
PHYSICAL REVIEW A 104, 063311 (2021)

Effects of disorder upon transport and Anderson localization in a finite, two-dimensional Bose gas
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Anderson localization in a two-dimensional ultracold Bose-gas has been demonstrated experimentally. Atoms
were released within a dumbbell-shaped optical trap, where the channel of variable aspect ratio provided the only
path for particles to travel between source and drain reservoirs. This channel can be populated with columnar
(repulsive) optical potential spikes of square cross section with arbitrary pattern. These spikes constitute
impurities, the scattering centers for the otherwise free propagation of the particles. This geometry does not
allow for classical potential trapping which can be hard to exclude in other experimental setups. Here we add
further theoretical evidence for Anderson localization in this system by comparing the transport processes within
a regular and a random pattern of impurities. It is demonstrated that the transport within randomly distributed
impurities is suppressed and the corresponding localization length becomes shorter than the channel length.
However, if an equal density of impurities are distributed in a regular manner, the transport is only modestly
disturbed. This observation corroborates the conclusions of the experimental observation: the localization is
indeed attributed to the disorder. Beyond analyzing the density distribution and the localization length, we also
calculate a quantum “impedance” exhibiting qualitatively different behavior for regular and random impurity
patterns.

DOI: 10.1103/PhysRevA.104.063311

I. INTRODUCTION

All real media, however pure, contain disorder which
influences their transport properties [1–5]. Indeed, disorder
is essential for transport in a regular lattice, for otherwise
particles undergo Bloch oscillations [6] and are localized.
However, impurities (interstitial atoms, lattice defects, etc.),
or even the finite size of the system, which destroy the per-
fect spatial periodicity, also give rise to residual resistance
against electron flow [7]. If the density of impurities is high
enough and the typical electron energy is low, the electrons
are localized [8–11]; hence, the substance is an insulator.
The opposite, the absence of translational symmetry alone,
however, does not guarantee an insulating phase [12–15]. The
role of disorder in transport can, therefore, be very subtle.

One striking effect of random disorder is the suppres-
sion of transport due to destructive interference via multiple
propagation paths and the consequent confinement of wave
packets. This phenomenon is known as Anderson localiza-
tion [8,16,17]. This single-particle wave phenomenon does
not require any special interaction between particles or spe-
cific geometry and so appears ubiquitously in nature and can
be present in all kinds of systems [4,18–33]. Since Anderson’s
early proposal, the effects of interaction [34,35], dimension-
ality [16,36], violation of time-reversal symmetry [37], and
spin-orbit coupling [38] upon localization have all been ana-
lyzed.

Ultracold atomic systems, with their experimental flex-
ibility and precision control of both internal and external
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degrees of freedom, make them an excellent platform to ex-
plore Anderson localization [39–42]. Localization of atoms
has been demonstrated in one dimension (1D) [40,41] and
also in 3D [39,42], where, for the latter, the localized and
delocalized states were separated by a well-defined mobility
edge [43]. However, observation of Anderson localization
in two-dimensional ultracold systems has proven to be elu-
sive [44]. Although weak localization in 2D has been reported
[45,46], the relatively high percolation threshold [47] of
a speckle potential posed serious difficulties and resulted
in classical localization. In contrast, in 3D the percolation
threshold for speckle disorder is rather small [48], and thus
3D Anderson localization is easily discerned from classical
localization. Regarding to 2D, Morong and DeMarco [49]
proposed a realistic pointlike disorder potential circumventing
the problem of percolation limit. In 2020 White et al. [44], af-
ter designing a highly flexible optical setup overcoming these
technical challenges, demonstrated Anderson localization in a
2D ultracold system.

Here we provide further computational analyses of local-
ization extending this previous work [44]. We consider a 2D
dumbbell-shaped trap with potential spikes distributed within
the channel. An interacting Bose-Einstein condensate is pre-
pared in its ground state within an initial harmonic trap and
centered at the middle of the channel. The harmonic trap
is then turned off and the condensate is released within the
dumbbell-shaped trap. Although the self-interaction is taken
into account in the simulation, mainly to remain close to
real-life experiments, its effect is only observable at the very
beginning of evolution, when the mean-field energy drives
the expansion within the channel. As the density falls rapidly
the interaction, together with its influence on the localization,
diminishes swiftly.
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FIG. 1. On the left the schematic of the dumbbell potential is
shown: L is the length of the channel, W is the width of the channel,
and R is the common radius of the two circular reservoirs. On the
right the single columnar potential spike is depicted, showing its
square cross section of area σ and height/strength of Vimp.

