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Asymmetric guidance of multiple hybrid modes through a gain-loss-assisted planar
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The gain-loss-assisted optical systems have revealed an unconventional light manipulation tool by hosting
exceptional points (EPs), which has lately a great deal of interest in the photonics community. Here, the
emergence of higher-order EPs is investigated in a planar coupled-waveguide geometry, which has the potential
to assemble additional degrees of freedom to explore EP-induced light dynamics. A planar form of waveguide
array consisting of four high-indexed guides is designed to support multiple quasiguided hybrid modes. An
inhomogeneous customized gain-loss profile to couple at least three chosen modes is introduced in such a
way that the waveguide hosts an EP of order three with the simultaneous presence of two second-order EPs
in the gain-loss parameter plane. We investigate the dynamical parametric encirclement schemes of embedded
EPs of different orders and exclusively reveal both the chiral and nonchiral dynamics of light assisted by
asymmetric conversions of hybrid modes. The implementation of our findings in discrete photonic systems
hosting higher-order EPs indeed opens up a fertile platform to meet a wide range of enticing applications in
the context of manipulation of modes including conversion and switching.

DOI: 10.1103/PhysRevA.104.063503

I. INTRODUCTION

Exceptional points (EPs) are a special type of spectral
degeneracies that analytically connect the coupled states of
usually open or non-Hermitian systems [1,2]. While a system
meets an EP, at least two coupled eigenvalues and the cor-
responding eigenvectors coalesce, simultaneously, and hence,
the underlying Hamiltonian becomes defective due to the
collapse of eigenspace dimensionality, which refers to an EP
as a topological defect [1,3]. A system with at least two-
dimensional (2D) tunable parameter space can host multiple
second-order EPs (EP2s). Essentially, the order of an EP is
decided by the number of coalescing states, i.e., the presence
of an EP of order n (say, EPn; n � 2) results in the coales-
cence of n number of coupled states. The realization of such
a simultaneous coalescence of n coupled states demands a
complex topology of the underlying system associated with
(n2 + n − 2)/2 tunable parameters [4–6]. However, the pres-
ence of (n − 1) connecting EP2s among n coupled states
due to the appropriate customization of only a 2D parameter
space can steer alike topological functionalities of an EPn in
a comparably simple platform [7–10].

Even though the presence of EPs was thought to be a
purely mathematical concept [1] for a long time, over the
last two decades, the interplay of gain-loss (non-Hermitian
components) with the topology of an optical system has es-
tablished the branch-point behavior of EPs as a promising
tool to control the light states [11–14]. Intense theoretical
efforts have lately been put forward to explore the various
aspects of the branch-point properties of EPs of different
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orders along with associated phases behaviors [15,16] by dif-
ferent matrix formulations [3,17,18]. Moreover, a wide range
of fascinating applications, including topologically controlled
mode conversion or switching [19–26], unidirectional light
propagations [27] with enhanced nonreciprocity [28–30], ul-
trasensitive detection [31–33], lasing [34,35], and coherent
perfect absorption (CPA) [36], topological energy transfer
[37], parametric instability to amplify light [38], and so on
have been explored by engineering EPs in various gain-
loss-assisted optical systems such as waveguides [20,22–26],
microresonators [9,33,39], photonic crystals [40,41], lasers
[34,35,42], and optomechanical systems [37,43].

A quasistatic variation of coupling parameters enclosing
an EP allows permutation among the corresponding coupled
states in the sense that the associated eigenvalues adiabatically
exchange their initial positions along with the eigenvectors,
where one of them acquires an additional Berry’s phase
[9,44–47]. However, the dynamics of coupled states fail to
meet such adiabaticity for dynamical (time-dependent or
analogous length-dependent for optical systems) variation of
coupling parameters around the respective EP [48,49]. Here,
EP-induced nonadiabatic corrections come into the picture to
enable chirality with time-asymmetric dynamics of the corre-
sponding coupled states, where due to asymmetric population
transfer among them, one of the eigenstates dominates at the
end of the encirclement process concerning the direction of
parametric variation around the respective EP [48,49]. Lately,
the dynamical EP2-encirclement schemes have widely been
studied to explore time-asymmetric light dynamics [20,22–
26]. Moreover, the nonadiabaticity in light dynamics along
with validation or failure of chirality has been reported by
implementing dynamical encirclement schemes of multiple
connecting EP2s or higher-order EPs in planar or two- or
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three-coupled waveguide system [25,26,50]. In this context,
the exploration of dynamically encircled higher-order EPs
in array-waveguide geometries supporting hybrid modes can
potentially unfold additional degrees of freedom in light ma-
nipulation toward signal processing and routing. Such studies
can be implemented in any of discrete integrated photonic
systems to mold the flow of light by using dynamically encir-
cled EP2s or EP3s as tools, however, exclusive analysis and
physical insights in this context are lacking.

