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Free-carrier-induced nonlinear dynamics in hybrid graphene-based photonic waveguides
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We develop from first principles a theoretical model for infrared pulse propagation in graphene-covered
hybrid waveguides. We model electron dynamics in graphene by Bloch equations, enabling the derivation of
the nonlinear conductivity and of a rate equation accounting for free-carrier generation. Radiation propagation
is modeled through a generalized nonlinear Schrödinger equation for the field envelope coupled with the rate
equation accounting for the generation of free carriers in graphene. Our numerical simulations clearly indicate
that unperturbed Kerr solitons accelerate due to the carrier-induced index change and experience a strong
self-induced spectral blueshift. Our numerical results are fully explained by semianalytical predictions based
on soliton perturbation theory.
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I. INTRODUCTION

Optical nonlinearity plays a key role in several modern and
future photonic applications. In particular, nonlinear ultrafast
effects at the femtosecond timescale are promising for optical
information processing with petahertz bandwidth exceeding
the speed of current electronic devices by six orders of mag-
nitude [1,2]. Guided waves in integrated nonlinear optical
devices offer the fundamental advantage of radiation confine-
ment leading to high field intensity that can be exploited over
propagation [3]. Silicon photonics is promising for a plethora
of integrated optical devices [4], but the nonlinear optical
functionalities of silicon are inherently limited by two-photon
absorption [5–7]. Plasmonic waveguides offer an alternative
platform for integrated nonlinear optical processing [8,9]
thanks to the inherently high nonlinearity of metals [10–15]
that is further enhanced by the surface confinement [16–18].
However, the high ohmic losses of metals pose a stringent
limitation for the development of nonlinear plasmonic circuits
[19]. Absorption mitigation strategies in plasmonic devices
resort to amplification schemes [20–26], surface roughness
reduction [27], and self-induced-transparency plasmon soliton
excitation [28].

Graphene offers an appealing alternative to metals for
integrated nonlinear optical applications [29] thanks to ultra-
high electron mobility [30,31] and its peculiar conical band
structure [32], which inherent anharmonicity leads to large
nonlinear optical interaction [33–38] that can be exploited,
e.g., for high-harmonic generation [39,40] and many other
nonlinear optical applications [41]. Furthermore, the ultrafast
nonlinear dynamics of massless Dirac fermions (MDFs) in
graphene involve the photogeneration of free carriers (FCs)
at the femtosecond timescale [42], which has already been
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employed for self-phase modulation in integrated nonlinear
waveguides embedding graphene [43,44] and is promising for
a plethora of future integrated optoelectronic applications.

Here, we investigate the ultrafast nonlinear dynamics of
intense infrared radiation pulses propagating in a photonic
waveguide covered by graphene, unveiling the role played by
FCs in the spectral modulation observed. Within the MDF
framework governing the graphene infrared response, we de-
rive a generalized nonlinear Schrödinger equation (GNLSE)
accounting for the graphene Kerr nonlinearity, saturable ab-
sorption, and ultrafast dynamics of the photogenerated FCs.
We further investigate soliton dynamics through a semiana-
lytical technique based on Lagrange’s variational method to
theoretically capture the effect produced by FCs, deriving a set
of ordinary differential equations describing the evolution of
soliton parameters [45,46]. Our calculations reveal that pho-
togenerated FCs produce a peculiar signature in the temporal
dynamics of optical solitons that undergo a substantial spec-
tral blueshift accompanied by a temporal acceleration over
propagation. Such a blueshift arises from the pulse self-action
through a self-induced asymmetric refractive index temporal
modulation produced by the photogenerated FCs. Our analyt-
ical predictions are confirmed by direct numerical simulations
of the GNLSE and indicate that photonic waveguides covered
by graphene offer a promising platform for integrated spectral
modulation of infrared radiation.

