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BCS-BEC crossover of ultracold ions driven by density-dependent
short-range interactions in a quantum plasma
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We study theoretically a Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover of
two-species ions in a three-dimensional quantum plasma at zero temperature. Central to this crossover is an
effective short-ranged, attractive interaction potential between the ions shielded by the surrounding degenerate
electrons. The interaction range and magnitude can be tuned nonmonotonically by varying the carrier density of
the quantum plasma. Low-energy collisions between two ions are characterized by the s-wave scattering length
when the interaction range and the inter-ion spacing are comparable. We show that the s-wave scattering length
can be changed from −∞ to ∞, leading to a BCS-BEC crossover driven purely by the plasma density. Through
numerical and analytical calculations, we find that the quantum acoustic waves in the plasma exhibit distinct
dispersion relations in the different regimes, providing a route to probe the crossover. Our paper shows that the
quantum plasma may offer a different platform to quantum simulate the BEC-BCS crossover and exotic phases
with added tunability that might be difficult to achieve in conventional solid-state systems and ultracold atom
gases.

DOI: 10.1103/PhysRevA.104.063312

I. INTRODUCTION

In recent years, there is a growing interest in the study of ul-
tracold plasmas, which can be created through photoionizing
laser-cooled atoms just above the ionization limit. Shielded
by the low-energy electron, the effective two-body interac-
tions between ions are qualitatively different from the bare
Coulomb interaction. In particular, a strong-coupling regime
is obtained when the effective interaction dominates the ther-
mal motions [1–4]. The Shukla-Eliasson attractive potential
between screened ions has been predicted with a quantum
hydrodynamic model [5–7], where the plasma density is ex-
pected to be similar to the one in the interiors of planets.
Importantly the potential can be controlled by the plasma
density and temperature, such that the inter-ion separation
can be brought down to atomic dimensions [5–10], addition-
ally due to the quantum statistics [11] and diffraction effects
[12]. Previous studies have investigated classical phases, e.g.,
clustering and crystallization of ions, due to the attractive
potential [6,13,14]. Densities and spin states of ions consti-
tuting the plasmas can be tuned, too. Such controllability has
proven to be useful and provides a viable route to manipulate
intrinsically different phases of interacting many-body sys-
tems. A very successful example is ultracold gases of neutral
atoms [15] where the low-energy s-wave scattering can be
manipulated by magnetically induced Feshbach resonances
between a pair of atoms [16–18]. By varying the s-wave
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scattering length from −∞ to +∞, a Bardeen-Cooper-
Schrieffer (BCS) phase to Bose-Einstein condensate (BEC)
crossover is induced [17,19–33]. Therefore an interest-
ing question is whether the controllability available in the
quantum plasma platform permits one to explore quantum
many-body states at degenerate temperatures.

In this paper we study the BCS-BEC crossover of two-
species (spin-up and -down) ions in the ultracold quantum
plasma. Gauss units are adopted throughout the paper. The
screened, short-range attractive potential between ion pairs
shielded by surrounding degenerate electrons is a crucial ele-
ment driving this crossover. As shown in Fig. 1, the depth and
range of the screened potential can be controlled by modifying
densities of the plasma. We show that the inter-ion spacing
and range of the screened potential are in the same order of
magnitude, such that the s-wave interaction characterizes the
interaction between spin-up and spin-down states. The s-wave
scattering length can be varied from −∞ to +∞ by chang-
ing the plasma density, which plays the role of a magnetic
field in the Feshbach resonance of neutral atoms. Conse-
quentially, the ions form Cooper pairs and BEC, determined
by vastly different pairing order parameters. The quantum
acoustic waves exhibit distinct dispersion relations between
unpaired and paired ion configurations through the BCS-BEC
crossover. Our paper shows that BCS-BEC crossover could
be explored in the ultracold quantum plasma in a controlled
fashion [5,34]. Due to the very high density, the quantum
plasma platform may furthermore allow one to quantum simu-
late superfluid, and novel pairing states encountered in nuclear
systems [35,36].
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FIG. 1. Schematic illustration the BCS-unitary-BEC regimes.
Binding potentials between two ions are shown in the upper row.
The depth of the potential depends on the plasma density, which
also changes 1/kF a with kF and a to be the Fermi momentum and
s-wave scattering length. BCS-BEC crossover of ion pairs is induced
by this short-range attractive potential. The orange (blue) spheres
represent 4He+ ions in the spin-up (-down) state and the gray dots
are electrons. The Thomas-Fermi screening length of the ion sphere
is 1/qs ≈ 0.1/kF –0.5/kF . See text for details.

II. THE SCREENED POTENTIAL AND S-WAVE
SCATTERING LENGTH

We consider a quantum plasma consisting of equal density
(n0) degenerate electrons (mass me, charge −e) and 4He+

ions (mass m, charge e) at zero temperature, where e is the
elementary charge. Due to the screening effect of the electron,
the isotropic electric potential φ(r) [5] between two ions (sep-
aration r = |r|) is given by

φ(r) = e

2r
[(1 + ib)e−q+r + (1 − ib)e−q−r], (1)

where q± = (qs/
√

4α)[(
√

4α + 1)1/2 ± i(
√

4α − 1)1/2] and
b = 1/

√
4α − 1 in which α = h̄2ω2

EP/4m2
ec4

e0 and ωEP =√
4πe2n0/me represent the quantum recoil parameter and

electron plasma frequency. Here ce0 =
√

n0
me

d2[n0εe(n0 )]
dn2

0
, qs =

ωEP/ce0, kF = (3π2n0)1/3, and εe(n0) are the sound velocity,
inverse Thomas-Fermi screening length, Fermi wave number,
and ground-state energy of noninteracting electrons, corre-
spondingly. The lengthy but analytical expression of εe(n0)
is given in Appendix A.

A unique property of the screened potential is that its shape
can be changed by varying parameter α through the plasma
density, which will be discussed in the following section.
For example, the potential has the familiar Thomas-Fermi
profile when α → 0. Crucially important, the landscape of
the potential changes dramatically when α > 1/4. A Shukla-
Elliason-type attractive potential [5–7] is obtained, where
φ(r) is negative around the potential minimum at distance d ,
depicted in Fig. 2(a). One can increase the attractive potential
depth φ(d ) by decreasing α. Note that the electric potential
between spin-up and spin-down states and intraspin states
of the ion can be universally described by φ(r), due to the
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FIG. 2. Short-range attractive potential and s-wave scattering
length. (a) The screened potential φ(r) is tuned by varying α (through
the density n0 = 1020, 2 × 1022, and 1024 cm−3, respectively, to α ≈
70, 12, and 3). Decreasing α (increasing n0), the potential supports
the BCS-unitary-BEC crossover. (b) The s-wave scattering length as
a function of the binding potential depth, |φ(d )|, with the equilibrium
distance d at which the potential takes its minimum value. (c) The de-
pendence of α on the scattering length a (1/kF a). (d) The normalized
order parameter �/EF as a function of 1/kF a.

dressing of the surrounding degenerate electrons in the
plasma, as discussed in Appendices A and B.

With the screened potential at hand, we study low-energy
collisions between the spin-up and spin-down species of the
ions at zero temperature. The corresponding interaction is
captured by the Hamiltonian [34,37],

H = − h̄2

2m
∇2 + eφ + μ, (2)

where ∇2 is the three-dimensional Laplace operator, and μ is
the ion chemical potential.

At zero temperature, the range of the inter-ion potential
(≈1/kF ) approaches to the average ion distance (n−1/3

0 ), per-
mitting us to focus on the s-wave scattering between the
two spin states [20]. The s-wave scattering length a as a
function of the potential depth φ(d ) is shown in Fig. 2(b).
Increasing φ(d ), the s-wave scattering length changes from
negative to positive. More importantly, the scattering length
reaches ±∞ at around φ(d ) ≈ 6 × 10−4. As φ(d ) and α are
related, one can also control the scattering length by changing
α [Fig. 2(c)], where 1/kF a crosses zero when α ≈ 12. Such
shape is similar to that in cold atomic Fermi gases, where the
s-wave scattering length is modified through, e.g., magnetic
Feshbach resonance [23,38–40].

