid systems made of more than two subunits and to
other nonlinear processes, e.g., SHG and Raman scattering.
The method and results presented here naturally rely on the
solid-state physics formalism and straightforwardly apply to
linear and nonlinear processes taking place in objects relevant
to this field (i.e., a statistical set of indistinguishable fermions
at thermal equilibrium, for example, a metal surface), but we
show that they equally apply to molecules and atoms after
elementary generalization. With this article, our goal is to
establish a unified and complete theoretical justification to all
the second-order nonlinear coupling processes within com-
posite systems and to propose a practical method for everyone
to compute the nonlinear response functions of their own
composite systems.
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II. FOUNDATIONS OF THE METHOD

In order to understand the link between nonlinear optics
and loop Feynman diagrams, we begin with the definitions
of the underlying mathematical tools. Thus, this section grad-
ually introduces the concepts of optical response functions,
Green’s functions, and Matsubara frequencies. For the sake
of brevity and clarity, we get straight to the point by providing
only the absolutely necessary theoretical elements. Thereafter,
we outline in a synthetic way the general and practical method
to build loop diagrams and to compute hyperpolarizabilities
for any kind of composite system.

A. Green’s functions in optics and solid-state physics

Within the dipolar approximation, probing matter with
light consists in examining how the dipole moment p reacts to
a local exciting electric field E. In frequency space, the linear
response theory teaches that there exists a tensor o = («;;) S0
that [46]

p(@) = a(w)E(w). “4)

In time domain, this gives p(¢) = « * E(¢), where % depicts
the convolution product. Further on, the use of intense light
allows studying the behavior of matter beyond the linear di-
electric regime. In this case, a nonlinear dipole moment is
induced in the material which reveals the existence of second-
and third-order response tensors B = (B;jx) and ¥ = (Viju)s
respectively, so that [46]

p@) = axE({)
+B+EQE(@l)+y*EQE®E(®), &)

where ® depicts the tensor product. As a response function,
@ij, PBijk, and y;j are Green’s functions and thus belong to a
large family of functions which exceeds the scope of optics
[53]. We recall that a Green’s function is defined, for a given
linear differential operator ®, as the function f satisfying
D f(t) = 8(t), where & is the Dirac function. This means that
the knowledge of a Green’s function is equivalent to that of
a differential operator driving the time evolution of a given
system in response to an excitation §(¢). In solid-state physics,
Green’s functions are used to describe the propagation of
quantum states after excitation of the system [49-52]. More
precisely, for a quantum system characterized by the states
|n), n € N, and prepared in state |m) at t = 0, the retarded
Green’s function G,,,(¢) gives the complex amplitude of prob-
ability to measure the system in state |n) at time 7 [50,52]. In
particular, G,,,,(t) measures the coherence of each state |m)
over time. Given those two subfamilies of Green’s functions
(response functions in optics and propagation functions in
solid-state physics), our theoretical approach aims to connect
both through loop Feynman diagrams.

The formalism of Green’s functions is a very general way
to propagate physical quantities in space and time. As such,
they have a variety of applications: For example, another sub-
family is used in surface optics and multilayer systems, where
they help solve Maxwell equations with boundary conditions
and transfer the local optical response to the far field [54].
Here we calculate the local response, so this third subfamily
is not relevant.

B. Matsubara frequency space and second quantization

For convenience, we choose to handle imaginary-time
Green’s functions &,,, (wWhose argument is a complex number
within C — R) instead of G,,, (whose argument is a real
number) [50,52]. In the frequency domain, both are related
through analytical continuity and then constitute two equiva-
lent mathematical pictures [52]

Gmn(w) = Qsmn(a) + ZO+)7 (6)

where 10" represents a small positive imaginary part, which
eventually will account for the finite widths of the transitions
between states. Given the eigenfrequencies w,, associated
with the eigenstates |m) of a system, the imaginary-time
Green'’s functions read [50,52]

8”’1}1

Qjmn(z) = - s (7)

with z € C — R. The advantage of &,,, lies, first, in its min-
imalist expression and, second, in the possibility to apply the
residue theorem to simplify the calculations of loop Feynman
diagrams (Appendix A). This simplification is made possible
because the imaginary-time Green’s functions involved in the
expansions of optical response functions are computed over
the Matsubara frequencies 1w, v € Z, which are the poles of
the Fermi-Dirac function p(z) = (1 + ¢™)~!, withz € C and
b= 1/kgT (Appendix A). This formalism is directly linked
to the concepts of fermion creation and annihilation operators
cfn and c,,, respectively, in the second quantization. Indeed,
Eq. (7) is equivalent to the knowledge of the diagonal Hamil-
tonian Hg of the system

Ho =Y hwnc)cn. (8)

Without perturbation, each state |m) freely propagates with
the probability amplitude @,,,(w + 107). However, when an
external field E interacts with the system, |m) may be anni-
hilated (via c,,) to the benefit of another state |n) (created via
c}). This actually translates the promotion of the system from
state |m) to state |n) by absorption of light or its relaxation by
emission of light. Such a perturbation is necessarily driven
by a perturbative Hamiltonian with cross terms c]c,,. This
is indeed the case of light-matter interaction, based on the
dipolar Hamiltonian

Him = —p-E, 9

wherein the dipole moment of the system reads

P= Z pnmcj,cmo (10)

Since the electric field is quantized via boson operators a®®)

and a®" associated with i-polarized photons [55], the inter-
action Hamiltonian Hyp; involves three-particle terms of the
forms pi, clc,a® (absorption) and pi,mc];qcna(")T (emission).
For instance, the first term (absorption) tells us that the exci-
tation of the system by light disturbs the propagation of state
|m) by changing the system into state |n) with the probability
amplitude p',,. It translates the annihilation of state |m) and
photon i (via c,,a'”) and the creation of state |n) (via c}).
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propagator [1) &y (1w, + ww1) propagator |1} &y (1w, + 1we)
propagator [n) & (1w, + w3) propagator |n) By (1w, + ww3)

FIG. 2. Feynman diagram for sum-frequency generation in simple systems. (a) We draw diagrams made of a single loop (N, = 1), which
embody the hyperpolarizability B; i (w1, @,) of a simple system. The oriented lines correspond to the propagators of its quantum states, m, n, and
1. The waves represent the three photons (V, = 3) involved in the SFG process, at frequencies w;, w;, and w3. At each vertex between a wave
and two propagators, the total frequency is conserved (Feynman rule 5). For the three vertices (N, = 3), the coupling constants correspond to the
appropriate components of the transition dipole moment p, as listed on the right (Feynman rule 6). For the three propagators, the corresponding
imaginary-time Green’s functions are listed too (Feynman rule 7). These two diagrams lead to Egs. (12) and (13). (b) Conventional double-sided

Feynman diagram, commonly used in nonlinear optics.