In this paper, we report a specialty gain-loss-assisted planar
coupled-waveguide system to host a pair of connected EP2s
in its 2D gain-loss parameter plane, leading to the presence
of an EP3 in the same parameter space. Here, the dynamics
of multiple quasiguided hybrid modes enabled by different
dynamical EP-encirclement schemes are investigated, ex-
clusively. To encounter two connected EP2s, three coupled
quasiguided hybrid modes are chosen to study their avoided
resonance crossing (ARC) type interactions by introducing a
multilayer (customized) unbalanced gain-loss profile based on
two tunable parameters. Besides validating the second-order
branch-point behavior of the identified EP2s, the effect of
individual dynamical encirclement schemes around them is
investigated to explore the chiral light dynamics enriched with
direction-dependent asymmetric mode conversions among
the associated coupled modes. The third-order topological
branch-point functionalities of an embedded EP3 among three
hybrid modes are established by tailoring a customized pa-
rameter space enclosing both the identified EP2s, where the
failure of chiral behavior in EP3-induced light dynamics is
revealed. The findings indeed open up a versatile platform to
explore the unconventional applications of EPs. The physical
insights behind such fascinating behaviors of hybrid modes in
the vicinity of EPs in a planar coupled-waveguide system can
also be explored in optical lattices with long-range correla-
tions.

II. RESULTS AND DISCUSSIONS

A. Configuring a planar coupled-waveguide arrangement

We design a fabrication feasible planar form of a coupled-
waveguide arrangement, occupying the regions −W/2 � x �
W/2 and 0 � z � L along the transverse (x) and longi-
tudinal (z) directions, respectively, where four equidistant
high-indexed (with refractive index nh) layers, having the
width d = W/11 of each, are placed over a low-indexed (with
refractive index nl ) cladding layer, as shown in Fig. 1(a). We
normalize the operating frequency ω = 1 (i.e., the operating
wavelength λ = 2π ) to implement a dimensionless operation
and set the total width W = 30λ/π = 60 and the operating
length L = 20 × 103 in dimensionless units. The refractive
indices are chosen as nh = 1.5 and nl = 1.46 to consider a fea-
sible prototype with the combination of glass- and silica-based
materials. The proposed waveguide arrangement supports
multiple quasiguided hybrid modes, which are the combina-
tion of individual modes guided by the high-indexed layers.
To enable the non-Hermitian coupling among the quasiguided
modes, a customized gain-loss profile is spatially distributed
over the complete waveguide arrangement, where the modal
interactions are modulated based on two tunable parameters
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FIG. 1. (a) Schematic diagram of the gain-loss-assisted planar
coupled-waveguide arrangement, occupying the regions −W/2 �
x � W/2 and 0 � z � L along the transverse (x) and longitudinal
(z) directions, respectively. nh and nl represent the high and low
refractive indices, respectively, where d is the width of each of the
high indexed regions. (b) Transverse profile of n(x): Dotted blue line
represents the profile of Re[n(x)] (corresponding to the left vertical
axis) and solid red line represents the profile of Im[n(x)] for a cho-
sen γ = 0.0048 and τ = 2.8515 (corresponding to the right vertical
axis). (c) Normalized field-intensities of three chosen quasiguided
modes ψ j ( j = 1, 2, 3) (top panel) and their propagations (bottom
panel) through the passive (without any gain-loss) waveguide system.

associated with the gain-loss profile viz. gain-loss coefficient
(γ ) and a loss-to-gain ratio (τ ). The overall transverse profile
of complex refractive index distribution can be written as

n(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nl + iγ , for

⎧⎨
⎩

7W/22 � |x| � W/2
3W/22 � |x| � 5W/22
−W/22 � x � W/22

nh − iγ , for

{−7W/22 � x � −5W/22
W/22 � x � W/11

nh + iγ , for − 3W/22 � x � −W/11

nh + iτγ , for

{−W/11 � x � −W/22
5W/22 � x � 7W/22

nh − iτγ , for W/11 � x � 3W/22

. (1)

The complex refractive index profile for a specific transverse
cross section (i.e., for a chosen γ and τ ) is shown in Fig. 1(b).
Physically, τ defines the system’s openness based on the co-
efficient γ . A fixed τ = 1 leads to the system’s operation in
a particular PT phase; however, we consider τ as a variable
(beyond PT symmetry) to modulate Im(n) associated with
an unbalanced gain-loss profile toward emergence of an EP3
with the simultaneous presence of two connected EP2s. The
proposed coupled waveguide geometry offers a further scope
of scalability, where associated feasible prototypes can be re-
alized by state-of-the-art thin-film deposition technology with
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a combination of glass and silica-glass-based materials, where
the patterned attenuation and gain can be achieved straight-
forwardly by controlled doping of lossy and active materials
using a standard photolithography technique.