II. THEORETICAL FRAMEWORK

In order to describe the nonlinear ultrafast dynamics of
infrared radiation pulses in hybrid graphene-covered waveg-
uides, we consider a realistic design for a TaFD5 (dense
tantalum flint) glass square waveguide covered by undoped
graphene on top, deposited over a silica glass substrate and
surrounded by air, as schematically depicted in Fig. 1(a),
which can be practically realized with existing state-of-the-art

2469-9926/2021/104(6)/063501(7) 063501-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.063501&domain=pdf&date_stamp=2021-12-01
https://doi.org/10.1103/PhysRevA.104.063501


SAHOO, MARINI, AND ROY PHYSICAL REVIEW A 104, 063501 (2021)

FIG. 1. (a) A TaFD5 glass waveguide with core dimensions
(height × width) 1 × 1 μm covered by a single layer of graphene
on top. The electric field intensity distribution |e(x, y)|2 of the fun-
damental quasi-TE mode at λ0 = 1.55 μm is depicted in the inset
in dimensionless units. (b) Group-velocity dispersion profile of the
fundamental mode calculated by finite-element frequency-domain
calculations [51]. The input (λ0 = 1.55 μm) and zero-dispersion
(λZD � 0.75 μm) wavelengths are indicated by the vertical dashed
red line and the solid red circle, respectively.

fabrication techniques. A single layer of graphene is deposited
on top of the TaFD5 core where, upon infrared excita-
tion, the FCs are accumulated over the propagation distance.
The TaFD5 core is Raman inactive [47,48], and linear and
nonlinear absorption of TaFD5 is negligible over approxi-
mately centimeter propagation distances. Hence TaFD5-based
waveguides covered by single-layer graphene enable the full
exploitation of photoexcited FCs in the graphene layer to
attain efficient spectral modulation of the propagating pulse
[49]. Alternatively, one can use silicon nitride (Si3N4) as a
core material with similar waveguide structure for the exact
same purpose, as it is also Raman inactive and the linear and
nonlinear losses are ultralow at the visible and infrared wave-
lengths [50]. In Fig. 1(a) we illustrate a cross section of the
waveguide and the intensity distribution of the fundamental
quasi-transverse-electric (quasi-TE) mode at λ0 = 1.55 μm
that we calculate numerically by finite-element simulations
[51]. We further calculate numerically the group-velocity
dispersion (GVD) of the waveguide quasi-TE mode in the
0.7–2.0-μm wavelength range, which is indicated in Fig. 1(b)
by the solid blue curve.

A. Electron dynamics in graphene

To investigate the nonlinear spatiotemporal dynam-
ics of infrared pulses in the proposed hybrid waveg-
uide, we consider a pulse with electric field E (r, t ) =
Re[u(z, t )e(x, y)eiβ0z−iω0t/

√
P], where u(z, t ) is the pulse en-

velope, e(x, y) and P are the quasi-TE mode profile and
scaling modal power calculated numerically, β0 � 6.2967 ×
106 rad/m is the carrier wave vector, and ω0 = 2πc/λ0 �
1.216 × 1015 rad/s is the carrier frequency. We emphasize
that, in the considered geometry, the electric field profile
of the quasi-TE mode e(x, y0) � e0x̂ is practically uni-
form (independent of x) over the graphene layer at y0 =
1 μm [see Fig. 1(a)] and directed over the x direction. In
turn, we approximate the electric field over the graphene
flake as E(z, t ) = Re[E0(z, t )eiβ0z−iω0t ], where E0(z, t ) =
u(z, t )e0x̂/

√
P, which corresponds to the vector potential

A(z, t ) = − ∫ t
−∞ E(z, t ′) dt ′. In the MDF picture, the two-

component spinor ψk of a single electron in graphene with
initial in-plane wave vector k satisfies the single-particle time-
dependent Dirac equation

ih̄ ∂tψk(z, t ) = Ĥk(z, t )ψk(z, t ), (1)

with spatiotemporal-dependent Hamiltonian Ĥk(z, t ) = vF π ·
σ, where vF � c/300 is the Fermi velocity, π(z, t ) = h̄k +
eA(z, t ) is the electron quasimomentum with −e being the
electron charge, and σ = (σx, σy) is the two-dimensional
Pauli-matrix vector. We emphasize that, owing to the conical
band structure of graphene, infrared excitation is resonant
at kres = ω0/2vF � 6.1 × 108 rad/m and in turn β0 � kres.
Therefore we remark that the z dependence of the Hamil-
tonian Ĥk(z, t ) is intended as adiabatic. Introducing the
spatiotemporal-dependent energy εk(z, t ) = vF|π(z, t )|, one
can express the Hamiltonian above as

Ĥk(z, t ) = εk(z, t )