Drawing a loop Feynman diagram then consists in, first,
associating oriented lines with the quantum states of the
system when they freely propagate with the probability
&,m(w +10") and, second, connecting two quantum states
with a photon (represented as a wave) in a vertex when the
system interacts with light with probability pi . Figure 2(a)
gives such a graphical representation of the SFG process for
a simple system. This loop diagram is made of three oriented
propagators and three light-matter vertices (each vertex is a
three-particle node, i.e., between two quantum states and a
photon). Due to this diagrammatic representation, it is then
possible to apply the Feynman rules for calculating optical
response functions.

C. Implementation of the method

The use of Feynman diagrams for the analytical computa-
tion of the linear polarizability & and the hyperpolarizabilities
B and y of a simple or a composite system relies on 12 steps
[50,52]. Some quantities, such as the virtual bosons which
translate energy transfers between two subsystems (Fig. 3),
will be defined in the following.

(1) Define the system by its number N; of partners (or
subsystems) and define the optical process by the number
N, of photons involved, their nature (creation or annihila-
tion), and their frequency relationships (e.g., w3 = w; + w»
for SFG). First-order « functions are represented by diagrams
where N, = 2, second-order B functions where N, = 3, and
third-order y functions where N, = 4.

(2) Define the total number N, of interaction processes,
first, between the partners and the photons (N,) and, second,

between the partners themselves (V, — N),), recalling that two
nodes linked by a virtual boson propagator represent one
interaction process.

(3) Draw all the topologically distinct loop diagrams made
of N; loops (as many as subsystems) and N, interaction pro-
cesses.

(4) For each loop, assign an implicit Matsubara frequency
(e.g., 1w,) to the propagator associated with the initial state.

(5) Apply the energy conservation rule (in terms of fre-
quencies) at each vertex with boson frequencies chosen
among those present in the system, by ensuring that the con-
stitutive energy relationship (e.g., w3 = w; + wy) applies at
one and only one vertex. Draw as many distinct diagrams as
possible by considering all allowed frequencies, initial states,
and directions of rotation on the loops; if some diagrams are
equivalent, keep only one of them.

(6) Determine for each vertex the coupling constant cor-
responding to the interaction Hamiltonian (e.g., p',, for
light-matter interaction) and multiply them.

(7) Determine for each propagator the associated
imaginary-time Green’s function and multiply them.

(8) Multiply by (—1)NrH+!. pNp=No=1 . 5No=2N " here b =
1/kgT.

(9) Sum over all the quantum numbers and all the implicit
Matsubara frequencies to get the response function with imag-
inary frequency arguments.

(10) Use the residue theorem (Appendix A) in order to
reduce the sums over the implicit frequencies.

(11) Replace the imaginary frequencies iw of photons by
@+ 107 to get the response function with real frequency
arguments.
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(12) Introduce the damping constants I',,, by replacing
each term (fw,, +10%) by (Fwy, +1T,y,). This last rule
takes into account the finite lifetimes of real quantum states.

Along steps 1-9, the calculations involve imaginary-time
Green’s functions and Matsubara frequencies 1®,. As opti-
cal response functions are defined with real frequencies, the
analytical continuity depicted by Eq. (6) is used at step 11
to deduce the useful response functions a(w), f(w;, @;), and
y(w1, w2, ®3).

D. Illustration in the case of simple systems

According to these rules, the linear polarizability « of a
simple system (i.e., made of one loop) coincides with the usual
formula [46,47,56,57]

(@) = Z p(wp) P;mpf;m _
Y h o+ Wy + 10 m

m,n

Jo i
pnmpmn )
b
@ — Wym + lrnm

(1)

as derived in Appendix B. At this stage, it evidences the
relevance of the diagrammatic method, but we rather dwell on
the computation of the hyperpolarizability # to fully illustrate
the mechanism of our approach. For this purpose, we need
to consider the two loop diagrams drawn in Fig. 2(a), which
result from the application of Feynman rules 1-5 with three
photons and w3 = w; + wy. They embody the SFG process
occurring through a single-loop system, when two input pho-
tons of frequencies w; and w, interact with it. These photons
are respectively j and k polarized, while the resulting SFG
photon is considered i polarized. Actually, we are sure that
there are only two relevant diagrams: There are as many
one-loop diagrams as cyclic permutations in {1, 2, 3}, that is,
(3 — 1)! = 2. This is why we label them (123) and (213) in
Fig. 2(a), referring to the corresponding cyclic permutations
of photons. Performing this cyclic permutation is graphically
equivalent to changing the direction of rotation or inverting w,
and w; on this loop.

By applying the first nine Feynman rules to these two
diagrams, we obtain (in terms of imaginary frequencies)

ﬂi(;](23)(l0)1,l(1)2)_ th menpnlplmzﬁmm(lwv)

n,m,l
X ®ll(la)v+lwl)®nn(lwv+lw3) (12)

and

(=1?*
/Sl'(j'zk]:s)(lwl’le) = bh3 menpn]plmzﬁmm(lw‘))

n,m,l
X &Gw, +107)8,,Gw, +1w3). (13)

Appendix C details the derivation of both quantities and the
application of rule 10. Applying rules 11 and 12 to Egs. (C5)
and (C6) and considering the formal equivalence between the
Fermi-Dirac distribution p(w;) and the density matrix p;; (as
shown in Appendix D), we get

/3,-(;;?3)(601, @)
— Z du |: pllnpinlpﬁm
R (W — w3 — 1Ty )@ — w1 —1T)

m,n,l

(a2)

pnmplnpml (bl)
(wnm + w3 + lrnm)(wml wy — lle)
+ plnmplnpml (32/)
(wmn — w3 — lrmn)(wnl +w; + lrnl)
pmlp"mpln :| (bl/)
(wml + w3 + lFtrzl)(wnl + wy + anl)
/3,%33)(&)1, w2)
i)k
plnp”mpml
= Pul (al)
2 ’g:l |:(wnl — w3 — anZ)(wml —wy — lle)
(wnm + w3 + lrnm)(wml —w] — lrml)
+ plnmpljnlpllcn (al/)
(a)mn — w3 — lrmn)(wnl +wy + anI)
pmlplnpnm ] (b2)
(wmz + w3 + 1l )(@n + 01 +100)

Here we use the same labels (al), (b2), etc., as employed
by Boyd [46] in his Eq. (3.6.18) to show that our loop dia-
grams provide a result equivalent to the double-sided ones,
such as that drawn in Fig. 2(b). However, eight double-
sided diagrams are necessary to account for the complete
hyperpolarizability, whereas only two-loop diagrams suffice,
meaning that a one-loop diagram contains as much informa-
tion as four double-sided ones. This compacity constitutes a
great advantage of our graphical formalism. In addition, for
the computation of third-order hyperpolarizabilities y;jx; in a
single-loop system, we only need (4 — 1)! = 6 loop diagrams
(as many as cyclic permutations in {1, 2, 3, 4}) instead of 48
double-sided diagrams [46]. Finally, our formalism allows
us to tackle systems characterized by continuous statistical
distributions p(w) (e.g., metals) at any temperature, which
is not possible with the formalism based on the density ma-
trix picture. Conversely, following the equivalence shown in
Appendix D, the loop-diagram method is indeed more uni-
versal as it also applies to discrete systems like molecules
or atoms, allowing us to recover the classical density matrix
formulation [46] (which appears here as a special case of the
Green-Matsubara formalism).