To investigate the emergence of an EP3 with a pair of two
connecting EP2s, we choose three quasiguided hybrid modes
ψ j ( j = 1, 2, 3) and study their interactions based on the vari-
ation of corresponding propagation constants β j ( j = 1, 2, 3)
over the tunability of the control parameters γ and τ . Here,
the scalar modal equation (owing to small 	n approximation;
	n = nh − nl ) [

∂2
x + n2(x)ω2 − β2

]
ψ (x) = 0 (2)

associated with n(x) given in Eq. (1) is solved to compute the
β values of the chosen modes. Without onset of any gain-loss
profile, the normalized field intensities of ψ j ( j = 1, 2, 3) are
shown in the top panel of Fig. 1(c), where in the bottom
panel, the propagation of them through the passive system are
displayed.

B. Hosting of two connecting EP2s and an EP3

The chosen hybrid modes ψ j ( j = 1, 2, 3) are mutually
coupled with the onset of non-Hermiticity in terms of the
customized gain-loss profile. We tune the control parameters
γ and τ judiciously to encounter a pair of connecting EP2s
among ψ j . Here, we slowly vary γ within a specified limit
[0, 0.02] and study the topological ARC-type interactions
among β j ( j = 1, 2, 3) for different judiciously chosen τ val-
ues [9]. Such ARC-type interactions among β j with crossing
or anticrossing of Re(β) and Im(β) are shown in Fig. 2.

In Fig. 2(a), a strong interaction between β1 and β2

concerning an increasing variation of γ is shown, where
β3 behaves as an observer. For a specifically chosen τ =
1.8, β1 and β2 exhibit an ARC within 0.0018 � γ � 0.003,
where Re(β) goes through an anticrossing and Im(β) experi-
ences a simultaneous crossing, as shown in the top panel of
Fig. 2(a.1). However, for a slightly higher τ = 1.9, a different
topology of the ARC between β1 and β2 for the same γ

range can be observed in the bottom panel of Fig. 2(a.1),
where Re(β) experiences a crossing with a simultaneous anti-
crossing in Im(β). Such two topologically dissimilar ARCs
between β1 and β2 refer to the presence of a topological
branch point, i.e., an EP2 for an intermediate τ . Hence, we
judiciously choose τ = 1.8625 and track the trajectories of
β j in Fig. 2(a.2), where β1 and β2 coalesce at γ ≈ 0.0023
and lose their identities, however, β3 moves as an observer.
Thus, we encounter an EP2 between ψ1 and ψ2, say EP2(1,2),
at {γ = 0.0023, τ = 1.8625}.

Similarly, in Fig. 2(b), we show the encounter of an EP2,
say EP2(2,3), to connect β2 and β3 analytically. With judi-
cious tuning of the coupling parameters, we observe that β2

and β3 interact strongly within 0.011 � γ � 0.014, where
β1 behaves as an observer. As can be seen in the top panel
of Fig. 2(b.1), β2 and β3 exhibit ARC, concerning an in-
creasing γ , with a simultaneous anticrossing and crossing of
their Re(β) and Im(β), respectively, for a chosen τ = 1.35. In
contrast, for τ = 1.45, a topologically different ARC between
β2 and β3 can be observed in the bottom panel of Fig. 2(b.1)
for the same variation of γ , where Re(β) and Im(β) simulta-
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FIG. 2. (a): (a.1) Trajectories of β1 (dotted black curve) and β2

(dotted red curve) exhibiting an ARC within the γ range 0.0018 �
γ � 0.003 with a simultaneous anticrossing and crossing in Re(β)
and Im(β), respectively, for a chosen τ = 1.8 (top panel), and a
topologically different ARC within the same γ range with a simul-
taneous crossing and anticrossing in Re(β) and Im(β), respectively,
for a slightly higher τ = 1.9 (bottom panel). (a.2) Trajectories of β1,
β2, and β3 (dotted blue curve) for a chosen intermediate value of
τ = 1.8625, where β1 and β2 coalesce at γ ≈ 0.0023 referring to
the presence of EP2(1,2) at ∼(0.0023, 1.8625) in the (γ , τ )-plane,
and β3 moves unaffectedly concerning the increasing variation of γ .
(b): (b.1) Trajectories of β2 and β3 exhibiting an ARC within the
γ range 0.011 � γ � 0.014 with a simultaneous anticrossing and
crossing in Re(β) and Im(β), respectively, for a chosen τ = 1.35
(top panel), and a topologically different ARC within the same γ