III. FORMATION OF BCS AND BEC STATES

The BCS and BEC states due to the long-range part of the
Coulomb interaction have been considered in exciton conden-
sates [41]. Inspired by the analog with Feshbach resonances in
cold atomic gases, we will show that spin-up and spin-down
ion species form Cooper pairs due to the s-wave interaction
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FIG. 3. Tuning the screened potential via the plasma density.
We show (a) the minimum potential φ(d ), (b) the corresponding d
compared to the s-wave scattering length a, (c) the quantum recoil
parameter α, and (d) the normalized s-wave scattering length kF a as
a function of the plasma density n0. The tunability provided by the
screened potential allows us to realize the BCS-BEC crossover.

[15,18]. Depending on the scattering length, the order param-
eter � for Cooper pairs of the spin-up and spin-down ions can
be evaluated through [42]

1

kF a
=

(
1 + �2

E2
F

)1/4

P1/2

(
−1/

√
1 + �2

E2
F

)
, (3)

where P1/2(x) is the fractional-order Legendre function, and
EF = h̄2k2

F /2m is the Fermi energy. A nonzero order param-
eter indicates that a spin-up and a spin-down ion form a pair,
such that the plasma is in a BCS state [15,18]. As bosonic
particles, the Cooper pairs can form a BEC when they are
deeply bound, |�| � 1 [43].

It is necessary to discuss the suitability of Eq. (3) for pair-
ing of fermionic ions in a quantum plasma with a short-range
interaction. In this paper, it is true that we have focused on
the most simple situation where only the s-wave scattering
is examined with a short-range interaction like Refs. [20,42].
This is reasonable when the s-wave scattering length (a) is
larger than or comparable to the range (d) of the interparticle
potential [see Fig. 3(b)], especially on the BEC side where the
order parameter is non-negligible. When the average distance
between the quantum ions is larger than the s-wave scattering
length, the low-energy scattering will largely not probe the de-
tails of the potential at short ranges, which is the requirement
that Eq. (3) is a suitable approximation.

The order parameter as a function of 1/kF a is shown in
Fig. 2(d). When 1/kF a is negative, �/EF is rather small
overall, leading to the BCS region. Increasing 1/kF a → 0,
we enter the so-called unitary regime [18], where |a| is far
larger than the average ion spacing, i.e., n0|a|3 � 1. Here
�/EF becomes non-negligible, which indicates the formation

of a bound state (molecule) of the ion pair [44]. Strikingly,
the three-dimensional plasma is scale invariant in the unitary
regime due to |a| → ∞, giving rise to conservation laws gov-
erned by the continuous symmetry [45]. Further increasing
1/kF a > 0, the order parameter increases rapidly. The pairs
are bound deeply into bosonic molecules, forming a BEC [18].
We emphasize that the different regimes are fully determined
by the tunable screened potential. As shown in Figs. 2(a)–2(c),
the BEC state of the pairs is achieved through tuning α → 3
(|φ(d )| = 8.3 × 10−4). The unitary regime can be realized
when α ≈ 12 (|φ(d )| ≈ 6 × 10−4). We can obtain the BCS
of the ions when α ≈ 70 [|φ(d )| = 2.4 × 10−4].

IV. TUNING THE SCREENED POTENTIAL
VIA PLASMA DENSITY

So far, we have identified the dependence of the various
states on parameters of the screened potential. In the fol-
lowing, we will show that such dependence can be readily
achieved by changing the plasma density n0. This density de-
pendence is rooted in the fact that the electron sound velocity
ce0 depends nonlinearly on n0, which determines the quantum
recoil α, and substantially the shape of the screened potential.
It is found that the depth of the screened potential φ(d ) in-
creases with increasing n0 [Fig. 3(a)]. Here φ(d ) changes from
around −2.4 × 10−4 at n0 = 1020 cm−3 (BCS) to 8.3 × 10−4

at n0 = 1024 cm−3 (BEC) monotonically, then decreases with
further increasing n0 to 3 × 1024 cm−3, which is sufficiently
large to probe the BCS-BEC crossover [Fig. 2(b)]. By in-
creasing the density, parameter d decreases monotonically.
On the BEC side, d is smaller than or comparable to the
s-wave scattering length [Fig. 3(a)], as shown in Fig. 3(b).
On the other hand, the average spacing between ions is larger
than both d and a in the BEC and BCS region. For exam-
ple, the average spacing is 10−8 cm when n0 = 1024 cm−3

(BEC regime), while d ≈ 10−8 cm and a ≈ 0.6 × 10−8 cm.
In the BCS region, the average spacing is 2.15 × 10−7 cm
when n0 = 1020 cm−3, where d ≈ 10−7 cm, and a ≈ −2 ×
10−8 cm. These data are consistent with the assumption, i.e.,
only considering the s-wave scattering process used in the
calculation. This assumption should be a good approximation
in the BEC and BCS region at zero temperature.

The main result of this paper is that the BCS-unitary-BEC
crossover can be obtained by changing the plasma density. We
find α can be varied from 2 to 70 when the plasma density
changes from n0 = 3 × 1024 to 1020 cm−3 [Fig. 3(c)]. This
tunability, in turn, leads to considerable flexibility to control
the s-wave scattering length. Our numerical simulations show
that the unitary regime is obtained when n0 ≈ 2 × 1022 cm−3,
where the scattering length a → ±∞, depicted in Fig. 3(d).
Away from the unitary regime, the scattering length is finite
and negative in the low-density region, such that the ions
are in the BCS state. The ions form a degenerate BEC of
deeply bound ion pairs [see also Figs. 2(b) and 2(d)] in a
high-density region, where the scattering length is finite and
positive. Density-dependent BCS-BEC crossover has been
predicted in a neutral system at the mean-field level [46].
Our results further show the existence of this crossover in a
quantum plasma, which could become a different application
field of the BCS-BEC crossover.

063312-3



ZHANG, WANG, JIANG, AND LI PHYSICAL REVIEW A 104, 063312 (2021)

We want to point out that the BCS-BEC crossover emerges
in the strong-coupling regime of the quantum plasma [34,47–
52]. The quantum coupling constant of the screened Coulomb
potential is given by the ratio of the average potential to Fermi
kinetic energy, i.e., the Brueckner parameter [34], ri ≡ 1

kF aB
∝

|eφ(d )|
EF

, with aB = h̄2/e2m being the effective Bohr radius. The
Brueckner parameter decreases with increasing n0, yielding
ri ≈ 103–104 at n0 ∼ 1024–1020. An interaction-free (ideal)
quantum plasma of ions is obtained for ri � 1 [ |eφ(d )|

EF
�

1]. The more interesting strong-coupling regime is reached
around ri ≈ 104, which may contain regions of liquidlike and
crystalline behavior and bound states [34], where the kinetic
energy of the ions plays only a minor role. As shown above,
it is in such parameter region that the screened potential gives
rise to the BCS, unitary, and BEC states.

V. STATE DEPENDENT ACOUSTIC WAVES

Phonon excitation (acoustic wave) exhibits sensitive de-
pendence on the state of the ions (i.e., BCS and BEC). The
dispersion relation of the phonon across the BCS-BEC regime
can be obtained universally through the kinetic equation for-
malism [43]

ω2 = s2
12(ω, q, μ,�)

s11(ω, q, μ,�)s22(ω, q, μ,�)
, (4)

where ω and q are the frequency and wave
number in the plasma with pairs. The integrals
s11(ω, q, μ,�), s22(ω, q, μ,�) and s22(ω, q, μ,�) enter
the linear-response function of the plasma [43], the explicit
forms of which are presented in Appendix A. Equation (4)
shows apparently that the phonon frequency varies with �,
along with other parameters.

On the other hand, ions with identical spins may not form
pairs, but lead to phonon excitations that have different dis-
persion relations, given by

ω2
0 = 4e

m
L(d ) sin2

(
qd

2

)
+ c2

i0q2 + h̄2q4

4m2
, (5)

where L(d ) = d2φ(r)
dr2 |r=d is the radial Laplacian of the

screened potential and ci0 is the sound velocity of the ions. In
this situation the frequency ω0 depends solely on the density
[through d , ci0 and L(d )]. It has been theoretically predicted
and experimentally justified that the phonons are found to
obey a dispersion relation that assumes a Thomas-Fermi or
Yukawa interparticle potential [53–55]. The Yukawa potential
can be given by Eq. (A17) for α −→ 0.