Eventually, in the case of a purely molecular system (of
dipole moment p) probed by IR-VIS SFG spectroscopy,
the IR-resonant response eventually yields, as detailed in
Appendix C,

123 213
Biji(wy, w) = /3,~(jk (i, ) + ,3,-(jk (@1, @)

_1 Z 0 a,,(wz)avuk (14)
—w, +1T,°

where the partial derivative along each normal coordinate Q,

is given by
9, = ho 9 . (15)
2w, 90y
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We actually retrieve the usual formula for IR-resonant molec-
ular systems [12,58].

At this stage, in order to understand how the nonlinear
response of a molecular system is modified by the presence
of a partner (e.g., substrate or nanoparticle), we propose to
build new diagrams made of two loops (for both the molecule
and the partner) connected by new interaction vertices. These
are expected to account for the coupling between the two
interacting subsystems and to enable us to treat the complex
case of composite systems.

III. DIAGRAMMATIC THEORY OF BIPARTITE
COMPOSITE SYSTEMS

In this section we dwell on the specific case of composite
systems made of two subsystems and focus on the second-
order response. In order to give the broadest scope to our
method and make it as general as possible, we elaborate on
the whole reasoning from a mathematical point of view. In
particular, we enumerate all the possible bipartite diagrams,
which leads us to more than 30. This may seem high, but
most of these are not relevant to calculate meaningful physical
quantities. The results are quite simplified due to the use of
the 12 Feynman rules and a selection criterion, introduced
hereafter, to keep only relevant diagrams for a particular situ-
ation. Applying these rules, it becomes rather simple to draw
and calculate the relevant diagrams without concentrating on
the upstream derivation they arise from. This section can be
considered as a rigorous demonstration leading to practical
and operative results, as illustrated in Secs. I[II C and I D.

A. Interactions between subsystems

In the case of bipartite systems (e.g., made of a substrate
and a molecule), the bulk of the challenge lies in finding the
vertex accounting for the interaction between the two partners.
This amounts to finding the right interaction Hamiltonian Hy,
in terms of fermion operators. Without loss of generality, it is
always possible to expand a two-body interaction as [50,52]

M=y _ Y Cocidlcnds, (16)

nm rs

wherein ¢, cj; and d,, df are the fermion operators associated
with the two subsystems, respectively. The quantity C,; is
nothing but the coupling constant which intervenes explicitly
into the computation of hyperpolarizabilities. In the case of a
dipolar coupling between two dipole moments p and g with a

distance r,

Cy:fn Z Wkl(r)plr(zml’l’is’ (17)
kI
where W (r) is the dipole-dipole interaction matrix encoding
the 1/ spatial dependence of the coupling. In the case of
an electrostatic interaction between a dipole moment g and a
static electric field Eg,

C;:rYn = —8m06no Z /uleE(l) (18)
l

At this stage, however, we propose to treat the interactions
from a very general point of view. Equation (16) means

(a) ® In)
w, w, — @,
|m) In)
) )
) w, + o,

FIG. 3. Four-particle vertex. (a) Diagrammatic representation of
the interaction vertex associated with Eq. (16) as a node between
four propagators. Each subsystem is characterized by its own implicit
Matsubara frequency w, or w,. (b) Decomposition of a four-particle
vertex into two three-particle nodes. This representation introduces
a virtual boson (which may transfer energy w,) and allows splitting
the system into two distinct subsystems.

that such interactions take the form of four-particle vertices
(via ¢} d cmdy), as pictured in Fig. 3(a), while light-matter
interaction involves three-particle vertices. For clarity, it is
possible to decompose a four-particle vertex into two three-
particle nodes [Fig. 3(b)]. For that purpose, we formally
introduce a virtual boson which conveys an exchange of
energy or a transfer of quantum numbers. This virtual bo-
son is then represented as a dashed line. In the case of
electromagnetic interactions, as in Egs. (17) and (18) for
which dipoles and fields exchange energy quanta correspond-
ing only to their oscillating frequencies, the frequencies of
the bosons must match one of those present in the system
(hence rule 5). The choice of this representation facilitates
the counting of bipartite diagrams that it is possible to
generate.

B. Enumeration of bipartite diagrams

The hardest task may be to satisfy Feynman rule 3 by
determining the full set of topologically distinct diagrams. A
list of two-loop diagrams representing substrate-molecule sys-
tems is given in Fig. 4. Here the distinction between substrate
and molecule is purely illustrative and exemplary. This list is
totally general for any bipartite system with the result that
Fig. 4 inventories all the SFG diagrams we can imagine to
couple two interacting subsystems due to one and two virtual
bosons. To demonstrate it, we split our reasoning into three
parts. First, we assume that the three photons are equivalent
and indistinguishable. In this case, the enumeration consists in
determining how many possibilities there are to place propa-
gators and vertices on two loops, without regard for the nature
of the vertices (light-matter or matter-matter vertices). In a
way, this essentially reduces to enumerating the skeletons of
the two-loop SFG diagrams (bare diagrams in Fig. 4). Second,
we distinguish the three photons and count how many cyclic
permutations it is possible to generate for each bare diagram
(enumeration in Fig. 4). Third, this allows labeling the three
light-matter vertices by w;, w;, or w3, drawing the virtual
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Bare diagram Enumeration

(3,0)

Nbr of 3-cyc. perm.
=21=2

w2
w3
w1

(123)

Nbr of 1-cyc. perm.
-0l=1

Nbr of 4-cyc. perm.