Our main focus is on the transport of particles in two
scenarios: impurities distributed randomly or regularly within
the channel. We expect these two scenarios to exhibit funda-
mentally different transport properties. In the analyses we rely
on three quantitative measures: the localization length ξ , the
momentum distribution k, and an atomtronic impedance, Z ,
introduced in analogy with that of electrical impedance.

II. DETAILS OF SIMULATIONS

After introducing scales for the energy and for the temporal
and spatial coordinates as h̄ω0, ω−1

0 ,
√

h̄/mω0, respectively,
one obtains the numerically more convenient form of the
Gross-Pitaevskii equation:

i
∂ψ

∂t
=

[
−1

2
∇2 + U + β|ψ |2

]
ψ. (1)

The time evolution of the condensate at absolute zero tem-
perature is described by this nonlinear equation adequately.
Here U is the dimensionless potential including two terms:
the dumbbell trap Vdb and the overall sum of potential spikes,
Vimp, representing the impurities. Due to the very nature of
this potential term, these impurities are not taken into account
as impenetrable hard wall and hence via a Dirichlet boundary
condition. Rather these are soft spikes and the wave function
can penetrate them as quantum mechanics dictates. As in
Ref. [44], the strength of impurities Vimp, is constant together
with the footprint σ 2 of a single spike (see Fig. 1). The mean-
field interaction is measured by β = 2

√
2πNas/az, where az

is the oscillator length corresponding to ωz, N is the number of
87Rb atoms, and as = 107a0 is the s-wave scattering length. In
Eq. (1), ψ is normalized to unity. Parameter values are listed
in Table I.

The dumbbell-shaped trap, depicted in Fig. 1, consists of
two reservoirs separated by a channel with point scatterers
distributed randomly or regularly within the channel. The
simulation starts with calculating the ground state of the
condensate trapped by the harmonic trap using the imagi-
nary time propagation method [50]. This stationary solution
serves as the initial condition for the time evolution, and the
condensate is allowed to expand and propagate within the
channel, decorated with impurities, towards the reservoirs.
Equation (1) is solved numerically by the Runge-Kutta-
Fehlberg method [51], and implemented in CUDA language
utilizing specialized graphical processor units dedicated for

TABLE I. Symbols and values of parameters.

Description Value

Spatial extension (x direction) Lx 500 μm
Spatial extension (y direction) Ly 225 μm
Grid points (x direction) nx 1536
Grid points (y direction) ny 768
Reservoir radius R 43.2 μm
Channel length L 180 μm
Channel width W 36 μm
Dumbbell potential depth Vdb 52 nK
Impurity height Vimp 17 nK
Impurity cross-section area σ 2 1.4 μm2

Number of particles N 16 000
Frequency of harmonic trap ω0 2π × 25 rad s1

Frequency of squeezing trap ωz 2π × 800 rad s1

Bohr radius a0 5.29 × 10−11 m
Range of fill-factor η [0, 0.3]

highly parallel tasks. In each simulation, the Gross-Pitaevskii
equation evolves for 300 ms, which equates to approximately
20 min of simulation time in the GPU. It is worth mentioning
that increasing the fill-factor results in increasing the compu-
tational time.

In order to quantify the “amount” of disorder in the channel
we introduce a geometric measure, η, based on the overall
footprint of the impurities relative to the total available area
within the channel:

η = Aimp

Achannel
= nσ 2, (2)

where n is the density of scatterers and σ 2 is the cross-section
area of a single scatterer. For geometrical reasons one may
call η the fill-factor. Its meaning is apparent in Fig. 2 where
the channel segments of the dumbbell are shown for η = 0.25
with the impurities distributed randomly [Fig. 2(a)] or regu-
larly [Fig. 2(b)].

We estimate the localization length ξ from fitting the ex-
ponential decay on the two- and one-dimensional probability
densities, defined as ρ2D = |ψ |2 and

ρ1D(x) =
∫

ρ2D(x, y)dy =
∫

|ψ (x, y)|2dy,

FIG. 2. The impurity potential Vimp is depicted for randomly
(a) and regularly (b) distributed potential spikes for the same fill-
factor η = 0.25. Only the channel segments of the dumbbell trap are
shown.
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FIG. 3. The left and right columns of graphs show ρ2D and ρ1D,
respectively, at different moments in time, covering the entire du-
ration of the simulation. In the right column, ρ1D is plotted on a
logarithmic scale, while the left and right reservoirs are depicted as
shaded areas. The channel length is 180 μm. While there is a small
portion of the density falling outside of the dumbbell potential, it
does not show up in these graphs, as this portion is negligible and
thus several orders lower in magnitude than that within the dumbbell.

or in other words, the one-dimensional density is the one-
dimensional column density along the x axis, usually easily
accessible in an experimental setup.