Phonon frequencies at given wave number q are displayed
in Figs. 4(a) and 4(b) by varying the scattering length and
density, correspondingly. Both ω and ω0 depend on 1/kF a
as well as plasma density n0 nonlinearly. At a given q, a
general feature is ω > ω0, as shown in the figure. Phonon
excitation can be achieved with laser- or ion-beam compres-
sion [56], providing a way to experimentally measure the
state and density-dependent acoustic waves. In the following,
we examine the dispersion of the phonon mode at different
scattering lengths (density) in detail. On the BCS side (a < 0),
ω increases linearly with q when q is small, and approaches
2� in the pair-breaking continuum limit [43] when q > qc =
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ωip = √

4πe2n0/m) when varying (a) 1/kF a and (b) n0. It is found
that the frequency is higher in the paired plasma. Phonon dispersion
in the (c) BCS, (d) unitary, and (e) BEC regime. Other parameters
are (c) 1/kF a = −1 (n0 = 2 × 1019 cm−3), (d) 1/kF a = 0 (n0 =
2 × 1022 cm−3), and (e) 1/kF a = 1 (n0 = 4 × 1023 cm−3).

2
√

2mμ, depicted in Fig. 4(c). As scattering length a is fixed,
the order parameter � is a constant, giving the maximal fre-
quency ωmax = 2�. In this limit, the presence of the Fermi sea
of the quantum ions makes the formation of pairs difficult due
to the Pauli principle. The behavior in the dispersion relation
is a unique feature of the ultracold quantum plasma since the
paired fermions interact through the short-range, screened po-
tential instead of the long-range Coulomb potential. Here ω0

is slightly smaller than ω at low momentum due to the weak
but non-negligible order parameter. Further increasing q > qc,
we find ω0 becomes larger. Different from ω → 2� in the
pair-breaking regime, ω0 does not have an upper bound and
increases quadratically with increasing q due to the quantum
pressure of ions [see the last term in Eq. (5)].

At the unitary (1/|kF a| = 0), phonon frequencies of
the paired ions increase almost linearly with increasing q
[Fig. 4(d)], similar to ideal phonon modes. It will eventually
reach the pair-breaking limit (not shown in the figure). In com-
parison, ω0 is always smaller than ω when q/kF < 1. Though
ω0 becomes larger due to the quadratic term in Eq. (5), ω

increases more rapidly with q, and surpasses ω0 considerably
in the high-momentum region. Deep in the BEC regime, ω

linearly increases with q when q � kF . However, the disper-
sion is quadratic concerning q at a larger value, as shown in
Fig. 4(e). The excitation spectra are similar to the ones found
in molecular condensates, where these paired ions behave
as elementary bosons [22]. In comparison, ω0 is sinusoidal
and always smaller than ω when q/kF � 5. The dependence
of phonon dispersions on the scattering length qualitatively
agrees with that reported in Ref. [57] within the random-phase
approximation method in the field of cold atoms. Thus, our re-
sult contributes to expanding the existing knowledge of BCS-
BEC crossover from atomic systems to positive ion systems.
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The above analysis shows that the formation of ion pairs
can alter the dispersion relation of the phonons, which pro-
vides a feasible route for experimental tests on this specific
kind of BCS-BEC crossover. The dispersion relations of
phonon excitations could be experimentally measured using
the laser-excitation method introduced by Nunomura et al.
[54,55]. In their experiments, particles are imaged by a
charge-coupled device video camera. Images are recorded on
a videocassette recorder tape at 30 frames per second, where
each particle’s coordinates can be identified. The real and
imaginary parts of the wave vector have been obtained by
fitting the phase shift and amplitude decay of the waves as
functions of particle distance from analyzing particle motions.
Their experimental results agree well with theory [53] appli-
cable to strongly coupled screened Coulomb crystals with a
Thomas-Fermi or Yukawa potential.

VI. CONCLUSIONS

We have studied the BCS-BEC crossover in an ultra-
cold ion plasma interacting through a short-range, attractive
screened potential arising due to the collective quantum be-
havior of the surrounding electron. The plasma density can
control the depth and range of the screened potential. Fo-
cusing on a regime where the mean ion separation and the
characteristic range of the potential are on the same order of
magnitude, the s-wave scattering length between two different
spin states of the ions can be varied from −∞ to +∞. We
have shown that this allows the formation of BCS, unitary,
and BEC states of ions in different spin states. Significantly
the phonon excitation in the plasma strongly depends on the
order parameter �, offering a route to probe the presence of
the Cooper pairs. Our paper reveals a different mechanism to
achieve the BCS-BEC crossover in ultracold quantum plasma,
complementing the Feshbach resonance typically employed in
ultracold gases of neutral atoms. Our paper might help explore
many-body physics and scale invariance as well as carry out
quantum simulation of superfluid states of nuclear matters
with the ultracold, quantum plasma [2–4].

In the present paper, we have focused on the s-wave scat-
tering of the quantum plasma at zero temperature. When the
density of the plasma is high, i.e., deep in the BEC regime, it
might become necessary to consider higher partial waves, e.g.,
p-wave scattering [58,59], as the two-body collision could be
affected by the structure of the potential at short distances.
In this case, the simple treatment [i.e., pairing order param-
eter obtained from Eq. (3)] will not be sufficient. One can
explore the underlying phases using BCS theory taking into
account nonzero momentum contributions [60,61]. The BCS
theory provides a mean-field framework to not only describe
the s-wave and p-wave pairing, but also to study phases at
finite temperatures [17]. The respective phases and their de-
pendence on the parameter of the electric potential are worth
pursuing in the future.
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APPENDIX A: DERIVATION OF THE MODEL AND
FORMALISM

In this Appendix, we give the detailed analytical deriva-
tion of the equation of state, linearized hydrodynamic theory,
dispersion relation, and screened Coulomb potential between
fermionic ions over the BCS-BEC crossover in quantum
plasma.

1. Equation of state

In order to understand the short-range attractive poten-
tial and quantum ion-acoustic wave across the BCS-BEC
crossover, it is instructive to derive the equation of state in a
two-component Fermi gas of electrons and ions of equilibrium
density n0 for species s, representing electrons (s = e) or ions
(s = i). In the unitary limit, no characteristic length is set by
the interparticle potential since its acoustic wave scattering
length a diverges as a → ±∞. The energy per particle of
a homogeneous two-component Fermi gas at unitary must
then depend on the only length characterizing the system
(average particle distance, 1/kF ), with the Fermi wave number
kF = (3π2n0)1/3.

The chemical potential μs is related to the ground-state
energy per particle εs(ns) at zero temperature, μs = d[nsεs (ns )]

dns
,

with density ns and mass ms. The extended Thomas-Fermi
density functional theory and an analytical fitting formula
are used to define εs(ns) as follows. First, according to the
extended Thomas-Fermi density-functional theory [30], εs(ns)
and μs(ns) at unitary are proportional to those of an ideal
Fermi gas:

εs(ns) = 3
5ξEFs, μs(ns) = ξEFs, (A1)

where EFs = h̄2k2
F /2ms (h̄ is the Plank constant), and ξ

is the Bertsch parameter representing the universal charac-
ter. Existing results for the Bertsch parameter ξ determined
by experimental, analytic, and simulation calculations are
in the range of [0.2–0.9], where ξ = 0.42–0.46 gives a
better fit among these theoretical and experimental results
[30,32,44,62,63], and ξ = 1 represents a noninteracting Fermi
gas (ideal Fermi gas). In this paper we take ξ = 0.42 through-
out.

Second, a reliable analytical fitting formula [32] is used for
the BCS and BEC sides,

εs(ns) = 3

5
EFs f (1/kF a),

f (1/kF a) = α1 − α2 arctan

(
α3

kF a

β1 + |1/kF a|
β2 + |1/kF a|

)
, (A2)

which is consistent with the Padé approximation method [31].
The fitting parameters are different between the BCS side and
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TABLE I. The value of fitting parameters at the BCS state and
BEC state, respectively.

α1 α2 α3 β1 β2

BCS ξ 2(1 − α1)/π 9πα2/10 1.4328 α2α3β1

BEC ξ 2α1/π 54πα2/25 0.1126 3α2α3β1

BEC side, as shown in Table I. According to the definition
of f (1/kF a), the chemical potential μs can be written in the
form of

μs = d[nsεs(ns)]

dns
= EFs

[
f (1/kF a) − 1

5kF a
f ′(1/kF a)

]
.