range with a simultaneous crossing and anticrossing in Re(β) and
Im(β), respectively, for a slightly higher τ = 1.45 (bottom panel).
(b.2) Trajectories of β1, β2, and β3 for a chosen intermediate value
of τ = 1.4225, where β2 and β3 coalesce at γ ≈ 0.0122 referring to
the presence of EP2(2,3) at ∼(0.0122, 1.4225) in the (γ , τ ) plane,
and β1 moves unaffectedly concerning the increasing variation of
γ . The trajectories of β3 in (a.1) and β1 in (b.1) are not shown to
emphasize the respective crossing and anticrossing phenomena. The
diamond markers of respective colors in (a.2) and (b.2) indicate the
initial positions (i.e., for γ = 0) of β j .

neously experience crossing and anticrossing, respectively. In
Fig. 2(b.2), we show the trajectories of β j , while choosing an
intermediate τ = 1.4225. Here, β2 and β3 coalesce (unaffect-
ing β1) at γ ≈ 0.0122, referring to the presence of EP2(2,3) in
the (γ , τ ) plane at ∼(0.0122, 1.4225).

Thus, we encounter two connecting EP2s among three
coupled hybrid modes ψ j ( j = 1, 2, 3) by varying only two
coupling parameters γ and τ . Here, we can observe two
such situations that when two of three chosen modes interact
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strongly in the vicinity of a second-order branch point, then
the third mode behaves as an observer. This is the exclusive
signature of the presence of a third-order branch point, i.e., an
EP3 within the chosen interaction regime of the same param-
eter space, where all the three chosen modes are analytically
connected [8,9].

C. Quasistatic parametric encirclement schemes around the
identified EPs

Here, we examine the second- and third-order branch-point
features of the identified EP2s by considering three different
parametric encirclement schemes in the (γ , τ ) plane governed
by the equation:

γ (α) = γ0 sin
(α

2

)
and τ (α) = τ0 + p sin(α). (3)

Equation (3) can lead to the simultaneous variation of the
control parameters γ and τ along a closed elliptically shaped
loop around single or both the identified EP2s based on the
appropriate choices of characteristics parameter γ0 (should be
greater than the γ value of the respective EP2 to be encircled),
τ0 and p over the tunable angle α (0 � α � 2π , where α :
0 → 2π leads the clockwise variation and α : 2π → 0 leads
the anticlockwise variation for p > 0). Such a specific shape
of parameter space is chosen to consider γ = 0 at both the
beginning and the end of the encirclement process. Figure 3(a)
shows such three loops in the (γ , τ ) plane. Here, Loop 1 (de-
scribed by the parameters γ0 = 0.003, τ0 = 1.8625 and p =
0.3) and Loop 2 (described by the parameters γ0 = 0.014,
τ0 = 1.4225, and p = 0.6) individually encircle EP2(1,2) and
EP2(2,3), respectively, whereas Loop 3 described by the pa-
rameters γ0 = 0.014, τ0 = 1.8625, and p = 0.6 encircles both
EP2(1,2) and EP2(2,3) simultaneously. In Figs. 3(b)–(d), we
display the trajectories of β j ( j = 1, 2, 3) (propagation con-
stants of the coupled hybrid modes) following the quasistatic
variation of γ and τ in the clockwise direction along these
three loops, respectively.

We show in Fig. 3(b) that following the quasistatic para-
metric variation along Loop 1 that encloses only EP2(1,2)

(keeping EP2(2,3) at outside) in the (γ , τ ) plane, the β values
of corresponding analytically connected hybrid modes, i.e., β1

and β2 are adiabatically permuting locations in the complex
β plane and completely exchange their initial positions with
the completion of the encirclement process. Here, β3 remains
unaffected from the interaction of β1 and β2 due to the encir-
clement process along Loop 1 and makes an individual loop
(avoiding any permutation) in the complex β plane. Here,
β1 and β2 regain their initial positions upon completing the
second-round parametric encirclement process, which reveals
the second-order branch point behavior of EP2(1,2). Similarly,
the second-order branch point behavior of EP2(2,3) can be
established form the trajectories of complex β j shown in
Fig. 3(c), while considering the quasistatic parametric encir-
clement process along Loop 2, which encircles only EP2(2,3)