III. RESULTS

Before we analyze the two main scenarios, let us demon-
strate the time evolution of the condensate without potential
spikes. This case serves as a benchmark. Figure 3 shows both
the one- and the two-dimensional densities as the condensate
expands within the channel in the absence of any impurity. It
is clear that by t � 250 ms the atoms fill the entire dumbbell
trap more or less uniformly, exactly what one would expect
for a gas trapped in a finite volume. In the following two
sections we describe how the spatial distribution of potential
spikes alters particle transport.

A. Randomly distributed scatterers

We study the long-time behavior of ρ1D in the channel and
in the two reservoirs. For high enough fill-factors we expect
localization to occur; hence, the density develops an exponen-
tially decaying profile while expanding within the disordered
dumbbell,

ρ1D(x) ∝ ρ0 exp

(
−2|x|

ξ

)
, (3)

where the origin is at the center of the channel. We call the
characteristic parameter the ξ localization length.

Figure 4 shows ρ1D and ρ2D profiles at four moments in
time as the condensate expands within the channel with differ-

FIG. 4. In the right column the time evolution of ρ1D is depicted
for η = 0.05 (top) and η = 0.2 (bottom) at t = 2.49, 12.44, and
62.19 and at t = 248.76 ms. In the left column ρ2D is shown with
the contour of the dumbbell potential overlaid. The geometry is
determined by (L,W, R) = (180, 36, 43) μm.

ent amount of disorders, η = 0.05 and 0.2. For small fill-factor
ρ1D does not show any appreciable triangular shape at the
center, excluding the possibility of localization. However, for
higher disorder, a central peak develops. Towards the end
of the time evolution the reservoirs also hold non-negligible
amounts of matter. These atoms escape from the disordered
channel as their kinetic and mean-field energies are high
enough. We substantiate this claim later by calculating the
momentum (and hence the energy) distributions of particles in
the reservoirs and in the channel. However, increasing η fur-
ther reduces the density in the reservoirs despite the fact that
the strength of individual potential spikes has not changed.

In order to quantify localization Eq. (3) is fitted to ρ1D for
t > 200 ms treating ξ as fitting parameter. As log(ρ1D) ∝ |x|
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we defined ξleft and ξright based on the density for x < 0 and
x > 0. In Fig. 5 some of the curve-fittings are shown for η = 0
[panel (a)], 0.1 [panel (b)], and 0.2 [panel (c)] together with
log(ρ1D) for t > 200 ms. The localization lengths ξleft and
ξright and the goodness-of-fit R2

fit are also provided above each
panel [52]. Figure 5(a) shows no exponential decay in either
side of the channel; hence, the goodness-of-fit is almost zero.
In contrast, ρ1D in Fig. 5(b) starts developing an exponential
decay and consequently R2

fit is elevated to ∼0.87. As η in-
creases we expect more particles being localized within the
channel due to more interference events, and as a result, ξ de-
creases: at η = 0.1 one finds ξleft/ξright = 95/105 μm, while
ξleft/ξright = 75/70 μm for η = 0.2. Note, as the impurities
are distributed randomly, there is no equality in their number
on each side of the channel. Therefore, ξ on two sides of
the channel can be slightly different. However, we expect that
over numerous configurations at fixed η this difference would
vanish.

Figure 6 depicts ξ as a function of η. The localization
lengths are calculated by taking an average over the last 50
snapshots of ρ1D. The circular markers represent R2

fit and show
an upward trend as the linear fit becomes better and better for
increasing η. More importantly, we also see that ξ falls below
the half of the channel length for η > 0.07.

We may briefly scrutinize the dynamics of localization as
well. The localized particles have a fixed localization length
unlike for particles in extended states. Figure 7 shows ξ (t )
and R2

fit(t ) for four values of η in [0.02, 0.2]. For low disorder,
the majority of atoms have a large Boltzmann mean free-path;
hence, they can escape from the channel, resulting in large
ξ (t ) and subsequently lower R2

fit. For higher η we see more
stability in the localization length as a function of time. One
can argue for a slightly increasing trend after t = 250 ms even
for the η = 0.2 case. The point is that, even for η = 0.2, there
are still nonlocalized, high-energy particles which can escape
from the channel, reach the wells, and reflect back into the
channel again. This process can explain the slightly increasing
trend in the last part of ξleft(t ).