(A3)

The nature of fermionic states has significant consequences
for the statistical properties of many-particle systems in quan-
tum plasmas. The Pauli exclusion principle forbids identical
fermions occupying the same single-particle state. As a result,
the chemical potential of fermionic particles is defined as
adding Fermi particles to a system at zero temperature if these
particles occupy higher-energy levels (assuming that all lower
ones are occupied). So it gives rise to a drastic increase of
the per-particle energy [εs(ns) ∝ EFs ] and chemical potential
[μs(ns) ∝ EFs] due to EFs ∝ n2/3

s [34]. These formulas enable
us to calculate the collective modes at the BCS-BEC crossover
by using a quantum hydrodynamic theory at zero temperature.
The chemical potential used in the main text is the polytropic
equation of state calculated from Eqs. (A1)–(A3), from which
one can further obtain analytic expressions for the screened
potential and phonon frequency.

2. Quantum hydrodynamic model

The low-energy collective dynamics of the superfluid
Fermi gas at the BCS-BEC crossover is usually described by
the equations of classical superfluid hydrodynamics, which
are the time-dependent version of the local-density approx-
imation with the Thomas-Fermi energy functional method
[30]. Quantum hydrodynamic theory is a generalization of
classical superfluid hydrodynamics, including the quantum
effects. The quantum hydrodynamic model [5,37,64–68] pro-
vides a powerful tool to understand the collective behavior of
quantum many-body systems from different points of view,
where its dynamical generalization amounts to introducing
quantum statistics and diffraction effects into the hydrody-
namic equations of classical fluid. The quantum diffraction
effect has been proved experimentally in quantum plasmas
[69].

We define charge Zse (e is the elementary charge), density
ns = |
s|2, velocity field vs = h̄

ims
∇ 
s√

ns
, and wave function


s, for species s. The considered system can be described by
the Hamiltonian [34,37] with the electric potential φ:

Hs = − h̄2

2ms
∇2 + Zseφ + μs. (A4)

It is convenient to write the wave function in the form of
[32,34,37]


s = √
nse

iSs/h̄ (A5)

with msvs = ∇Ss. Here we neglect the effects of entanglement
and focus on the collective modes of quantum plasmas. The
dynamics of species s at zero temperature can be described by
the nonlinear Schrödinger equation

ih̄
∂
s

∂t
= − h̄2

2ms
∇2
s + Zseφ
s + μs
s. (A6)

By separating Eq. (A6) into its real and imaginary parts, we
indeed obtain the equivalent hydrodynamic equations,

∂ns

∂t
+ ∇ · (nsvs) = 0,

∂vs

∂t
+ ∇

ms

(
Zseφ + μs + 1

2
mv2

s − h̄2

2ms

1√
ns

∇2√ns

)
= 0,

(A7)

provided that the fluid is inviscid and irrotational [30]. In the
bracket of the second identity, the first term is the electric
potential; the second term is the chemical potential, which
is regarded as quantum statistical potential due to the Pauli
exclusion principle for fermions; the third term is the kinetic
potential; and the fourth term is the quantum Bohm potential
(quantum pressure) involving the interacting of wave func-
tions due to wave interference [34,66]. Indeed, in an ultracold
quantum plasma, the quantum nature of particles could induce
wave properties due to wave interference [12] and Fermi
statistics effects due to the Pauli exclusion principle [11]. The
quantum hydrodynamic equations are closed by the Poisson
equation

∇2φ = 4πe(ne − n0) − 4πZieδ(r),

assuming a test ion at position r = 0 with charge Zie to realize
an analytical form of the electric potential φ(r) between ions
based on Ref. [5].

In order to achieve analytical expressions, which would be
critical for understanding the underlying mechanisms of the
collective dynamics, the hydrodynamic equations and Poisso-
nian equation could be linearized. We apply a linearized fluid
description of electrons and ions. We write each quantity as
X = X0 + δX1 where subscript zero denotes the zeroth-order
constant equilibrium value, and 1 denotes the first-order per-
turbation. δ is an ordering parameter for linearization, and
has the physical value 1. This linear method is valid for
X0 � δX1. To linearize, we balance all terms in each equation
of the same order in δ. The terms involving only subscript-
zero quantities are all order δ0 and must balance, and terms
with one subscript-1 quantity are all order δ1 and balance.
We treat the velocity field and electric potential as order 1
(vs0 = 0, vs = vs1, φ0 = 0, φ = φ1). The hydrodynamic equa-
tions and Poisson equation after linearization take the form

∂ns1

∂t
+ n0∇ · vs1 = 0,

∂vs1

∂t
+ ∇

ms
(Zseφ + μs1 − h̄2

4msn0
∇2ns1) = 0, (A8)

and

∇2φ = 4πe(ne1 − Zni1). (A9)

The quantum hydrodynamic model is valid [5,37,64,66,68,70]
for h̄ωEP � EFe, and the electron-ion collision relaxation time
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is greater than the electron plasma period, where ωEP is
the electron plasma frequency, given as ωsp =

√
4πe2n0/ms.

The applicability and validity of the quantum hydrodynamic
model have been widely tested not only in quantum plasmas
[5,34,37,64–68,70], but also in the field of cold atomic sys-
tems [30,32,62,71].

3. Screened potential

We report a screened electric potential between ions that
are shielded by degenerate electrons according to Ref. [5]. In
order to obtain an analytical expression of this potential be-
tween ions, we assume a test ion at position r = 0 with charge
Zie = e, thus the Poisson equation becomes after linearization

∇2φ = 4πene1 − 4πeδ(r). (A10)

The linearized density ne1(r, t ) and velocity ve1(r, t ) can be
written as

ne1(r, t ) = ne1 exp [i(q · r − ωt )],
ve1(r, t ) = ve1 exp [i(q · r − ωt )], (A11)

where q is the wave vector and ω is the frequency of acoustic
waves. Inserting Eq. (A11) into Eq. (A8), we get

ne1 = ne0
q · ve1

ω
,

ve1 = i
e

meω
∇φ

/(
1 − c2

e0q2

ω2
− h̄2q4

4m2
eω

2

)
. (A12)

The space Fourier transformation is used for Eq. (A10):

φ(r) =
∫∫

dq
(2π )3

φ(q)eiq·r. (A13)

Inserting the resultant ne1 from Eq. (A12) into Eq. (A13) leads
to the electric potential around a test ion:

φ(r) = e

2π2

∫
exp(iq · r)

q2D
d3q, (A14)

where r denotes the position relative to the position of the test
ion. The dielectric constant D and its inverse are given as

D = 1 + ω2
ep

q2c2
e0 + h̄2q4/4m2

e

,

1

D
=

(
q2/q2

s

) + αq4/q4
s

1 + (
q2/q2

s

) + αq4/q4
s

. (A15)

Here, cs0 = ( n0
ms

d2(n0εs (n0 ))
dn2

0
)1/2 is the noninteracting sound ve-

locity, qs = ωEP/ce0 is the inverse Thomas-Fermi screening
length, and α = h̄2ω2

EP/4m2
e c4

e0.
By inserting Eq. (A15) into Eq. (A14) we get

φ(r) = e

4π2

∫ [
(1 + ib)

q2 + q2+
+ (1 − ib)

q2 + q2−

]
exp(iq · r)d3q,

(A16)
where q± = (qs/

√
4α)[(

√
4α + 1)1/2 ± i(

√
4α − 1)1/2], and

b = 1/
√

4α − 1. With the convolution theorem,∫
exp(iq · r)

q2 + q2±
d3q = 2π2 exp (−q±r)

r
,

Eq. (A16) yields Eq. (1) used in the main text,

φ(r) = e

2r
[(1 + ib)e−q+r + (1 − ib)e−q−r],

which corresponds to

φ(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e
r [cos (qir) + b sin (qir)] exp(−qrr), α > 1/4
e
r

(
1 + qsr√

2

)
exp(−√

2qsr), α −→ 1/4
e

2r (1 + ib) exp (−q+r)
+(1 − ib) exp(−q−r), α < 1/4
e
r exp (−qsr), α −→ 0

.

(A17)
Here, r = |r|, and

qr = (qs/
√

4α)(
√

4α + 1)1/2,

qi = (qs/
√

4α)(
√

4α − 1)1/2,
√

1 − 4α = i
√

4α − 1, α > 1/4,
√

4α − 1 = i
√

1 − 4α, α < 1/4. (A18)

4. Dispersion relation

The interaction potential between two screened ions is also
described by Eq. (A17) [5], by replacing r with the distance
between two same ions rmn = |rm − rn|. Therefore, the inter-
action potential energy between two screened ions with the
same charge e at the positions rm and rn can be written as

Um,n(rmn) = e2

rmn
exp (−qrrmn)[cos (qirmn)

+b sin (qirmn)]. (A19)

We have the motion equation for vibrations of homogeneous
lattice ions under the screened Coulomb interactions based on
Refs. [5,72]:

mi
d2z1n

dt2
= −

∑
m =n

∂Umn(rm, rn)

∂zn
, (A20)

where z1n = zn − z0n is the vertical displacement of the nth
ion from its equilibrium position z0n. Note that this equation
plays a similar role as Eq. (A8) without the chemical potential
and quantum pressure of ions.