®®

=31=6
Nbr of 2-loop diag.
(@1) g -
<3>X1X6 6 (123b) (12b3)
=
; (1b) (1b)
Nbr of 2-cyc. perm.
‘ﬁ =11=1
Nbr of 3-cyc. perm.
lIi =21=2
Nbr of 2-loop diag. w@h ,JQL
3 -
(3,2) <2>>‘1X2—6 (23b) (32b)
Nbr of 2-cyc. perm.
=11=1
Nbr of 5-cyc. perm.
= 41=24
w3 w1 w2 w3
Nbr of 2-loop diag. w2 w1
2 3 24 _
(5:2) (3)“" o1 12 (123bb) (12bb3)
o~
; (3bb) (3bb)
Nbr oi 32-f}:c.2perm. Fass Fai
Nbr of 4-cyc. perm.
=3l=6 5 5
@ w1 w2
Nbr of 2-loop diag.
3ro : ozp iag. o "
) (203 2=9
(12bb) (21bb)

Complete list of diagrams

(213)

w1 w2 w3 w3 w2 w2 w1 w1 w3 w1 w2
w1 w3 w2 w3

(13b2) (132b) (1b32) (1b23)
(2b) (2b) (3b) (3b)
w2 w2 w3 w3
wi‘Q\i‘m U'MJQI:JB wf_Ingﬂ wb—Qﬁ\“z
(13b) (31b) (12b) (21b)
(13bb2)
(13b2b)
(132bb)
(1b3b2)
(1b32b)
(1bb23)
(1bb32)
(12b3b) (1b2b3) (1b23b)
(3bb) (1bb) (1bb)
OJM OJM
‘ . (1bb)-(2b3b)
(2bb)-(13bb)
(2bb)-(31bb)
w3 w2 (2bb)-(1b3b)
w2 w3
(1b2b) (32bb) (23bb)

FIG. 4. Bipartite diagrams. The Feynman diagrams that are possible to generate for bipartite systems, such as substrate-molecule interfaces,
are classified according to the number N, of propagators associated with the substrate (upper loop), the number N, of molecular propagators
(lower loop), and the number V of virtual bosons (dashed lines). In the left column, we give the bare diagrams for the different couples
(Niots Nsuwp) € {(3,0); (4, 1); (3, 2); (5, 2); (4, 3)}. They only exhibit propagators and nodes, without regard for the nature of the vertices it is
possible to assign to these nodes. In the middle column, we enumerate the cyclic permutations of Ny, and Ny, elements and deduce the
total number of two-loop diagrams. This actually illustrates the demonstration of Egs. (22) and (23). In the right column, we explicitly draw
the corresponding diagrams, named by their associated cyclic permutations. These permutations refer to the sequences of photons and virtual
bosons {1, 2, 3} U {b}" along the two oriented loops. Note that this figure gives only a half of the bipartite diagrams: the second part is obtained

by inverting the two subsystems (mol <> sub).

bosons which bridge the two loops and establishing the com-
plete list of diagrams in Fig. 4. These three steps illustrated in
Fig. 4 are governed by several relationships between the four
parameters Npop, Nsup, V, and P, standing for the number of

molecular propagators, the number of propagators associated
with the substrate, the number of virtual bosons (i.e., four-
particle vertices), and the number of photons interacting with
the molecule, respectively.
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To start, we can notice that the total number of propagators
is fixed for a given number of four-particle vertices

Nsub+Nmol =342V. (19)

Indeed, there are as many propagators (Ngyp, + Nimol) as nodes:
As each virtual boson counts for two nodes and as there are
three photons interacting with the whole system, the total
number of nodes is equal to 3 4 2V. In addition, a diagram
built with V' virtual bosons requires at least V molecular prop-
agators and V propagators for the substrate: Nyyp, Npot = V.
From Eq. (19) we deduce that

1% g Nmol» Nsub g V+ 3. (20)

As a consequence, at a fixed V, we always count four
possible couples (Npor, Ngwp), Which are symmetric ac-
cording to the permutation (mol < sub): (V +3,V),
V+2,V4+1),(V,V+3),and (V + 1,V + 2). The first step
of diagram building thus comes down to examining the only
two cases with (V +3,V) and (V 4+ 2,V + 1) to create the
bare diagrams.

In order to start decorating the bare diagrams with photons
and bosons, in other words, to assign their vertices, we note
that the number P of photons which interact with the molecule
is determined by the two numbers V and Npr:

P =Npg —V. (21)

Enumeration starts by choosing a way to assign P photons to
the molecular loop among the three photons involved in the
second-order process. In other words, the number of possible
two-loop diagrams with all photons assigned to a loop simply
corresponds to the value of the binomial coefficient (f,). Con-
sequently, there is a single possible photon-assigned diagram
for the first couple (V + 3,V ): P = 3 and (g) = 1. In the case
of the second couple (V 42,V + 1), P = 2, which leads to
three photon-assigned diagrams: (;) = 3. At this stage, the na-
tures of all vertices on each loop are known because the virtual
bosons {b} are indeed indistinguishable (their energies will be
determined later on by rule 5). The set of photons is denoted
by {1, 2, 3} and the set of virtual bosons is {b}". For each loop
made of k propagators (and then k nodes), we assign a cyclic
permutation of order k representing the cyclic sequence of
vertices (photons and virtual bosons) along the oriented loop.
For instance, in the case of the one-loop diagrams of simple
systems [Figs. 2(a) and 4], we count two diagrams assigned
to the permutations (123) and (213). For bipartite systems,
this logic has to be applied to both loops. Since there are
(k — 1)! distinct cyclic permutations for a fixed order k, we
deduce that there are (Npo — 1)! and (Ngp — 1)! possibilities
for the molecular and substrate loops, respectively. Due to the
indistinguishability of the virtual bosons, these numbers have
to be divided by V'! (when Npyo1sup > V) to get the number of
decorated diagrams, assuming a fixed photon assignment.
Specifically, in the first case with (Npo1, Ngw)=(V 43, V),
the substrate loop exhibits as many nodes as virtual bosons
(Newb = V). Hence, the three photons only connect with
the molecule loop, so a unique cyclic permutation of order
Nmol =V + 3 is required to tag the two-loop diagrams. We
deduce that there are (V + 2)! distinct diagrams here, except
for the virtual bosons’ indistinguishability. Eventually, the

total number of two-loop diagrams associated with the couple
(V 4+ 3,V)reads

3\ V),
<3>XT—V +3V +2. (22)

In Fig. 4 we indeed draw six diagrams for V = 1 and twelve
diagrams for V = 2. These are described by permutations
of types (123b) and (123bb), respectively, on the molecular
loop. In the second case with (N1, Nowp) = (V +2,V + 1),
both the substrate and the molecule loops are connected with
photons and each diagram is thus described by its own cyclic
permutations. With the same reasoning, the total number of
such two-loop diagrams is given by

3N\ VI (V1)

In Fig. 4 we actually draw six diagrams for V = 1 and nine
diagrams for V = 2. They correspond to permutations of types
(1b) - (23b) and (1bb) - (23bb) on the substrate and molecu-
lar loops, respectively. As a matter of fact, taking the mol <
sub symmetry into account, we demonstrate that, for a fixed
value of V > 1, there are exactly 2V2 4+ 12V + 10 distinct
two-loop diagram which address Feynman rule 3. In addition,
our method is constructive: We show how to generate them
from cyclic permutations.