(
0 e−iθk (z,t )

eiθk (z,t ) 0

)
, (2)

where θk(z, t ) = atan[πy(z, t )/πx(z, t )]. Following a previ-
ously reported nonperturbative approach [52], we set the
spinor ansatz as a linear combination of upper and lower states
ψ±

k

ψk(z, t ) = c+
k (z, t )ψ+

k (z, t ) + c−
k (z, t )ψ−

k (z, t ), (3)

where ψ±
k (z, t ) = (1/

√
2)e∓i�k (z,t )[e−iθk (z,t )/2; ±eiθk (z,t )/2]T

and �k(z, t ) = (1/h̄)
∫ t
−∞ εk(z, t ′)dt ′ is the instantaneous

phase. Inserting the ansatz given by Eq. (3) into Eq. (1), one
gets the temporal evolution of the coefficients c±

k (z, t ),

ċ±
k (z, t ) = i

2
θ̇k(z, t )c∓

k (z, t ) exp [±2i�k(z, t )]. (4)

Introducing the interband coherence ρk = c+
k c−∗

k and pop-
ulation difference nk = |c+

k |2 − |c−
k |2, one can rewrite the

equation for the coefficients in the form of Bloch equations,

ρ̇k = −γ ρk − i

2
θ̇knk exp(2i�k ), (5)

ṅk = −γ (nk + 1) − iθ̇k exp(−2i�k )ρ + c.c., (6)

where we have introduced the effective recombination rate
γ = (100 fs)−1 accounting for electron-electron and electron-
phonon collisions [42]. We emphasize that electron-electron
collisions in principle lead to a fast recombination time (tens
of femtoseconds) [53,54] leading to polarization dephasing.
However, because we here focus on the effect of the pho-
togenerated free carriers over optical propagation, we adopt
an effective recombination time accounting only for electron-
phonon collisions, which produce population recombination.

The induced single-electron current, in turn, is given by
je
k(z, t ) = −eψ†

k (z, t )∇πHk(z, t )ψk(z, t ), and explicitly

je
k,x(z, t ) = −evF[(nk(z, t ) + 1) cos θk(z, t )

+ i sin θk(z, t ){ρk(z, t ) e−2i�k (z,t ) − c.c.}]. (7)

Then, the macroscopic current J(z, t ) is calculated by integrat-
ing over all in-plane electron wave vectors

J(z, t ) = gsgv

(2π )2
x̂

∫ +∞

−∞
dkx

∫ +∞

−∞
dky je

k,x(z, t ), (8)
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where gs = gv = 2 are the spin and valley degeneracy factors.
Because even at high peak intensities of the order of TW/cm2

eA � h̄kres, in Eqs. (7) and (8) we neglect the optical momen-
tum eA with respect to the electron momentum h̄k, obtaining

J(z, t ) � Re

[
ie2vF

π2ω0 h̄
KFC(z, t )E0(z, t )eiβ0z−iω0t

]
+2evF

π2
x̂

∫ ∞

0
k dk

∫ 2π

0
dφ sin φIm�k(z, t ), (9)

where KFC(z, t ) = (2vF/ω)
∫ ∞

0 kdk
∫ 2π

0 dφ[nk(z, t ) + 1] is
the FC linear density, �k(z, t ) = ρk(z, t )e−2i�0,kt , and �0,k =
vFk. To unveil the role played by FCs, we first calculate the
stationary solution of Eqs. (5) and (6) in the slowly varying
envelope approximation by setting the ansatz �k = �+

k eiω0t +
�−

k e−iω0t and nk = n0,k, obtaining

Gk = (�+
k − �−∗

k )/E∗
0 = −iekyn0,kηU,k/2h̄k2ηL,k, (10a)

n0,k = −
[

1 + e2k2
y

(
γ 2 + 4�2

0,k + ω2
0

)
2h̄2k4ηL,k

|E0|2
]−1

, (10b)

ηL,k = [γ 2 + (2�0,k + ω0)2][γ 2 + (2�0,k − ω0)2], (10c)

ηU,k = (γ + iω0)
[(

γ 2 + 4�2
0,k − ω2

0

) − 2iγω0
]
. (10d)

Thus, inserting the expressions above in Eq. (6) and inte-
grating over the electron wave vectors both sides of Eq. (6),
we obtain a rate equation for the FC density:

∂t KFC(z, t ) = −γ KFC(z, t ) + ϒ(z, t )|E0(z, t )|2, (11)

where ϒ(z, t ) = (π2vFe2/2h̄2ω2
0 )/

√
1 + |E0(z, t )|2/E2

sat and
Esat = √

2IS/ε0c = 4.92 × 106 V/m with IS being the sat-
urable intensity of graphene. The equation above accounts for
the photogeneration of FCs, which affects radiation dynamics
in the hybrid waveguide through the induced macroscopic
current J(z, t ) in Eq. (9), which gives explicitly

J = Re

{[
ie2vF

π2ω0h̄
KFC + σ (|E0|2)

]
E0eiβ0z−iω0t

}
, (12)

where σ (|E0|2) is the nonlinear conductivity at the carrier
frequency ω0, provided by

σ (|E0|2) = 2ievF

π2

∫ ∞

0
kdk

∫ 2π

0
dφ sin φG∗

k (|E0|2). (13)

Following the approach indicated in Ref. [55], we solve nu-
merically the above integral for several radiation intensities
I = (1/2)ε0c|E0|2, finding excellent fitting with the analytical
expression σ (I ):

σ (I ) = σ0

[
1√

1 + I/IS
− i

1 − e−η1
√

I/IS√
1 + η2(I/IS)0.4

]
,

where σ0 = e2/4h̄, IS = 137h̄ω2
Sω

2
0/(8πv2

F), ωS = 6.16
rad/ps, η1 = ωη/ω0, η2 = (ωη/ω0)0.8, and ωη = 46.20
rad/ps [55].

B. Radiation dynamics in the hybrid waveguide

In order to model radiation dynamics, we assume that
nonlinear optical effects are sufficiently weak not to affect the

mode structure of the hybrid graphene-covered waveguide. In
turn, we calculate the quasi-TE mode profile by finite-element
numerical simulations [51] at λ0 = 1.55 μm neglecting non-
linearity of graphene and the glass core. Note that, for the
considered geometry, at λZD � 0.75 μm the GVD coefficient
(β2) vanishes [see Fig. 1(b)], while at the operating wave-
length (λ0 = 1.55 μm) β2 � −0.576 ps2/m, the third-order
dispersion coefficient is β3 � 0.599 × 10−3 ps3/m, and the
Kerr coefficient of TaFD5 is γTaFD5 � 0.424 W−1 m−1. The
scaling modal power P at λ0 is evaluated by the expression
P = ∫

Full area dx dy Re[e × h∗] · ẑ � 4.434 × 10−12 W, where
e(x, y) and h(x, y) are the numerically calculated electric and
magnetic field profiles of the quasi-TE mode [51]. We further
evaluate the average x component of the electric field ampli-
tude experienced by the graphene layer at the top midpoint of
the TaFD5 surface e0 � (9.178 + i 16.288) V/m. Note that at
λ0 the GVD coefficient is negative, β2 < 0, thus enabling the
excitation of bright optical solitons.

Performing an asymptotic expansion of Maxwell’s equa-
tions, where the nonlinearity of graphene and of the waveg-
uide core are treated as perturbations, following a standard
approach detailed in previous works (see, e.g., Ref. [56]),
we derive a generalized nonlinear Schrödinger equation
(GNLSE) for the dimensionless pulse envelope ψ (ξ, τ ) =
u/

√
P0 in the comoving reference frame

i∂ξψ + D̂(i∂τ )ψ + N2(1 + iτsh∂τ )|ψ |2ψ − dFC�FC ψ

+ i
α0ψ√

1 + 3|ψ |2/ψ2
sat

+
α0ψ

(
1 − e−η1

√
3|ψ |2/ψ2

sat

)
√

1 + η2(3|ψ |2/ψ2
sat )

0.4
= 0,

(14)

where the dimensionless variable ξ = z/LD represents the
longitudinal coordinate z rescaled to the dispersion length
LD = t2