In order to obtain an analytical dispersion relation, we
consider wave oscillations with time and space dependence
X1 ∝ exp[i(nLq − ωt )] (frequency ω and wave number q). X1

represents the first-order perturbation of any physical quantity
like zn, vi, and ni, and L is the nearest-neighbor distance. Here,
we take L = d determined by dφ(r)/dr = 0 at r = d accord-
ing to Ref. [5]. If we deal with nearest-neighbor screened
Coulomb interactions alone according to Refs. [5,72], the
dispersion relation without the chemical potential and quan-
tum pressure of ions can be obtained by substituting z1n ∝
exp[i(dq − ωt )] into Eq. (A20):

−ω2mi = e

(
d2φ(r)

dr2

)
r=d

[exp(idq) + exp(−idq) − 2]

= −4e

(
d2φ(r)

dr2

)
r=d

sin2

(
qd

2

)
. (A21)
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The effect of the ion chemical potential and ion quantum pres-
sure can be included in the collective dispersion of quantum
ion acoustic waves (phonon excitations), coupling Eqs. (A8),
(A17), and (A21) and substituting vi1, ni1 ∝ exp[i(ndq − ωt )]
into them:

−ω2mi = −4e

(
d2φ(r)

dr2

)
r=d

sin2

(
qd

2

)
− mic

2
i0q2 − h̄2q4

4mi
.

(A22)

This Eq. (A22) is rewritten as

ω2

q2
= ed2

mi

[
d2φ(r)

dr2

]
r=d

(
sin(qd/2)

qd/2

)2

+ c2
i0 + h̄2q2

4m2
i

.

(A23)
With the help of Eqs. (A21)–(A23), we derive Eq. (5) that is
used in the main text to define the dispersion relation of the
quantum ion-acoustic wave considering the electric potential,
chemical potential, and quantum pressure of screened ions.

For low wave number q or long-wavelength limit (q � kF )
[72], on setting sin(qd/2) ≈ qd/2, the dispersion relation re-
duces to

ω2 =
[

ed2

mi

d2φ(r)

dr2
|r=d + c2

i0

]
q2 + h̄2q4

4m2
i

. (A24)

Based on Eq. (A24), the ion wave velocity without the ion

quantum pressure ( h̄2q4

4m2
i

) is given as

v0 = ω

q
=

[
ed2

mi

d2φ(r)

dr2
|r=d + c2

i0

]1/2

, (A25)

which can be compared to the sound velocity ci0 for noninter-
acting Fermi gas. The difference is induced from the screened
potential between ions and ion quantum pressure, compared
to the noninteracting sound velocity ci0. It is necessary to
calculate the unitary limit of the sound velocity

cs0|kF a→±∞ = vFs(ξ/3)1/2, (A26)

where vFs = (2EFs/ms)1/2. Thus, the roles of the linearized
model [Eq. (A8)] and the analytical screened potential
[Eq. (A17)] are to have a simple analytical expression of the
phonon frequencies without the effect of the order parameter
[�, defined in Eq. (3) in the main text].

In order to consider the effect of order parameter (�) on
the dispersion law of the collective mode for acoustic waves
in a paired plasma, we express the dispersion relation based
on Ref. [43]:

s11s22 = ω2s2
12, (A27)

where

s12(ω, q, μi,�) =
∫ ∞

0
k2dk

∫ 1

0
du

1

E+E−

E+η− + η+E−
(E+ + E−)2 − ω2

,

s11(ω, q, μi,�) =
∫ ∞

0
k2dk

( ∫ 1

0
duζ+ − 1

E

)
,

s22(ω, q, μi,�) =
∫ ∞

0
k2dk

( ∫ 1

0
duζ− − 1

E

)
,

ζ± = (E++E− )
E+E−

E+E−+η+η−±�2

(E++E− )2−ω2 , E± =
√

η2
± + �2 , E =√

η2 + �2 , η± = (k2 ± kqu + q2/4)h̄2/(2mi ) − μi, and

η = k2h̄2/(2mi ) − μi. The above equations can be solved
numerically, where the MATLAB fsolve function is used to
solve the integral equations. The frequency ω is dependent
on 1/kF a through the order parameter [Eq. (3) defined in
the main text] and the chemical potential [Eq. (A3)]. We
compare the dispersion relation obtained without [Eq. (A23)]
and with [Eq. (A27)] the effect of order parameter � along
the BEC-BCS crossover in the main text.

APPENDIX B: ANALYSIS OF THE RESULTS

In this Appendix, we discuss the short-range attractive
potential between fermionic ions and show the dispersion
relation of the quantum ion-acoustic wave, analyzing their
collective properties (phonon excitations).

1. Analysis of the short-range attractive potential

In the following, we calculate the screened potential
between two ions in a quantum plasma outside the BCS-BEC
crossover with n0 = 2 × 1027(α = 0.25) cm−3 and over the
BCS-BEC crossover with n0 = 3 × 1024(α = 2.2), 1023(α =
6.9), 2 × 1022(α = 12), 1021(α = 32), 1020(α ≈ 70) cm−3.
The range of the BCS-BEC crossover is taken from n0 ≈ 1015

to n0 = 3 × 1024 cm−3, corresponding to the region of
Coulomb bound states [34], which is sufficiently large to
probe the presence of the BCS-BEC crossover. The quantum
plasma is composed of electrons and 4He+ ions, with ion mass
mi = 6.6 × 10−24 g and electron mass me = 9.109 × 10−28 g.
These values are taken to be the same as in the main text.

In cold atomic gases, the interaction strength between a
pair of atoms can be realized by magnetically tuned scattering
resonances, named as Feshbach resonances [16–18], offering
the unique possibility to realize the BCS-BEC crossover. The
Feshbach resonance was shown in Ref. [39] with infinite scat-
tering length at the threshold (called the unitary point) for the
formation of a bound state. Once this bound state is formed,
the scattering length changes sign (−∞ −→ +∞), and the
magnitude decreases with increasing the strength of potential.

The BCS-BEC crossover from Cooper pairs to molecules
appears when the size of molecules is of the order of the
interparticle spacing ∝ 1/kF in atomic systems [32]. It is
interesting to explore whether this phenomenon also happens
for the cold ion system due to the screened potential between
a pair of ions. Although the screened Coulomb interactions
make the physics different in a cold plasma, compared to a
cold atomic system, the BCS-BEC crossover is expected to
occur in a cold plasma. We tried to understand the mecha-
nism for forming the BCS-BEC crossover in a cold plasma,
where the inter-ion potential and phonon excitations (acoustic
waves) might be essentially different from those of atomic
systems at the BCS-BEC crossover.

We first try to answer how the screened potential changes
its behavior with the plasma density n0 (α) as it was done
in Ref. [5]. Parameter α represents the importance of the
quantum recoil effect, as it is the coefficient of the quantum
pressure term [see the terms of ≈ q4 in Eq. (A15)]. Here
α = h̄2ω2

EP/4m2
ec4

e0 is dependent on the density n0, through the
electron plasma frequency ωEP and the noninteracting sound
velocity ce0 determined by the electron chemical potential μe,
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FIG. 5. The screened potential φ(r), varying with the plasma
density n0 = 2 × 1027(α = 0.25), n0 = 3 × 1024(α = 2.2), n0 =
1023(α = 6.9), n0 = 2 × 1022(α = 12), n0 = 1021(α = 32), n0 =
1020(α ≈ 70) cm−3.

which are self-consistently included in the expression of φ(r)
[Eqs. (A15)–(A17)].