The list provided in Fig. 4 is then complete for V < 2 and
can be extended as explained above for bigger values of V.
This means that the total S(w;, w;) of the full system is the
sum of all the diagrams drawn with V' > 0. However, as we
will see below, most of those diagrams are not interesting from
a physics point of view. It is indeed, and fortunately, possible
to restrict ourselves to fewer diagrams.

C. Diagrams of interest for second-order molecular response

Among the diagrams that we have just enumerated, a se-
lection criterion can be established in order to keep only
those involved in the calculation of the second-order hyper-
polarizability B; (w1, w2) of a molecule influenced by the
presence of a partner, a substrate, for example. Indeed, the
molecular hyperpolarizability B is known to be a rank-3 tensor
involving three components of the molecular dipole moment
1 [46,47,56]:

Bxp@pep. (24)

A bipartite diagram can lead to such a three-component
combination if and only if the molecular states are described
by three propagators: Ny, = 3. As we intend to compute
Bijx(w1, w2), with the input frequencies w; and w,, the three
molecular propagators of each diagram must always be as-
sociated with consecutive frequencies of type (0, 1w, 1w3)
or (0,1w;,1w3) above the Matsubara frequency 1w;. As a
consequence, the molecular loop has to be identical, in terms
of propagators, to one of those depicted in Fig. 2. In other
words, the diagrams relevant for the calculation of a molec-
ular B;jx(wy, w;) coupled to a partner are those explicitly
encompassing one of the three-propagator loops describing
the noninteracting B; jx (w1, @>).
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l(l)3
i0 |§a sy
1w

W

-

-1,

“wyy

w3

FIG. 5. Second-order molecular response. List of the two-loop diagrams involved in the second-order molecular response of any bipartite
system and belonging to (3,2), (3,4), and (3,6) families [see Fig. 2 for the (3,0) diagrams]. Five additional diagrams, deduced from those in the
gray zone by exchanging w; and w,, must be added to complete the list to 23. The 23 other diagrams (not shown) are deduced by changing
the direction of rotation on the molecular loop. Each propagator is calculated with an imaginary frequency added to the Matsubara frequency
(1w, for the upper loop and 1w, for the lower loop, as recalled inside both). The green, red, and blue waves correspond to the input photons w;
and w, and the output photon wj3, respectively. The arrows indicate the initial states (i.e., propagators at Matsubara frequency). The sum of all
these contributions gives access to the total hyperpolarizability ;i (w, @;) of a molecule, associated with the lower loop, under the influence
of a partner (e.g., substrate or nanoparticle), associated with the upper loop.

Using Nyl = 3, Eq. (21) thus leads to 0 <V < 3. As
a consequence, it is useless to examine bipartite diagrams
comprising more than three virtual bosons, so the great ma-
jority of the full list of diagrams can be rejected. Under these
conditions, we count four couples (N1, Nsup) Of interest:

Nmol =3 (3.00 (3.4
{O<V<3}:>

(3,2) (3,6).

Applying Feynman rule 5 (i.e., conservation of energy), it is
possible to fill some of these diagrams with several frequency
configurations. The diagrams of types (3,0) and (3,2) do not
involve more than one virtual boson, so the associated per-
mutations unambiguously determine the way we can fill them
with frequencies. In contrast, when there are two or three
virtual bosons, the choice of the relative orientations of the
two loops (two possibilities for each loop) gives rise to four
possible fillings for each diagram. In Fig. 5 we list these filled
diagrams and we outline their essential features here below.

The (3,0) diagrams correspond to the two possible fillings
of the one-loop diagram as explained in Fig. 2 (i.e., inverting
w; and w, or changing the direction of rotation). For all the
two-loop diagrams, we may therefore count the number of

(25)

possible fillings of the substrate loop and then double the num-
ber of diagrams as a consequence of this dual filling on the
molecular loop. We count six distinct (3,2) diagrams (Fig. 4)
corresponding to three choices for the photon interacting with
the substrate loop (leading to its filling with frequencies 0 and
1w; above the Matsubara frequency 1w,, with i = 1, 2, 3) and
two fillings of the molecular loop. For the (3,4) diagrams,
it is possible to check that they correspond to a substrate
loop filled with frequencies 1w, + (0, 1w;, 0, f1w;), i # j,
leading to 12 possibilities for this loop and thus 24 diagrams
in total with the molecular loop symmetry. For the (3,6) dia-
grams, the filling of each substrate loop follows the sequence
1w, + (0, Z1w;, 0, Ziw;, 0, f1ay), i # j # k # 1, giving rise
to eight possibilities for the upper loop and 16 diagrams as
a whole. A total of 48 =2 4 6 + 24 + 16 distinct diagrams
must therefore be considered to gather all the information
of concern when focusing on the second-order response of a
molecule under the influence of its partner, as summarized in
Fig. 5.

Let us consider the first diagram, labeled [D1] in Fig. 5,
whose filling is detailed in Fig. 6. Assuming a dipolar cou-
pling driven by Eq. (17), the application of the first nine
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(1b)-(23Db)

w3 |£) w2
1w, + 1w,

FIG. 6. Example of composite diagram. Filling of the bipartite
loop diagram (1b) - (23b) used for the derivation of Eq. (26).

Feynman rules leads to
DI
By o, 1)

1 .
= ZVVMW Z pﬁmpi,mqjmm(lwu)®nn(lwv + la)l)
h,l

m,n;v

1 .
X ﬁ Z 'U“lrtu’irl’(’fsﬁrr(lwk)ﬁrr(lwx + l(l)])
7,8,

X &, (w;) +1w3). (26)
From Eq. (12) and Appendix B [Eq. (B1)] this reads
B @1, 02) = =Y WnapP(@1) - By (@1, 02),  (27)
.l

where o*? depicts the linear polarizability of the substrate.
Here again a second contribution [D1’] must be considered,
by changing the direction of rotation on the molecular looP of
[D1]. We thus find the same result with ﬂi(fkm instead of ﬂi(l k23),

B N1 w2) = =Y Wi i (@1) - B (1. w2). (28)
h,l
so that, from Eq. (14),
AT (w1, w2)
W, —wy, +1T,°

(29)

DI DI’
ﬁ,!jk G, 10,) + ﬂl!jk (wr, @) = Z

v
with

- 1
A @1, @) = =23 a0 Wand P (@)dme. - (30)
h,l

This result is consistent with the previous study of the SFG
response of quantum dots (QD) capped with mercaptocar-
boxylic acid ligands [38]. The vibration amplitude Af)jk has
indeed proved to be driven by the linear susceptibility of
quantum dots ozZLJ'.b(a)l) = X,?I.D(w] )/N, where N is the surface

density of quantum dots on the sample.

Henceforth, our diagrammatic approach demonstrates that
it is possible to explicitly determine coupling coefficients A,
and thus gives meaning to the phenomenological equation (2).