0 /|β2| and τ = (t − z/vg)/t0 represents the temporal
coordinate t in the comoving reference frame shifted by z/vg

and rescaled to the pulse duration t0, while vg = 1.5133 ×
108 m/s is the group velocity, D̂(i∂τ ) is the normalized dis-
persion operator, α0 = w|e0|2σ0LD/P is the normalized linear
absorption rate with w being the width of the graphene
layer, LNL = 1/(γTaFD5P0) is the nonlinear length with P0

being the input peak power, N2 = LD/LNL is the soliton
order, and τsh = 1/ω0t0 is the normalized self-steepening
coefficient. As anticipated in the previous section, the
GNLSE is coupled through the coupling coefficient dFC =
e2vFw|e0|2/π2h̄ω0P = 6.0678 × 10−7, with the rate equa-
tion governing the temporal evolution of the normalized
FC-density spatiotemporal profile �FC(ξ, τ ) = LDKFC(z, t ),
explicitly given by

∂�FC

∂τ
= �FC|ψ |2√

1 + 3|ψ |2/ψ2
sat

− �FC

τFC
, (15)

where �FC = LDt0P0|e0|2π2vFe2/(2h̄2Pω2
0 ) is the normalized

FC generation rate, ψ2
sat = 3|Esat/e0|2P/P0 is the normalized

saturation intensity, and τFC = 1/γ t0 is the normalized FC
recombination rate.
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FIG. 2. Longitudinal evolution of (a) and (c) spectral
(|ψ̃ (ξ, ω)|2) and (b) and (d) temporal (|ψ (ξ, τ )|2) dynamics
of input pulses ψ (0, τ ) = sech(τ ) with distinct soliton orders
(a) and (b) N = 1 (P0 = 1.358 × 104 W, t0 = 10 fs, α0 = 0.316,
�FC = 1.0865 × 107, ψ2

sat = 8.966 × 10−5) and (c) and (d) N = 2
(P0 = 8.692 × 103 W, t0 = 25 fs, α0 = 1.975, �FC = 1.0865 × 108,
ψ2

sat = 1.401 × 10−4). The vertical dashed line in (c) locates the
zero-dispersion wavelength λZD across which resonant radiation
(indicated by the arrow) arises due to suppression of FC-mediated
self-frequency blueshift [57].

III. FC-INDUCED SPECTRAL DYNAMICS

The propagation of infrared radiation pulses with normal-
ized envelope ψ in the considered graphene-covered hybrid
waveguide is governed by Eqs. (14) and (15) that, as ex-
plained above, account for the nonlinear dynamics produced
by the photogenerated FCs in graphene. By adopting the
standard split-step fast Fourier transform complemented with
the fourth-order Runge-Kutta method, we solve Eqs. (14)
and (15) numerically considering input pulses in the form
of Kerr solitons, ψ (0, τ ) = sech(τ ). In Fig. 2 we illustrate
the spectral and temporal evolutions of fundamental (N = 1)
[Figs. 2(a) and 2(b)] and second-order (N = 2) [Figs. 2(c)
and 2(d)] solitons. Note that, owing to FC excitation in the
graphene layer, higher-order nonlinearity and dispersion, and
absorption, the spatiotemporal evolution of Kerr solitons in
the hybrid waveguide leads to a strong self-induced spectral
blueshift �λ � 250 nm [see Fig. 2(a)], as a result of accel-
eration dynamics in the time domain [see Fig. 2(b)], over a
propagation distance of 4 cm. The main limiting factor to
obtain larger spectral modulation is represented by graphene
absorption, which quenches the pulse propagation and limits
frequency conversion efficiency. However, for higher-order
solitons with increased power, graphene absorption becomes
saturated as a consequence of partial Pauli blocking pro-
duced by the photoexcited FCs, and the self-induced spectral

FIG. 3. (a) Normalized temporal profile of the FC density
�FC(z/LD, t/t0) (red curve corresponding to the right vertical axis)
at z = 0, and temporal profile of the impinging pulse intensity
|ψ (0, t/t0)|2 (blue curve corresponding to the left vertical axis) for
t0 = 10 fs. (d) Spatiotemporal evolution of �FC(z/LD, t/t0). Real
and imaginary parts of the FC-induced refractive index modulation
�n(z/LD, t/t0 ) [see Eq. (16)] at (b) input z = 0 and (c) output z =
4 cm, and their respective spatiotemporal evolutions (e) and (f) for
N = 1.

blueshift increases [see Fig. 2(c) for soliton order N = 2].
Note in Fig. 2(c) that, thanks to absorption saturation, the
self-induced spectral blueshift becomes as large as �λ � 600
nm, thus enabling a large spectral tunability of the propagating
pulse.