(keeping EP2(1,2) at outside). Here, for one complete cycle in
the (γ , τ ) plane, β2 and β3, which are analytically connected
through EP2(2,3), adiabatically flip their initial positions in the
complex β plane, however, β1 remains unaffected from the
overall interaction of β2 and β3 and makes an individual loop.
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FIG. 3. (a) Chosen parametric loops in the (γ , τ ) plane following
Eq. (3): Loop 1 (red contour) and Loop 2 (green contour) individually
encircle EP2(1,2) (red star) and EP2(2,3) (green star), respectively,
whereas Loop 3 (blue contour) encircles both EP2(1,2) and EP2(2,3)

simultaneously. Trajectories of β1 (dotted black curve), β2 (dotted
red curve), and β3 (dotted blue curve) in the complex β plane fol-
lowing a clockwise quasistatic variation of γ and τ along (b) Loop 1,
displaying an adiabatic exchange process β1 → β2 → β1 unaffecting
β3 (→ β3); (c) Loop 2, exhibiting an adiabatic exchange process
β2 → β3 → β2 unaffecting β1 (→ β1); (d) Loop 3, showing a suc-
cessive adiabatic exchange process β1 → β3 → β2 → β1. In (b)–(d),
point-to-point evolution along a particular parametric loop precisely
governs the point-to-point progressions in the trajectories of complex
β values. The diamond markers of respective colors indicate the
initial positions of β j , where the arrows of respective colors refer
to their directions of progression.

It is evident that β2 and β3 can regain their initial states for
the second parametric cycle along Loop 2. Thus from the
trajectories of complex β j ( j = 1, 2, 3) following the para-
metric encirclement process along Loop 1 (β1 → β2 → β1;
β3 → β3) and Loop 2 (β1 → β1; β2 → β3 → β2), as shown
in Figs. 3(b) and 3(c), we reveal the second-order branch point
features of two connecting EP2s associated with three coupled
hybrid modes ψ j ( j = 1, 2, 3).

In Fig. 3(d), we plot the trajectories of β j ( j = 1, 2, 3),
while varying γ and τ quasistatically in the clockwise direc-
tion along Loop 3, which encircles both EP2(1,2) and EP2(2,3)

simultaneously. Here, the encirclement process along Loop 3
drives a permutation among the propagation constants of all
the three coupled hybrid modes, as can be seen in Fig. 3(d),
where we have observed that β1, β2, and β3 adiabatically
exchange their initial positions following a successive man-
ner β1 → β3 → β2 → β1 in the complex β plane. We also
observe that the β values adiabatically exchange their iden-
tities in a reverse sequence, i.e., β1 → β2 → β3 → β1, for
the anticlockwise encirclement scheme along Loop 3. Here,
three successive parametric cycles enclosing both the connect-
ing EP2s are required to regain their initial positions. Such
interactions among ψ j ( j = 1, 2, 3) due to an encirclement
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FIG. 4. (a) Loop 3 to encircle both EP2(1,2) and EP2(2,3), respec-
tively, [same Loop 3 as already been shown in Fig. 3(a)]. (b) Overall
distribution of Im[n(x, z)] after mapping Loop 3 [following Eq. (4)]
throughout the operating length of the waveguide. The color variation
in the ground surface schematically describes the distribution of
Re[n(x, z)], the black and gray colors refer the refractive indices nh

and nl , respectively.

process enclosing their two connecting EP2s establishes the
third-order branch point feature, revealing the appearance of
an embedded EP3.

D. Dynamical parametric encirclement scheme around the
identified EPs

Here, we study the actual propagation of the quasiguided
hybrid modes ψ j ( j = 1, 2, 3) following the dynamical para-
metric variations along the chosen loops shown in Fig. 3(a).
Now, to realize a dynamical encirclement scheme along any
of the parametric loops, we have to map the corresponding
gain-loss variation [i.e., essentially the Im(n)] along the propa-
gation direction of the waveguide system so that one complete
parametric cycle along any particular loop is equivalent to one
complete pass of light through the length of the waveguide.
Such a parameter space mapping can be realized by replacing
α in Eq. (3) with (2πz/L) (i.e., for z = 0 and L, α = 0 and 2π ,
respectively), where the length dependent parameter space can
be written as

γ (α) = γ0 sin
(πz

L

)
and τ (α) = τ0 + p sin

(
2πz

L

)
. (4)

Here clockwise dynamical encirclement scheme (α : 0 →
2π ) can be realized by exciting the light modes at z = 0 (i.e.,
considering the propagation from z = 0 to z = L), whereas the
anticlockwise dynamical encirclement scheme (α : 2π → 0)
can be realized by exciting the light modes at z = L (i.e., con-
sidering the propagation from z = L to z = 0). In Fig. 4, the
mapping of parameter space governed by Loop 3 [as shown in
Fig. 4(a); the same Loop 3 as shown in Fig. 3(a)] is shown
by following Eq. (4), where Fig. 4(b) displays the corre-
sponding overall gain-loss distribution in terms of Im[n(x, z)].
For proper understanding, the distribution of Re[n(x, z)] is
depicted schematically by the color variation in the ground
surface of Fig. 4(b). In this context, the role of starting or
end point of the EP-encirclement process was investigated
to understand the chiral aspect (direction dependence) of the
light dynamics, where chiral or nonchiral light dynamics were
achieved based on the PT phase of different starting-point
[23,25]. However, procurement of passive modes at both input
and output is ideal for any device application, that can be

carried out by mapping γ = 0 at both the ports [using Eq. (3)
and Eq. (4)].