As it has been reported in Ref. [5] that the screened poten-
tial shows negative values for α > 0.25, the effect of n0 on the
potential φ(r) as a function of r is drawn in Fig. 5, with several
values of n0 (α). It is clearly seen that the potential shows both
short-range positive and negative values, indicating the short-
range repulsive and attractive interactions between two ions
with different distance. The negative potential value increases
while their distance decreases, as shown in Fig. 5, which is
expected for realizing the BCS-BEC crossover. The value of
minimum potential φ(r) at different distance r is shown in
Table II for different n0 (α). Note that the different regimes
depend on the potential. As shown in Fig. 5 and Table II,
the deep BEC state is achieved tuning n0 = 3 × 1024 cm−3

[φ(r) = −7.8 × 10−4 (in cg s)]. The unitary regime occurs
when n0 = 2 × 1022 cm−3 [φ(r) = −6 × 10−4 (in cg s)]. We
can obtain the deep BCS of the ions when n0 = 1020 cm−3

[|φ(r)| = 2.4 × 10−4 (in cg s)]. We indeed see the short-range
attractive potential that agrees with the Lennard-Jones-type
potential in the range of 10−8 � r � 10.5 × 10−8 cm, which

TABLE II. The value of attractive potential φ(r) × 104 (in cg s)
between a pair of ions at different distance r × 108 (in cm) for several
values of n0 across the BCS-BEC crossover (BCS, n0 < 2 × 1022;
unitary, n0 = 2 × 1022; BEC, 2 × 1022 < n0 � 3 × 1024) and outside
the crossover (2 × 1027).

n0 (cm−3) 1020 1021 2 × 1022 1023 3 × 1024 2 × 1027

φ(r) × 104 (cg s) −2.4 −3.8 −0.6 −7.5 −7.8 0
r × 108 (cm) 10.5 5.8 3 2.1 1 0.6

is on the order of average ion distance n−1/3
0 . This is just the

condition required for the BCS-BEC crossover.
The minimum value of the potential occurs at r = 10−8 cm

(deep BEC), r = 3 × 10−8 cm (unitary), and r = 1.05 ×
10−7 cm (deep BCS), as shown in Table II, indicating that
the range of attractive potential gets smaller from deep BCS
(≈10−7 cm) to deep BEC (≈10−8 cm) states. The attractive
potential reaches its minimum value in the deep BEC region
and is almost unchanging with further increasing n0. This
is consistent with the prediction that the strongest attraction
is resolved by dimer formation, while a repulsion occurs
between dimers with further decreasing the distance [39].
Indeed only short-range repulsive potential exists for small
enough distance r < 6 × 10−9 cm with large enough density
n0 � 2 × 1027 cm−3 (α � 0.25) as shown in Fig. 5.

It is expected that the short-range attractive potential can
form fermionic ion pairs, which in fact may collapse into
a BEC state. The short-range attractive potential with ad-
justable strength agrees on the role of the Feshbach resonance,
preferable for the realization of BCS-BEC crossover in a cold
plasma without a magnetic field. In other words, the screened
ions can be trapped in the negative part of the exponential
oscillating potential [see Eq. (A17)], which leads to ion clus-
ters (like molecules) depending on the plasma density n0.
The potential φ(r) takes its negative value allowed by the
combined effects of the electron quantum statistical potential
and the electron quantum Bohm potential at zero temperature
[5]. Physically, this involves the overlapping of electron wave
function due to the Heisenberg uncertainty and Fermi statis-
tics effect due to the Pauli exclusion principle [11,12,34,66],
leading to a short-range negative hard-core electric potential.
This qualitative behavior has been reported by Shukla and
Eliasson [5]. Thus, the BCS-BEC crossover is realized by the
short-range attractive potential between a pair of ions, which
exhibits different insight into quantum plasmas.

The distance where the potential takes minimum value is
defined as the nearest-neighbor ion distance and noted as d ,
which is essential to compare the range of inter-ion potential
and average ion distance. For this purpose, we seek the solu-
tion of relation ∂φ(r)

∂r = 0, from which we determine and plot
d in Fig. 6(a), the minimum potential φ(d ) in Fig. 6(b), the
Laplacian of the potential ∂2φ(r)

∂r2 |r=d in Fig. 6(c) at r = d , and
the acoustic wave period sin2(qd/2) under this potential in
Fig. 6(d), as a function of 1/kF a.

The value of d decreases linearly with increasing 1/kF a in
the BCS region, then rapidly drops at unitary, and decreases
more slowly in the BEC region with increasing 1/kF a, as
shown in Fig. 6(a). These features are consistent with Fig. 5.
In general, the distance d decreases through the BCS-BEC
crossover, which is just the phenomenon that particle dis-
tance decreases over the BCS-BEC crossover, reported in
Refs. [32,40,62]. We believe that the variation of distance d
between two ions is evidence of the formation of ion pairs at
the BEC, resulting in a variety of features in quantum plasmas.

At r = d , the potential φ(d ) indeed takes negative values,
as shown in Fig. 6(b), where its strength increases over the
BCS-BEC crossover, leading to the formation of ion pairs
or ion clusters (analogous to dimers) in the BEC region.
This negative Lennard-Jones-like potential is relevant to the

063312-9



ZHANG, WANG, JIANG, AND LI PHYSICAL REVIEW A 104, 063312 (2021)

-10 -5 0 5 10

10
-6

d
 [

cm
]

-10 -5 0 5 10
-1

-0.5

0

(d
) 

[c
g
s]

10
-3

-10 -5 0 5 10
0

1

2

(d
) 

[c
g
s] 10

14

-10 -5 0 5 10

1/k
F
a

0

5

2
/k

F
d

(a)

(b)

(c)

(d)

FIG. 6. (a) The distance d defined by ∂φ(r)
∂r = 0, (b) the potential

φ(d ), (c) its second derivative φ′′(d ) at r = d , and (d) the acoustic
wave period 2π/kF d under the potential, as a function of 1/kF a, over
the BCS-BEC crossover.

ion-binding potential in the ultracold plasma. The binding
potential is determined by the depth of the minimum potential
φ(d ). Correspondingly, the value of φ′′(d ) increases through
the BCS-BEC crossover, as seen from Fig. 6(c), which further
determines the acoustic wave frequency and the character
of the dispersion relation (see Figs. 7–9). Note that φ(d )
and φ′′(d ) take finite negative values and positive values,
respectively, over the whole BCS-BEC crossover, indicating
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that there always occurs an attractive potential between a
pair of screened ions at a proper distance for 1015 � n0 �
3 × 1024 cm−3 (3 × 104 � α � 2). The value of 2π/kF d is
plotted in Fig. 6(d), which is the period of oscillating fre-
quency [see Eq. (A23) and Figs. 7–9]. The period increases
with increasing 1/kF a, taking values of 0–2.5 at the BCS side,
2.5 at unitary, and 2.5–7.5 at the BEC side.

2. The dispersion relation of acoustic waves

This subsection discusses the dispersion relation of quan-
tum ion-acoustic waves for unpaired ions since intraspecies
of the ions may not form pairs but contribute to phonon
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excitations. Note that the phonon frequency for paired ions
is shown in the main text. The energies per particle εs/EFs,
chemical potential μs/EFs, and sound velocity cs0/vFs are
plotted as a function of 1/kF a in Fig. 7(a) and n0 in Fig. 7(b),
across the BCS-BEC crossover. The parameter 1/kF a char-
acterizes the different interaction regimes and the interaction
strength increases with increasing 1/kF a (through increasing
n0). The calculations of energy per particle, chemical poten-
tial, and sound velocity are based on Eqs. (A1)–(A3) and the
results agree well with those in Refs. [32,40,62]. At unitary at
1/kF a = 0 (n0 = 2 × 1022 cm−3), the sound velocity is cal-
culated from cs0 = vFs(ξ/3)1/2. In both deep BCS and BEC
states, the energies per particle, chemical potential, and sound
velocity take asymptotic limits and are almost independent of
1/kF a. However, at unitary, the curves show a rapid decrease
with increasing 1/kF a (n0), as shown in Figs. 7(a) and 7(b),
indicating the formation of the BCS-BEC crossover. One sees
the crossover from the BCS (1/kF a = −10, n0 = 1015 cm−3)
to unitary (1/kF a = 0, n0 = 2 × 1022 cm−3) then to BEC
(1/kF a = 10, n0 = 3 × 1024 cm−3), as shown in Fig. 7, which
suggests that the BCS-BEC crossover is indeed a continuous
transition.

The dispersion relation [see Eq. (A23)] is not only depen-
dent on the electron chemical potential and electron quantum
pressure, included in the value of ∂2φ(r)

∂r2 |r=d , but also relevant
to the ion chemical potential [behaves as the second term
ci0q2 in Eq. (A23)] and the ion quantum pressure [behaves
as the third term ∝ q4 in Eq. (A23)]. For the purpose of un-
derstanding the collective properties of quantum ion-acoustic
waves at the BCS-BEC crossover, the phonon frequency is
obtained for all the possible values of 1/kF a [varying through
the plasma density n0 [see Fig. 3(d) in the main text]. We plot
the phonon frequency as a function of 1/kF a in Fig. 7(c) and
n0 in Fig. 7(d), for different q.