To understand the underlying physics behind FC-induced
spectral modulation, in Fig. 3 we plot the normalized FC
density �FC(0, t/t0) at the waveguide input [Fig. 3(a)] and
�FC(z/LD, t/t0) as a function of the propagation distance z
[Fig. 3(d)] when the waveguide is excited by a fundamental
Kerr soliton (N = 1), whose intensity profile |ψ (0, t/t0)|2 =
sech2(t/t0) is indicated by the blue curve in Fig. 3(a). Owing
to the asymmetric temporal profile of �FC(z/LD, t/t0), the
leading and trailing edges of the pulse experience different
FC-induced modulation, which produces temporal acceler-
ation of the input soliton accompanied by a self-induced
frequency blueshift. We evaluate the effect of FC-induced
modulation by calculating the correction to the refractive
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index

�n(z/LD, t/t0) = √
εL + εNL − √

εL, (16)

where εL = 1 + iσ0/(ω0ε0tgr ) with tgr (= 0.3 nm) being the
thickness of the monolayer graphene and

εNL = 2c

ω0LD

[
N2(1 + iτsh∂τ )|ψ |2

− dFC�FC + iα0/

√
1 + 3|ψ |2/ψ2

sat

+α0(1 − e−η1

√
3|ψ |2/ψ2

sat )/
√

1 + η2
(
3|ψ |2/ψ2

sat

)0.4
]

are the linear and nonlinear dielectric constants, respectively,
whose real and imaginary parts at the input (z = 0) [Fig. 3(b)]
and output (z = 4 cm) [Fig. 3(c)] are illustrated. The spa-
tiotemporal dynamics of the real [Fig. 3(e)] and imaginary
[Fig. 3(f)] parts of the modulated refractive index �n are
shown. Such a time-dependent and asymmetric (solely due to
the graphene FCs) refractive index modulation is the inherent
ingredient producing a time-dependent phase shift leading to
the strong spectral modulation illustrated in Fig. 2.

In order to shed further light on pulse propagation dy-
namics, we develop a variational treatment where we recast
Eq. (14) (after neglecting higher-order terms) in the form
of a perturbed NLSE [46]: i∂ξψ + 1

2∂2
τ ψ + |ψ |2ψ = iε(ψ ),

where

ε(ψ ) = −idFC�FCψ − α0ψ/

√
1 + 3|ψ |2/ψ2

sat

+ iα0ψ (1 − e−η1

√
3|ψ |2/ψ2

sat )/
√

1 + η2(3|ψ |2/ψ2
sat )0.4.

(17)

A Lagrangian density LD for such a system can be defined
as LD = (i/2)(ψ∗∂ξψ − ψ∂ξψ

∗) + (1/2)(|ψ |4 − |∂τψ |2) −
2Re[iεu∗]. The total Lagrangian L is calculated from
the Lagrangian density as L = ∫ ∞

−∞ LD dτ . Adopting the

ansatz ψ = √
Eη/2F (τ )eiφ−i�p(τ−τp )−iβ(τ−τp )2

, where F (τ ) =
sech[η(τ − τp)] and the six dimensionless parameters—
energy E , pulse width τw = 2/η, temporal position τp, phase
φ, frequency shift �p, and chirp β—become adiabatically
evolving functions of the propagation distance ξ . The Ritz
optimization procedure [58] for L leads to a set of coupled
ordinary differential equations (ODEs) describing the evolu-
tion of individual pulse parameters

dE

dξ
= −2α0E K atan(1/K), (18a)

dτp

dξ
= −�p, (18b)

d�p

dξ
= dFC�FC(Eη3/2)

∫ ∞

−∞
dτ e−τ/τFC

×S (τ )F2(τ )
∫ τ

−∞

F2(τ ′)eτ ′/τFC√
1 + F2(τ ′)/K2

dτ ′, (18c)

dη

dξ
= −α0ηK atan(1/K) + 2βη
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FIG. 4. Evolution over the longitudinal coordinate z of (a) pulse
central wavelength λp = 2πc/(ω0 + �p/t0), (b) temporal position
tp = τpt0, (c) pulse energy E , and (d) pulse width tw = τwt0 of the
perturbed Kerr soliton for N = 1. The solid blue curves indicate
predictions from the variational approach through the solution of
the coupled ODEs, whereas red circles represent numerical data
obtained from the full numerical integration of Eqs. (14) and (15) by
the split-step fast Fourier transform algorithm complemented with
the fourth-order Runge-Kutta method (neglecting the higher-order
terms).