The propagation of hybrid modes governed by a dy-
namical EP-encirclement scheme follows the time-dependent
Schrödinger equation (TDSE), which can be realized in terms
of 2D scalar beam propagation equation (as z axis plays the
role of t axis for photonic systems) under the paraxial approx-
imation as

[
∂2

x + 	n2(x, z)ω2
]
ψ (x, z) = −2iω∂zψ (x, z) (5)

with 	n2(x, z) ≡ n2(x, z) − n2
l . We exploit the split-step

Fourier method to solve the scalar beam propagation equation.
In Fig. 5, we analyze the propagation of chosen hybrid

modes ψ j ( j = 1, 2, 3), while dynamically encircling each
of the encountered EP2s individually. The dynamics of ψ1

and ψ2 following the dynamical parametric variations along
Loop 1 that encircles only EP2(1,2) (keeping EP2(2,3) outside)
are shown in Fig. 5(a). As can be seen in Fig. 5(a.1), during
the encirclement in the clockwise direction, both the hybrid
modes ψ1 and ψ2 at z = 0 are converted to ψ2 at z = L, which
is beyond the adiabatic exchange between β1 and β2 shown in
Fig. 3(b). Here, ψ1 follows the adiabatic expectations and con-
verted to ψ2, whereas ψ2 experiences a nonadiabatic transition
and remains in ψ2. On the other hand, while implementing the
dynamical encirclement scheme in the anticlockwise direction
along Loop 1, we observe that both ψ1 and ψ2 excited from
z = L are converted to ψ1 at z = 0, as shown in Fig. 5(a.2). In
this case, nonadiabatic transition of ψ1 and adiabatic transition
of ψ2 are evident. Thus, depending on the direction of prop-
agation, we observe chiral dynamics of ψ1 and ψ2 enriched
with an asymmetric mode conversion process, where the con-
versions {ψ1, ψ2} → ψ2 are observed during the propagation
from z = 0 to z = L and the conversions {ψ1, ψ2} → ψ1 are
observed during the propagation in the opposite direction. The
normalized field intensities at both the input and output are
shown for each of the beam propagation plots.

In a similar way, we show the chirality-driven asym-
metric mode conversion process between ψ2 and ψ3 in
Fig. 5(b), while implementing the dynamical encirclement
scheme along Loop 2 that encloses only EP2(2,3). Here, dur-
ing the propagation form z = 0 to z = L (i.e., for clockwise
encirclement), the proposed device allows the conversion
{ψ2, ψ3} → ψ2 with adiabatic transition of ψ3 and nona-
diabatic transition of ψ2, as shown in Fig. 5(b.1). On the
other hand, during the propagation form z = L to z = 0 (i.e.,
for clockwise encirclement), the conversions {ψ2, ψ3} → ψ3

with adiabatic transition of ψ2 and nonadiabatic transition of
ψ3 can be observed in Fig. 5(b.2).

During the implementation of dynamical encirclement
schemes, the adiabaticity in modal dynamics fails (despite
valid during the quasistatic encirclement schemes with length-
independent parametric variation) due to the relative-gain
factors among the interacting modes [48]. The relative-gain
terms, appearing in the associated nonadiabatic correction
factors, play the key role in such asymmetric modal dynam-
ics, where only the mode that evolves with lower average
loss transits adiabatically. The average loss during the evo-
lution of a particular mode can be estimated as

∮
Im(β )/2π

with Im(β ) associated with the trajectories of corresponding
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FIG. 5. (a) Propagation of ψ1 and ψ2 following the dynamical gain-loss variation along Loop 1 [that encircles EP2(1,2)] in (a.1) the
clockwise direction (from z = 0 to z = L), exhibiting the asymmetric conversions {ψ1, ψ2} → ψ2; (a.2) the anticlockwise direction (from
z = L to z = 0), exhibiting the asymmetric conversions {ψ1, ψ2} → ψ1. (b) Propagation of ψ2 and ψ3 following the dynamical gain-loss
variation along Loop 2 [that encircles EP2(2,3)] in (b.1) the clockwise direction (from z = 0 to z = L), exhibiting the asymmetric conversions
{ψ2, ψ3} → ψ2; (b.2) the anticlockwise direction (from z = L to z = 0), exhibiting the asymmetric conversions {ψ2, ψ3} → ψ3. During the
computation, the field intensities are renormalized after each step evolution for clear visualization of the mode profiles throughout their
propagations. The normalized field intensities at both the input and output are shown for each of the beam propagation plots [black, violet, and
blue curves represent the field intensities of ψ1, ψ2, and ψ3 (respectively) at inputs, whereas the red and green curves represent the outputs for
clockwise and anticlockwise encirclements, respectively, for each cases].