D. Diagrams of interest for third-order molecular response

As recalled in the Introduction [Eq. (3)], sum-frequency
generation may arise from a molecular third-order process
characterized by the hyperpolarizability y(w;, @, 0). Inter-
estingly, such a rank-4 response tensor can be formally
derived from diagrams made of four molecular propagators.
We thus count three interesting couples (Nyol, Nsub ):

{ Ninol =4

Ogv<3}=>(4,1)(4,3) “,5). G1)

According to Fig. 4, we count six diagrams of the first type
and nine diagrams of the second one. In addition, 12 diagrams
of type (4,5) can be drawn (Fig. 7). All these diagrams account
for the molecular SFG process modified by a static electric
field or a permanent dipole created by the substrate, as all of
them involve at least one virtual boson carrying a zero fre-
quency. Therefore, such diagrams may be employed to model
electric-field-induced SFG at electrochemical or charged in-
terfaces, as it is extensively studied in the literature [27-30].
Among these, only the six (4,1) diagrams imply no energy
exchange between molecules and substrate and are there-
fore the only ones considered in the literature. However, the
loop-diagrammatic method shows that additional processes
involving a more complex interplay between molecules and
substrates could be included in this third-order SFG response.
Strictly speaking, those diagrams still translate into global
Bijx functions (since N, = 3), but they necessarily lead to a
factorized expression of the form

Bijk(wr, w2) = Z Yijki (w1, w2, 0)U;, (32)
1

where U = (U;) is a vector depending on the interaction
Hamiltonian H;, which drives the coupling between the two
subsystems. In the case of electric-field-induced SFG, driven
by Eq. (18), this vector is nothing but the static electric
field Eo.

E. Classification of composite diagrams

Within the framework of substrate-molecule systems,
Secs. III C and III D focused on the molecular response. Con-
sidering the full second-order response of the system, this
is just an illustrative point of view which invites us to par-
tition the diagrams into second-order and third-order (and
so on) subsets characterized by Ny (or Nyp) = 3 and Ny
(or Ngyp) = 4, respectively. In a general way, there is no limit
to the orders of development when V' grows. If we denote by
Y the number of nodes (i.e., connected vertices) on the loop
of one of the subsystems, the associated hyperpolarizability
for this subsystem is then characteristic of a (Y — 1)th-order
process, even if it behaves like an effective second-order po-
larizability B for the total system. For instance, this is the true
meaning of Eq. (32). Considering the decreasing magnitudes
of out-of-resonance hyperpolarizabilities with their increasing
order, this classification in terms of the number of nodes per
loop shows that the influence of most diagrams decreases
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w3 w2

(1b2bb)-(3bbb)

w3 w1

(2b1bb)-(3bbb)

(3b1bb):-(2bbb)

(3b2bb)-(1bbb)

w2

(31bbb)-(2bbb)

w1

(32bbb)-(1bbb)

FIG. 7. Third-order molecular response. List of two-loop diagrams of type (4,5) involved in the third-order molecular response of any
bipartite system. They contribute to the hyperpolarizability y;;x (w;, @;, 0) of a molecule, associated with the lower loop, under the influence
of a partner (e.g., substrate, electrode, or nanoparticle), associated with the upper loop.

when V (and thus Y) grows. For the total response function,
it becomes possible to discard most of the nonresonant and
higher-order diagrams by comparison to the main contribu-
tions.

In any case, the complete nonlinear response function of
a composite system is given by the sum of all the diagrams
which are physically relevant. This precisely makes sense of
the phenomenological equation (3) commonly employed for
describing vibrational SFG: (i) The substrate contribution By
corresponds to the sum of all the diagrams for which Ny, = 3,
(i) the molecular contribution By, corresponds to the sum of
all the diagrams for which Ny, = 3, and (iii) the third-order
contribution y corresponds to the sum of all the diagrams
for which Ny, = 4. In other words, all these terms have a
common theoretical origin and can be analytically derived
from the same diagrammatic method.

F. Extension to other processes and systems

Obviously, the loop-diagrammatic method can be enlarged
to the case of systems made of more than two subunits and
to all the other nonlinear optical processes. We have chosen
to illustrate this formalism with SFG spectroscopy in the
case of organic-inorganic systems because the understanding
of the vibroelectronic coupling occurring within such sys-
tems is a controversial issue [37,38,59-61]. Given that our
approach is fundamental and general, we expect interesting
applications for the theoretical study of the second-order SHG
(second-harmonic generation), difference-frequency genera-
tion (DFG), and third-order Raman spectroscopies. Briefly,
for a given system, the computation of SHG and DFG re-
sponse functions would be very similar and mostly consist

of setting w; = w, with identical incoming photon polar-
izations for SHG, while adjusting energy conservation to
w3 = w| — w, and replacing the annihilation operator by the
creation operator for the IR photon for DFG. Formally, the
reasoning we used for the calculation of the response ten-
sor B(w, wy) could thus be straightforwardly applied to the
other second-order optical processes. As a third-order process,
Raman scattering is more complex to account for from a
theoretical point of view [62]. When performed on molecules
deposited on a rough metallic surface (or metallic nanoparti-
cles), it is amplified by the surface-enhanced Raman scattering
(SERS) process, whose explanation is still a matter of de-
bate [63-66]. In this context, the present work introduces a
different way of thinking for multipartite Raman processes,
and SERS in particular, with the difference that the associated
Feynman diagrams would consist in combining four photons
to compute tensors y(wg, —wp, ®). This may seem a daunting
task, but we must keep in mind that the efficiency of the dia-
grammatic approach lies in mixing solid-state and molecular
physics with optics, through a unique formalism. For SERS,
the question is precisely on the coupling between the metallic
surface (or particles) and the grafted molecules. This is why
we are quite confident that our method will also yield positive
results for organic-inorganic systems probed by third-order
optical spectroscopies.

IV. CONCLUSION

Fundamentally, Green’s functions are the proper and ded-
icated language of linear and nonlinear responses theories.
Although they may seem tricky to use for complex systems,
this difficulty can be overcome due to Feynman diagrams.
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In the case of composite systems, our method consists in
building such diagrams, taking into account the interactions
between the different subsystems, and applying the Feynman
rules which enable us to translate any diagram into the analyt-
ical expression of the associated response function.