+ (6/π2)α0η
4
∫ ∞

−∞

(τ − τp)2F2(τ )√
1 + F2(τ )/K2

dτ, (18d)

dβ

dξ
= 2β2 + 1

π2
(Eη3 − 2η4) +

∫ ∞

−∞
dτF2(τ )[1 − 2P (τ )]

× 3

2π2

{
2α0η

3 1 − e−η1F (τ )/K√
1 + η2F0.8(τ )/K0.8

− dFC�FCEη4e−τ/τFC

∫ τ

−∞

F2(τ ′)eτ ′/τFC dτ ′√
1 + F2(τ ′)/K2

}
, (18e)

where K =
√

2ψ2
sat/3Eη, S (τ ) = tanh[η(τ − τp)], and

P (τ ) = η(τ − τp)S (τ ).
This set of coupled ODEs provides significant physical

insight into the role played by photoexcited FCs because they
indicate how perturbations affect the individual pulse param-
eters. Note, in particular, that photoexcited FCs in graphene
directly affect the soliton carrier frequency �p because the
normalized FC generation rate �FC appears on the right-hand
side of Eq. (18c) with an overall positive sign. This immedi-
ately implies that soliton dynamics in the hybrid waveguide
system drifts towards lower central wavelength accompanied
by a temporal acceleration that can be directly inferred from
Eq. (18b). The FC-generation-induced absorption α0 enters
Eq. (18a) for the soliton energy E , producing energy quench-
ing. The dynamics of the soliton temporal width tw and chirp β

is more involved and can be grasped only through numerical
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integration. We emphasize that the equation for phase φ is
overlooked here because it does not affect any other soliton
parameter. In order to validate the variational predictions, in
Fig. 4 we compare the results from the variational approach
(blue curves) with data from full numerical simulation of
Eqs. (14) and (15) by the split-step fast Fourier transform
algorithm complemented with the fourth-order Runge-Kutta
method for the fundamental soliton, N = 1 (solid circles).
The set of coupled ODEs [Eqs. (18a)–(18e)] is solved by
numerical integration considering input pulse parameters as
initial conditions. We find that results from the variational
approach are in excellent agreement with direct numerical
simulations of Eqs. (14) and (15). Both approaches indicate
a strong central frequency blueshift up to �λ � 250 nm for
the fundamental soliton as a consequence of FC generation in
the graphene layer [see Fig. 4(a)] and temporal acceleration
[see Fig. 4(b)]. We finally note that the dissipative radiation
dynamics ensuing from FC generation produces quenching of
the pulse energy [see Fig. 4(c)] and a broadening of the pulse
width [see Fig. 4(d)]. However, as discussed above, absorption
can be saturated by higher-energy pulses thanks to partial
Pauli blocking of the photoinduced FCs (see Fig. 2), leading
to self-induced spectral blueshift as large as �λ � 600 nm.

IV. CONCLUSIONS

We have developed from first principles a theoretical model
enabling the description of infrared pulse propagation in

graphene-covered hybrid waveguides. Our theoretical model
finely accounts for the waveguide dispersion, the nonlin-
earity of the waveguide core, and the effect produced by
photogenerated free carriers in the graphene layer. Special-
izing our calculations to a realistic rectangular waveguide
composed of TaFD5 glass on top of silica substrate and
covered with graphene on top, we find that free-carrier
generation enables efficient spectral modulation of ultra-
fast pulses propagating in the waveguide. In particular, we
predict a strong spectral blueshift of several hundreds of
nanometers for peak pulse powers of the order of 10 kW.
We further validate numerical results with a variational
approach indicating that the refractive index temporal mod-
ulation ensuing from free-carrier generation is responsible
for the observed spectral modulation. Our results indicate
that graphene-covered hybrid waveguides offer an appealing
platform for frequency conversion in integrated optoelectronic
devices.
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