β value during the encirclement process. While considering
the encirclement along Loop 1, we observe that β1 evolves
with a lower average for the clockwise direction, whereas β2

evolves with a lower average for the anticlockwise direction.
Accordingly, we can see the adiabatic conversion of ψ1 (→
ψ2) and nonadiabatic evolution of ψ2 (→ ψ2) in Fig. 5(a.1),
whereas the nonadiabatic evolution of ψ1 (→ ψ1) and adi-
abatic conversion of ψ2 (→ ψ1) in Fig. 5(a.2). In a similar
way, the adiabatic and nonadiabatic transitions for the beam
propagation results shown in Fig. 5(b) can be understood
by calculating the average losses encountered by β2 and β3

during the evolutions along Loop 2 in both the clockwise
and the anticlockwise directions (separately). Thus, owing to
the breakdown of adiabaticity in modal dynamics induced
by the relative-gain factors during the individual dynamical
encirclements of each of the EP2s, the proposed device hosts

the chiral property and allows direction-dependent asym-
metric mode conversion between the corresponding hybrid
modes.

We also calculate the conversion efficiencies in terms of
overlap integrals [19] between the fields at input (ψi) and
output (ψo) as

Ci→o =

∣∣∣∣
∫

ψiψo dx

∣∣∣∣
2

∫
|ψi|2dx

∫
|ψo|2dx

, {i, o} ∈ {1, 2, 3} (6)

for all the beam propagation plots shown in Fig. 5. The
measurement of conversion efficiencies gives a more ap-
propriate insight to understand the transmission of hybrid
modes along with associated asymmetric conversions. Ci→o
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FIG. 6. Propagation of ψ j ( j = 1, 2, 3), following the dynamical gain-loss variation governed by Loop 3 (as shown in Fig. 4), which
encloses the embedded EP3 with the simultaneous presence of two connected EP2s: (a) and (b) represent the beam propagation results for
dynamical encirclement in the clockwise and anticlockwise direction, respectively, where for both the cases ψ1 dominates at the output
following the conversions {ψ1, ψ2, ψ3} → ψ1. During the computation, the field-intensities are renormalized after each step evolution for clear
visualization of the mode profiles throughout their propagations. The normalized field intensities at both the input and output are shown for
each of the beam propagation plots [black, violet, and blue curves represent the field intensities of ψ1, ψ2, and ψ3 (respectively) at inputs,
whereas the red and green curves represent the outputs for clockwise and anticlockwise encirclements, respectively, for each cases].

represents the efficiency for the conversion ψi → ψo. Here,
along with the choice of gain-loss parameter space, the
effective length of the device has been optimized to ob-
tain maximum conversion efficiencies. While encircling
EP2(1,2) individually along Loop 1, we find maximum
conversion efficiencies of 95.8% (average) for the conver-
sions {ψ1, ψ2} → ψ2 and 91% (average) for the conversions
{ψ1, ψ2} → ψ1. On the other hand, while encircling EP2(2,3)

individually along Loop 2, maximum conversion efficien-
cies of 94.2% (average) for the conversions {ψ2, ψ3} → ψ2

and 97% (average) for the conversions {ψ2, ψ3} → ψ3 are
obtained.

Moreover, to implement the dynamical parametric en-
circlement scheme around an embedded EP3 with the
simultaneous presence of two connecting EP2s, the gain-loss
parameter space governed by Loop 3, that encircles both
EP2(1,2) and EP2(2,3), is mapped throughout the operating
length of the waveguide, as already been shown in Fig. 4.
The propagation of hybrid modes ψ j ( j = 1, 2, 3) following
such a dynamical encirclement process are shown in Fig. 6.
In Fig. 6(a), we show the beam propagation results for the
parametric variation in the clockwise direction, where during
the propagation of light from z = 0 to z = L, it can be ob-
served that all the three hybrid modes are collapsed to ψ1, i.e.,
{ψ1, ψ2, ψ3} → ψ1, beyond the adiabatic expectations fol-
lowed by the associated β values as shown in Fig. 3(d). Here,
only ψ2 follows the adiabatic conversion, whereas, ψ1 and
ψ3 evolves nonadiabatically. In Fig. 6(b), the propagations of
ψ j ( j = 1, 2, 3) are shown, while implementing the anticlock-
wise encirclement scheme along Loop 3. Here, we observe
that all the three hybrid modes propagating from z = L to
z = 0 are collapsed to ψ1, similar to the case for clockwise
encirclement scheme. However, in this case, ψ3 evolves adia-
batically, whereas, ψ1 and ψ2 follow nonadiabatic transitions.
From the overlap of field intensities at both the input and
output, a maximum of 85.8% (average) conversion efficiency

has been obtained for the conversions {ψ1, ψ2, ψ3} → ψ1 (in
both directions).