In this article, the case of substrate-molecule interfaces
probed by SFG spectroscopy was considered to illustrate the
method. We enumerated in a general and exhaustive way
the bipartite diagrams that are possible to generate and gave
the fundamental principles which allow their conversion into
optical response functions. Practically, we explicitly showed
how to establish the analytical expressions of the second-order
hyperpolarizabilities for any system made of two subunits.
Indeed, our results are formally independent of the precise
natures of the two interacting subsystems, so they can be
theoretically applied for any composite system. While the
community has so far failed to adopt a global theoretical view
on the treatment of the different nonlinear optical responses
within hybrid systems, here we have proposed a unified
formalism and demonstrated its operational capability. This
paves the way for concrete applications to some real bipartite
systems, especially made of organic molecules in interaction
with plasmonic nanoparticles, semiconductor quantum dots,
and charged surfaces.
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APPENDIX A: MATSUBARA FREQUENCIES
AND RESIDUE THEOREM

The Matsubara frequencies {iw,},cz of fermions are
defined as the poles of the Fermi-Dirac function p(z) =
@+ 1) b=1/kT:

T
hoy = 5 Qv+ 1), (A1)

For bosons, they are the poles of the Bose-Einstein function
0p(z) = (" —1)7":

mw=%2% y ez (A2)

In this way, for bosons, e =1. This means that
p(w £ 1w,) = p(w). Since photons are bosons, this identity
is used to simplify the computation of optical response func-
tions.

In addition, the residue theorem allows the reduction of
sums of products of imaginary-time Green’s functions. It
states that for all meromorphic functions ¢ characterized by N
simple poles {z,}1<u<ny and the associated residues {r,}1<u<n
[50,52],

% Z¢(lwv) =h Z 1P (Zu)- (A3)

a)l/
w ) Nl=1
E‘J Ei Nv=2
N,=2

w,+ o

v

vertex (E;:m — n) p{;m propagator |m) &, (lw,,)

vertex (Ej:n—m) ph. propagator |n) &y (2w, + W)

FIG. 8. Linear polarizability. Diagrammatic representation of

a;;(tw) for a simple system.

In the present article, we deal with three kinds of meromorphic
functions

1
d1(z) = ,
-2
1
h(z) = , (A4)
I—271—2
1 1
$3(z) =

I—17—-27—2

wherein z;, z, and zz denote the poles. The function ¢,
is involved in one-propagator loops, ¢, in the computation
of linear response functions, and ¢; in the computation of
second-order response functions. From Eq. (A3) we get

1
5 b)) =lip(),

1 _
: Z¢2(w)u) _ hP(Zl) ,O(Zz)’

71 — 22
1 _ hp(z1) lip(z2)
b;%ww_m—mm—m (@2 - )G — )
lip(z3)

-_ (AS5)
(z3 —z21)(z3 — 22)

These relationships are easily generalized for ¢,(z) with
n>4.

APPENDIX B: DERIVATION OF LINEAR
POLARIZABILITY

We consider the Feynman diagram drawn in Fig. 8. It is
built with the vertices associated with light-matter interaction
and involves an input j-polarized photon and an output i-
polarized photon, both of frequency 1w. From the Feynman
rules, this diagram is converted into

D
o;ilw) = —— P B mm 1 @,) B, (1w, + 1 ).
j(w) #b§¥p (10,)B )
(B1)
Given the expressions of the Green’s functions,
1 o1 1 1
. - - )
al](lw) 72 ;;pmnpnm b z‘): LWy — W 10y — (W —10)
(B2)
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Due to the residue theorem (Appendix A) applied for the sum
over v,

1 i i m) n
Olij(lw)z_ﬁ n flmp(w )= ple lw)-

(B3)
s Wy — W, 1w

As 1w is the Matsubara frequency of a photon, which is a
boson, we have p(w, —1w) = p(w,). We eventually obtain

1 P
a;j(lw) = EZP(@O( Pl

1w + Wy,

m,n LW = Wnm

By replacing 1@ by w + 10" and applying the Feynman rule
12, we retrieve the expression of Eq. (11).

APPENDIX C: DERIVATION OF MOLECULAR
HYPERPOLARIZABILITY

Here we present the method to reduce a sum over an im-
plicit Matsubara frequency (i.e., @, ) from the residue theorem,
applied to the SFG hyperpolarizability of a purely molecular
system, and recover the essential SFG formulas of the liter-
ature expressed in the imaginary frequency space. We start
from Eq. (13):

1 S
213
/31'(jk )(lwls lwy) = ﬁ) Z p;nnpfqlpll(mﬁmm(lw”)

m,n,l;v

X B (twy, +1072)8,, 0w, +1w3). (Cl)

Due to the residue theorem (Appendix A), we reduce the sum
over v,

1
E Z ®mm(lwv)®ll(lwv + lw2)®nn(lwv + lw3)

B IZ 1 1 1
b - 1w, — Wy lw, — (W] —1wy) 1w, — (W, — 1w3)

. lip(wm)
(W — o) + 102 (@, — W, + 103)

hp(w — 1)

(0 — Wy — 102) (W) — W, + 1071)

ho(w, —103)
(wn - Wy — lw3)(wn —w; — l(,()l).

(C2)

Since photons are bosons, p(w; —iw;) = p(w;) and
p(w, —1w3) = p(w,). We thus obtain three terms which
look like those deduced from double-sided diagrams [46],
with the difference that we get a term which does not resonate
with w3 [the second one in Eq. (C2)]. Actually, it is possible
to split it in order to unveil such a resonance. Mathematically,

1 1
(Wi — 12 )@y, + 10071) B (Wum — 1w3) (@, + 10071)
1

(W — 103) 1wy — W)’

with w,,, = w, — w,, and so on. As a consequence,

B, 107) (C3)
. i ik p(wn)
G %:,p’"”p”’plm[(wnm S
o(wr) b2)
(W — 1w3) (Wi + 1w1)
plwp) ,
+ (wpm — 1@3)(1 w2 — Wi) (al )
p(w,) } b2)
(wnm - le)(a)nl - lwl) '

Here we use the labels (al), (b2), etc., employed by Boyd
[46] in his Eq. (3.6.18). To prove this correspondence between
the loop diagram (213) and the four double-sided diagrams
(al), (b2), (al’), and (b2) we need to play with the indices,
especially because in the original publication the four terms
are not factorized by the dipole moments but by the density
matrix coefficients p;;, formally equivalent to the Fermi-Dirac
function p(wy), as explained in Appendix D. Hence, we must
apply the change of indices

(al): m,n,l) — (I, n,m),
®2): m,n, 1) — (n,m, 1),
(al): (m, n, 1) — (n, m, 1),

b2): (m,n, 1) — (m, 1, n)

and the formal correspondence

pwy) <— Py (C4)
Therefore, we obtain
Bl (o, 102) (C5)
1 «— ., PPy
= — ,0” L n (al)
I n%:l |:(wnl — 103)(Om — 102)
i)k
pnmpmlpln (b2)
(Wpm + 103) (O — 1007)
i)k
+ pnmpmlpln (211/)
(W — 103)(Wy + 1022)
i) ok
pmlplnpnm :| (bz/)
(a)ml + la)B)(U)nl + la)l)

To conclude, we rigorously demonstrate that a single loop
diagram gathers four double-sided diagrams.