The frequency presents a slowly changing acoustic mode
at the BCS side, and a sharp increase around the unitary point,
then a significantly slower increase at the BEC side, as shown
in Figs. 7(c) and 7(d). In the regime of a strongly interacting
unitary Fermi gas, an abrupt change in the phonon frequency
occurs, which may be a signature for a transition from BCS
to BEC phase. This phenomenon agrees with the evolution of
the Anderson-Bogoliubov damped mode in the BCS limit to
the Bogoliubov sound mode in the BEC limit [73], predicted
by Melo et al. [73] based on the time-dependent Ginzburg-
Landau equation.

The frequency dependence on n0 is consistent with that on
1/kF a, since 1/kF a is determined by the plasma density n0

[see Fig. 7(d) in the main text]. This is qualitatively agree-
ing with the breathing modes in atomic systems obtained
by various theoretical methods such as beyond mean-field
theory [74], hydrodynamic method [32], and time-dependent
density-functional theory [62], because the short-range attrac-
tive potential between a pair of ions in cold plasmas plays
the role of an external trapped potential in atomic systems.
The frequency is inversely proportional to the chemical po-
tential, and its dependence on 1/kF a is inverted compared to
the chemical potential and the noninteracting sound velocity
[32,40,62]. The frequency increases with increasing 1/kF a,
indicating a positive shift of the frequency with increasing

the interaction strength, which coincides with the feature pre-
dicted by Refs. [32,40,62,74].

We perform systematic calculation and detailed discussion
on the phonon frequency ω/ωip dependence on 1/kF a for
understanding the collective property of cold plasmas at the
BCS-BEC crossover. The frequency dependence on 1/kF a
for different wave number q is shown in Fig. 8. For small
q, the frequency is lower at the BCS state, while it rises
quickly at unitary, and it is higher at the BEC state, which
is consistent with the profile of ∂2φ(r)

∂r2 |r=d [see Fig. 6(c)]. The
frequency dependence on 1/kF a is contrasted to the profiles
of μi and ci0 [see Figs. 7(a) and 7(b)], as the term ∝ ∂2φ(r)

∂r2 |r=d

is dominant compared to the other terms [see Eq. (A23)]
for small q. Moreover, the frequency first decreases in the
BCS region, then increases and approaches its maximum
value in the BEC region, passing through the minimum near
unitary point 1/kF a = 0, indicating nonmonotonic behavior
at q = 2.5kF . This behavior agrees phenomenologically with
that in an atomic system in Ref. [32] over the BCS-BEC
crossover.

With increasing q, the frequency minimum changes to the
maximum, and ω/ωip first increases then decreases over the
crossover in the presence of sin2(qd/2) [see Eq. (A23)], as
shown in Fig. 8(c). With further increasing q, the frequency
peak divides into a valley and a peak, with the minimum
and maximum occurring close to the left and right of the
unitary point, respectively, as shown in Fig. 8(d). This result
is ascribed to the presence of sin2(qd/2) due to the screened
potential, yielding an oscillating frequency concerning q (see
Fig. 9).

The phonon frequencies reach the asymptotic values in
the deep BEC limit, indicating an asymptotic behavior, which
agrees with the character of the breathing modes in a trapped
atomic system [32]. A local maximum occurs near the unitary
point in the BCS regime at a decent wave number q, indicating
the nonmonotonic character of the phonon frequency. The
experimental measurements of phonon frequency confirm this
result in a trapped atomic system, where the radial frequency
has shown an abrupt decrease with increasing 1/kF a in the
regime of BCS near the unitary point [23]. This experiment
also predicted a negative shift of the radial frequency [23]
with increasing 1/kF a, i.e., increasing the interaction strength,
with a spin mixture of trapped 6Li atoms in a cigar-shaped
molecular BEC confined by a laser beam. Although this is
contrasted to our results for small q as shown in Figs. 8(a)
and 8(b), it has shown consistent features for a proper large
q [see Figs. 8(c) and 8(d)]. The experimental data [23] con-
firm our results for a good wave number, i.e., the abrupt
change and negative shift of the phonon frequency occur in
nearly the same way [see Fig. 8(c) and 8(d)]. This further
confirms the occurrence of the BCS-BEC crossover in cold
plasmas, which is guaranteed by the short-range attractive
potential.

Are these different phonon frequencies across the BCS-
BEC crossover not pure fantasy? There are strong reasons to
believe that this is a very realistic scenario at the BCS-BEC
crossover examined in ultracold quantum plasma. Indeed,
our theoretical results on the phonon frequency in a cold
quantum plasma show three possible reasons for realizing
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the BCS-BEC transition, compared with the collective mode
in the trapped atomic system with reasonable choices of
the relevant parameters. The corresponding features could
be confirmed on the basis of available theoretical models
[32,40,62,74] and experimental measurements [23] over the
BCS-BEC crossover with three reasons. First, the cold atom
is trapped externally by a magnetic field or laser in the atomic
system; in comparison, the cold ion is trapped in the negative
part of the screened potential by the short-range attractive
interactions. Second, the phonon frequency exhibits the same
dependence on 1/kF a as that of atomic gas, although their
values differ in the two cases. Third, both systems have non-
monotonic and asymptotic characters and abrupt changes at
and near the unitary point.

The dispersion relation is shown to illustrate the effect
of 1/kF a in Figs. 9(a)–9(c), and the contour of ω/ωip as
functions of 1/kF a and q in Fig. 9(d). A dramatic character
of Fig. 9 is the persistence of linear frequency dependence
on q as long as q � kF , which agrees well with the clas-
sical ion-acoustic wave dispersion (ω = v0q) in the limit of
small Debye length and low-frequency oscillations, where
v0 is the wave speed in a plasma. Otherwise, with increas-
ing q the curves start to oscillate with a period of 2π/kF d
[see Fig. 6(d)], due to the effect of term sin2(qd/2). This
guarantees the existence of periodic oscillating frequency.
The frequency almost takes a periodic oscillation for small
q (q/kF � 5), where the maximum value is determined by
∂2φ(r)

∂r2 |r=d , smaller than ion plasma frequency ωip ≈ 2 ×
1010 − 1015 s−1 over the BCS-BEC crossover.

The frequency profiles at different 1/kF a qualitatively
agree with each other, but the value is different at BEC,
unitary, and BCS states. The amplitude of the oscillating
frequency is highest at BEC, higher at unitary, and high at
the BCS state since this amplitude increases with increasing
the plasma density. The three curves separate from q = 0,
and their difference first becomes larger then smaller with
increasing q due to the periodic property. Our results give
the nontrivial effect of the parameter 1/kF a on the phonon
dispersion for small q, due to Eq. (A23). Indeed, for large q
(q � kF ), the frequency increases more quickly with increas-
ing q, and finally merges and shows a quadratic q dependence
due to the dominant effect of the third term ≈ h̄2q4/4m2

i ,
compared to the first and second terms in Eq. (A23).

As expected, the frequency is nearly the same at the uni-
tary (1/kF a = 0 ) and BEC state (1/kF a = 0.1 ), while it is
a bit lower at the BCS state (1/kF a = −0.1), as shown in
Fig. 9(a), because the frequency varying with 1/kF a is mainly
determined by ∂2φ(r)

∂r2 |r=d [see Eq. (A23) and Fig. 6(c)], which
takes similar values at 1/kF a = 0 and 0.1, but slightly smaller
value at 1/kF a = −0.1. The three curves separate more signif-
icantly with increasing the absolute value of 1/kF a, especially
for small q, as shown in Figs. 9(b) and 9(c). Whereas their
difference gets smaller with increasing q due to the term ≈
h̄2q4/4m2

i in Eq. (A23), finally they merge, and the oscillation
vanishes for q � 20kF . The frequency oscillation disappears
more quickly for the BCS state than that for the BEC state,
and the unitary case is moderate between them, which are
determined by the strength of short-range attractive potential
[see Fig. 6(b)].

The frequency dependence on q is quasiperiodic through
the BCS-BEC crossover, with a period of 2π/kF d , as shown
in Fig. 9(d). The frequency reaches the asymptotic value in
the deep BEC and shows nonmonotonic behavior on 1/kF a
for a larger wave number. These results qualitatively agree
with the experimental measurements of phonon frequency
in a trapped atomic system [23], which further confirms the
occurrence of the BCS-BEC crossover in the cold quantum
plasma. However, the physical mechanism is different for the
two systems.