During the dynamical encirclement of the embedded EP3,
the adiabatic and nonadiabatic transitions for encirclement in
both the directions can also be verified by calculating the
average loss experienced by the hybrid modes during propaga-
tions, where we observe that ψ2 evolves with a lower average
loss in the forward direction (z = 0 to L) and follows the adi-
abatic conversion ψ2 → ψ1 (as per the adiabatic expectation
β2 → β1 in the associated sequence β1 → β3 → β2 → β1),
whereas ψ3 evolves with a lower average loss in the backward
direction (z = L to 0) and follows the adiabatic conversion
ψ3 → ψ1 (as per the adiabatic expectation β3 → β1 in the as-
sociated sequence β1 → β2 → β3 → β1). Thus, irrespective
of the direction of propagation, the proposed device deliv-
ers a particular dominating output mode, which refers to the
nonchiral property of the device while operating around an
EP3 with two connected EP2s.

III. CONCLUSION

In summary, we report the hosting of second- and third-
order EPs in an open planar coupled-waveguide arrangement
supporting multiple quasiguided hybrid modes. Two con-
necting EP2s are encountered among three chosen hybrid
modes by modulating the ARC-type interactions based on
the tunability of two coupling control parameters associated
with the gain-loss profile. Here, a customized gain-loss pa-
rameter space enclosing both the identified EP2s has driven
the topological branch-point functionalities of an embedded
EP3 in terms of successive switching among the propagation
constants of the corresponding hybrid modes. Dynamically
encircling two connecting EP2s individually in the parame-
ter space, we establish the chiral property of the device in
terms of direction-dependent asymmetric mode process be-
tween two corresponding modes even in the presence of a
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third mode. Moreover, the breakdown of such chiral prop-
erty is established by considering the dynamic variation of
coupling parameters around the embedded EP3 with the si-
multaneous presence of two connecting EP2s, where all the
modes are collapsed in a particular dominating mode, re-
gardless of the direction of light propagation. We exclusively
explore the properties of hybrid modes around higher-order
EPs in a coupled planar waveguide structure, where the de-
sign methodology along with the mechanisms of encounter
and dynamical encirclement of different orders of EPs can
be implemented in any discrete integrated photonic system
for the manipulation of light modes. The proposed platform
enriched with EP-induced mode conversion or switching
schemes and the associated design methodology indeed facil-
itate the growth of high-performance integrated and on-chip
photonic circuits for signal processing and routing in future
optical communication systems.
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APPENDIX

We also plot the profiles of |ψ |2 at different z associated
with the beam propagation plots shown in Fig. 5 and 6. Fig-
ure 7 shows such four beam evolution plots to exemplify beam
evolution phenomena for different dynamical encirclement
schemes. Figures 7(a.1) and 7(a.2) represent the |ψ |2 profiles
at five chosen cross-sections (corresponding to five differ-
ent z including input and output) associated with two beam

FIG. 7. Normalized field intensities (the profiles of |ψ |2) at dif-
ferent z associated with (a) two beam propagation plots as shown in
Fig. 5(a.1) [referred as (a.1) and (a.2)], (b) second beam propagation
plot of Fig. 6(a), and (c) third beam propagation plot of Fig. 6(b).

propagation plots shown in Fig. 5(a.1), where the conversions
ψ1 → ψ2 (adiabatic) and ψ2 → ψ2 (nonadiabatic) for clock-
wise dynamical encirclement scheme of only EP2(1,2) are
clearly visible. Figure 7(b) represent similar |ψ |2-profiles as-
sociated with the second beam propagation plot of Fig. 6(a),
showing the adiabatic conversion ψ2 → ψ1 during the clock-
wise dynamical encirclement of both the EP2s, whereas
Fig. 7(c) represent the same associated with the third
beam propagation plot of Fig. 6(b), showing the adiabatic
conversion ψ3 → ψ1 during the anticlockwise dynamical en-
circlement of both the EP2s. Similar beam evolution plots can
be shown for other beam propagation plots.
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