Considering the second loop diagram (123), which only
consists in the permutation of the two input photons, we get

ﬁl.(jl]f” from ﬁl.(jzk ) by applying the permutations

(Js k) —> (k, j),

(w1, ) —> (w2, w1)
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so that
B o, 100) (C6)
1 A p;np] lpﬁm
== Pu & (a2)
I W; |:(wnl — 103)(@m — 101)
i)k
+ pnmplnpml (bl)
(wpm + 103) (W — 12)
i)k
+ pnmplnpml (az/)
(W — 103)(@y1 + 101)
(W + 1w3)(Wy + 107)

Now that we have evidenced the correspondence between
loop and double-sided Feynman diagrams, we can use our
formalism to derive the resonant expression of the molecular
hyperpolarizability when w; is an infrared frequency. Indeed,
in the case of visible-infrared vibrational SFG spectroscopy,
the nonlinear response is dominated by the terms which
exhibit a vibrational resonance with respect to the infrared
frequency w;. This corresponds to the sum of (al) and (b1):

b (o lwg)—lZ[ PP N Pon, } Pupl,

1 E) - .

! W o — 103 oty Jop — 10
(C7

Assuming that the molecule is in its ground state |0) at equi-
librium, i.e., i)ll = 51(),

Dhy P N

i) k
pnmpOn ] Pmo
wyo—1lws3

O HLW3 | Wiy — L)

1
Pipor, 1an) = -5 > [
| (C8)

First, w, is an infrared frequency and resonates with w,, if m
depicts a vibrational state |v) of the molecule. Second, ws is
a visible frequency, which implies that w, and w,, ~ w,o are
electronic transitions. The integer n thus describes electronic
states |e),

i)
pngev
We0—lw3

J i k
pOepev Pro
WetTIw3 | Wy — Ly

(€9

1
BijcGor,100) = -5 > |:

The sum over e is known to give the polarizability operator
[58] (Appendix E):

1 Phel:
P Z[ ”

We) — LW3

Joi
pOepev
W + 13

= (0]a;j(tw3)|v) = h oy - (C10)
= (0]|a;i(twsz)|v) =
SN 2w, 90y |g
Moreover,
k—(0|Ak|>— hop (C1D)
_ V) = P . C
Pov P 2w, 00, |

Eventually, we obtain

1 9 pk (w3) 1

2w, 00,

Bozi_,-

Bij(wr, wy) =Y 30
0 v

v

0 @ — @y +10t
(C12)
which corresponds to Eq. (14).

APPENDIX D: RELATIONSHIP BETWEEN
GREEN-MATSUBARA AND DENSITY MATRIX
FORMALISMS

In conventional nonlinear optics, the quantum states |s) of
a given system (atom, molecule, nanoparticle, or solid) are
defined as a linear combination of eigenstates |i) [Eq. (3.3.3)

in [46]]:
ls) = ) aili).

Here we consider the eigenstates |i) as one-particle states
(associated with fermion annihilation and creation operators
¢; and cj, respectively), so |s) corresponds to a certain filling
of the one-particle states. The associated Hamiltonian reads

H = Z 8,'CITC','
i

and the total energy in state |s) is E; = (s|H]s).

As individual states |i) are fermion states, the occupation
rate n; ; = (slcjc,- |s) of each one-particle state |7) in the collec-
tive state |s) is either zero or one. The total number of fermions
of the system is then N = ) . n; ; and

(D)

(D2)

I’li’
jasl” = = (D3)
to satisfy the normalization condition
(sls) = lais* = 1. (D4)

The density matrix p of the system is henceforth defined on
the eigenstates |i) from the probability P(s) to observe the
system in state |s), and for diagonal terms we have

. 1
pii =Y P@laisl = = > P,

This corresponds to the mean occupation rate of the one-
particle state |i) over all the collective states |s).

The collective states |s) (thus defined in the canonical en-
semble) are analogous to the Fock states in solid-state physics
(within the grand canonical ensemble). The Fermi-Dirac dis-
tribution p(¢) is defined by

(D5)

1 1
p(ei) = Ztr(e*b”cfc» = ge*“*n,‘,s, (D6)

with

Z=t(e "M)=" (D7)
At thermal equilibrium, the probability P(s) is driven by the
Boltzmann distribution

—bE;
P(s) =

(D8)
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Therefore, there is a link between the density matrix p, as
defined in Eq. (DS5), and the Fermi-Dirac distribution

pii = ]ivp(sil (DY)

With our diagrammatic method, we compute, using the loop
diagrams employed in solid-state physics, the optical response
functions of N fermions whose statistics is driven by p(¢). In
the atomic and molecular formalism of nonlinear optics, the
double-sided diagrams lead to the computation of the optical
response functions of a single entity (atom or molecule) driven
by p. This entity is equally defined as a collection of fermionic
states filled with N fermions. The 1/N factor in Eq. (D9) only
reflects these different points of view. Formally, the response
functions computed with loop diagrams can be translated into
conventional response functions (obtained from double-sided
diagrams) through the substitution of p(e;) by pj;.

APPENDIX E: ELECTRONIC POLARIZABILITY
OPERATOR

We may rewrite Eq. (B4) in the following form, taking into
account Appendix D:
Phn D )

010 = 3 ph 3 (L _
Y —~ "y —~ 10+ Oy 1O — Oy

. 1 plnynlp Py nlp!
—;pmm<m| hZ<wm e m).

Wpm — LW

(EL)

Considering that, at thermal equilibrium, only the electronic
ground state |0) is populated, the density matrix satisfies
,bmm = 8m0:

aij(la)) = (0|% Z <p17|n><n|pz N

wno + 1w

p'ln)(n|p’
Wpo — lw

)|0>. (E2)

It is thus possible to define the equilibrium polarizability
operator &;;(1w) as

. 1 p'ln)(n|p’
&(w) = 7 Xn: ( o0 — 10 +

For a molecule described by its electronic and vibrational
states, depicted by |e) and |v), respectively, this operator can
be reduced to the sum over the electronic states as soon as
w is an optical frequency belonging to the visible spectral
range. In SFG spectroscopy, this is the case of ws (as written
in Appendix C):

. 1 ¥le) (el p’!
aij(le):_Z(p L

h Weo — LW3

ﬁ’|n><nlﬁ’>. (E3)

wpo + 10

ﬁ’le><e|ﬁ’>. 5

Weo + L3

In this case, |0) is the vibronic (electronic plus vibra-
tional) ground state, from which any optical transition starts
when the system is at equilibrium. Equation (C10) involves
(0lé;;(1w3)|v), which is the mean value of the electronic po-
larizability between the vibronic ground state of the molecule
and any vibrational state |v) belonging to the electronic
ground state.
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