APPENDIX C: POSSIBLE COMPARISON BETWEEN
COLD ION AND ATOMIC SYSTEMS OVER

THE BCS-BEC CROSSOVER

In this Appendix, we discuss the possible comparison
between cold ion and atomic systems over the BCS-BEC
crossover. Quantum plasma is easily found in nature like the
cores of giant planets and white dwarf stars [34,75–77], due to
the high density (greater than solid-state density ≈1023 cm−3)
caused by gravitation. It has been indicated that electrons are
expected to be quantum degenerate in the core of the Sun
[75]. Quantum plasma also occurs in various modern laborato-
ries, using shock waves [78], pinches in high-current-carrying
plasmas [79,80], gas guns [81], laser beams, and ion beams
[82,83]. A different kind of quantum plasma occurs in metals
and semiconductors, where the valence electrons behave as
quasi-free, characterized by a Fermi gas. Moreover, strong
compression of an atomic (molecular) gas could transform
matter from a neutral state of atoms and molecules into a fully
ionized two-component quantum plasma with electrons and
ions, where bound states may exist at low temperature and
high density. Correspondingly, the quantum Coulomb cou-
pling parameter (Brueckner parameter) is rs ∼ 1

kF aBs
∝ |eφ(d )|

EFs
,

i.e., re ≈ 1, ri ≈ 104 with n0 ∼ 1022 cm−3 at zero temperature
[34]. Here aBs = h̄2

mse2 is the effective Bohr radius. Finally,
ultradense quantum plasmas could exist in nuclear matter, i.e.,
quark-gluon plasma and the Big Bang, achieved by continued
compression of the quantum plasma of electrons and nuclei,
where details of the interactions are complex but dominated
by Coulomb interactions [84–86].

Previous hydrodynamic theories of the BCS-BEC
crossover mainly focused on neutral gas in an atomic
system [30,32,62,71]. Our theoretical results for ion pairs in
ultracold plasmas could be equivalently important as atom
pairs for a BCS-BEC crossover. The fact is that atoms like
4He considered in atomic systems [32] can be treated as an ion
sphere forming of the nucleus and electrons as a charged cloud
surrounding the nucleus. The dense Thomas-Fermi atomic
gas [30] is analogously replaced by a dense Thomas-Fermi
plasma [5,34], where the ions are shielded by nonrelativistic
degenerate electrons at zero temperature. The shielding radius
of the sphere is defined as the Debye radius or Thomas-Fermi
radius [34,64,66,70] λF = (EFe/ωEP)1/2 ∝ 1/kF , which is the
same order with the interparticle spacing in atomic unitary
systems. Thus, the range of interparticle potential comparable
with interparticle spacing in the plasma systems is similar
to those in atomic systems, where the Fermi gas exhibits
universal properties and is regarded as unitary Fermi gas,
irrelevant to neutral or charged gas.
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The theoretical model may be realized experimentally by
using a three-dimensional solid like 4He including 4He+ ions
and electrons. Sound waves with dispersion relation cs0q are
pressure waves propagating from one layer to the next by
collisions among the atoms or molecules. In an electrons and
ions system, with no neutrals and few collisions, a consistent
phenomenon occurs, called an ion acoustic wave (phonon
excitation), or, simply, an ion wave. Acoustic waves can occur
through the intermediary of an electric field. Experimental
verification of the existence of acoustic waves was first ac-
complished in Refs. [87,88], where a Q-machine experiment
was designed to detect waves and wave velocities.

In discussion, the BCS-BEC crossover between ultracold
plasma and atomic gas can be directly compared, where dif-
ferences appear only in the interaction potential. An external
trapped potential is applied for the atomic system, where a
Feshbach resonance controlled by a magnetic field is used to
tune the s-wave scattering length and the interaction poten-
tial between two fermionic atoms in a cold atomic system.
The short-range attractive potential between fermionic ions
screened by degenerate electrons plays the role of effective
interaction potential in a cold ion system. This is a controllable
interaction, where interaction range and magnitude could be
controlled by varying the plasma density.

Indeed, we obtain the short-range attractive potential be-
tween a pair of screened ions with increasing strength from
BCS to BEC as the potential range decreases, which agrees
with the main principle of BCS-BEC crossover. With the
presence of the short-range attractive potential at scales (av-
erage ion distance ≈1/kF ), the ions can be trapped in the
negative part of the exponential oscillating screened potential
[see Eq. (A17)]. This leads to the formation of ion pairs or
ion clusters, depending on the plasma density n0, realizing the
BCS-BEC crossover, in the field of strongly coupled quantum
plasmas [34,47–51].

The s-wave scattering length indeed can be tuned from
−∞ to +∞ due to the short-range attractive potential. This
guarantees the existence of BCS-BEC crossover in cold ion
systems. Here bound pairs are composed of fermionic ions of
a different spin. As a result, the system, originally a Fermi
gas, is transformed into a bosonic gas of ion-ion pairs. The
possibility of tuning the scattering length across the BCS-
BEC crossover from negative to positive values can provide
a continuous connection between the physics of Fermi su-
perfluidity and BEC state, including the strongly interacting
unitary Fermi gas at the middle of the crossover. More-
over, it is shown that the resulting quantum ion-acoustic
waves exhibit distinct dispersion relations across the BCS-
BEC crossover, which provide a direct route to probe the
changing scattering length, as well as the BCS and BEC states.
It would deserve an experimental measurement of a phonon
dispersion [89] varying continuously from BCS to BEC
state.

It is important to note that the short-range attractive po-
tential is an elegant mechanism of pure electron collective

quantum behavior, and it vanishes in the quantum limit
h̄ −→ 0. In quantum mechanics, the spin configuration of
two fermions can be antiparallel or parallel, where the en-
ergy of an antiparallel state is lower than the parallel state,
and this antiparallel state is named the ground state, which
can interact with the s wave. We show that the mechanism
of the s-wave interaction is characterized by the low-energy
collisions between two fermionic ions when the interaction
range is on the same order of the inter-ion spacing, which
permits the ions to undergo a BCS-unitary-BEC crossover.
Therefore, the bounded 4He+ ions with the s-wave interaction
over the BCS-BEC crossover are virtually occupied in pairs of
opposite spin. This is analogous to the paired electrons with
opposite spin in the ground state of a superconductor [90].
Indeed, the Pauli exclusion principle states that two fermions
in a bounded state cannot have the same quantum numbers,
and only two fermions can occupy the same orbital where they
must have opposite spin states.

It is necessary to mention that there are situations where
fermions manage to transform into bosons in order to achieve
lower energy, i.e., the particles are favorable to settle at the
position of minimum attractive potential. This principle is the
same as that for Cooper pair formation where two fermions
form a weakly bound pair which obeys Bose statistics, which
is possible due to the short-range attractive potential between
a pair of ions. Such fermionic ion pairs, like electron Cooper
pairs, may be responsible for the loss of electrical resistance,
e.g., superconductivity, in various materials.

We realize the BCS-BEC crossover for fermionic ion pairs
in ultracold quantum plasmas in the presence of the short-
range attractive potential due to the quantum statistics and
diffraction effects of degenerate electrons at zero tempera-
ture, offering a platform to quantum simulate the BEC-BCS
crossover in cold quantum plasma. This may open stimulating
perspectives in the interdisciplinary region of cold plasma and
atomic systems. From the many-body point of view, the study
of BCS-BEC crossover in an ultracold plasma opens appli-
cation areas and classes of questions in the interdisciplinary
region of cold quantum plasma and cold atomic systems.

This paper, based on the generalized hydrodynamic the-
ory, further confirms the existence of the Lennard-Jones-like
short-range attractive potential and its inevitable role in the
formation of ion pairs over the BCS-BEC crossover, which
might be important for plasma crystallization [8,13,34,91,92]
and strong laser-matter interaction in laboratory [83,93,94].
Hydrogen and helium were predicted to form stable crys-
tals controlled by the carrier density [13], which should be
realized experimentally with laser- or ion-beam techniques.
Our results confirm that the strength and range of the short-
range attractive potential can indeed be tuned by the density
of plasma, which may be one of the essential factors yield-
ing strong ion coupling in planets. The introduction of such
short-range attractive potential, which brings the ions closer
together, might also lead to breakthroughs in supercomputing,
semiconductor, and nanotechnology sciences [8,52,95–97].
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