In order to catch a localization length less than the system
size in a 2D system, we need to consider another important
factor, the actual system size, ∼L. We consider a dumbbell
with a short channel with η = 0.2. Figure 8 shows ρ1D within
different segments of the dumbbells at t > 200 ms for L = 36
μm. The goodness-of-fit is low while ξ is much larger than
L. Moreover, we cannot see any obvious trend in ξ (η) or
in R2

fit in Fig. 9. Comparing Figs. 6 and 9, we can safely
conclude that in a short channel there are much less scattering
events, leading to a larger localization length than the actual
system size. Let us to look at the momentum distribution
of the atoms. Figure 10 shows |k| in different segments of
the dumbbell, derived through Fourier transform of ρ1D. The
momentum distributions of the initial wave packet at t = 1 ms
are shown in Figs. 10(a), while the momentum distributions
in different regions after expansion (t > 250 ms) are shown in
Figs. 10(b) to 10(d). Figures 10(b) and 10(d) clearly show that
for nonzero fill-factor the mean momentum is slightly above 2
μm−1, indicating that particles with higher momenta escaped
from the channel and reached the reservoirs. Atoms with
lower momenta are trapped inside of the disordered channel as
suggested by Fig. 10(c). In addition, Figs. 10(b) and 10(d) also

(a)

(b)

(c)

FIG. 5. Figure depicts the one-dimensional density profile over
the entire numerical box for η = 0 (a), 0.1 (b), and 0.2 (c). The
vertical dashed lines separate the five important regions: the outer-
most regions are outside of the dumbbell trap, while the central three
regions are the left reservoir, the channel, and the right reservoir.
Within the channel the density profile is plotted using two colors
for the left and right sides of the channel, respectively. The graph
also shows the linear fits to ρ1D. The fitted localization lengths ξleft

and ξright, with the corresponding goodness-of-fit measures, R2
fit, are

given at above the central density.
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FIG. 6. Localization lengths ξleft and ξright are depicted as func-
tions of η with blue plus markers (+) and red crosses (×),
respectively (left axis). The corresponding measure for goodness-of-
fit R2

fit is also shown with solid circles and applying the same color
coding (right axis).

point towards an energy-dependent localization, since even
for the highest fill-factor (η = 0.2) there are particles capable
of leaving the channel. This can naively be interpreted as
follows: atoms with higher momenta, thus with higher kinetic
energy, have shorter wavelengths and are of the order of the
mean free-path. The mean free-path can be approximated by
the mean spacing between scatterers �s = σ/

√
η, where σ is

the side-length of a single scatterer. The corresponding mean
minimal distances for η = 0.1 and 0.2 are �s = 4.42 μm and
3.1 μm, respectively. According to Fig. 10(a) the majority
of atoms have |k| = 1.11 μm−1, which translates to a wave-
length of λ = 2π/|k| = 5.6 μm, and hence σ < �s < λ. In
Figs. 10(b) and 10(d), however, the distributions peak around

FIG. 7. The apparent localization length ξleft is drawn at each
time step for η = 0.02, 0.05, 0.1, and 0.2 (bottom four curves).
The corresponding goodness-of-fit measures are also plotted with
matching color (top four curves). The dumbbell geometry is given
by (L,W, R) = (180, 36, 45) μm. The horizontal gray dashed lines
represent the length of the channel, L, and its half, L/2, in order to
provide comparison.

FIG. 8. The one-dimensional density in a short channel is plotted
at the end of the time evolution. The left and right reservoirs are
indicated with shaded areas and vertical thin blue dashed lines. The
thicker dashed lines in the middle of the graph are the linear fits to
ρ1D. The dumbbell geometry is (L,W, R) = (36, 36, 58) μm.

2–3 μm−1, with corresponding wavelengths being 3.14 to 2
μm. Therefore, σ < λ < �s. The percolation threshold in this
system is ∼2 nK for η = 0.2 [49], while the average kinetic
energy is ∼12 nK [cf. Fig 10(a)]; therefore, the setup is below
the percolation threshold. In three dimensions the Ioffe-Regel
criterion, |k|�s ∼ 1, is often quoted as a simple rule, indicating
the breakdown of diffusive transport. We remark here that this
criterion assumes a well-defined wave vector obtained from a
particle’s wave packet, and it is not associated with the thermal
de Broglie wavelength λdB. The distribution of wave vectors
shown in Figure 10(a) indicates that the Ioffe-Regel criterion
will be satisfied by some fraction of the particles, but not
necessarily all [see Figs. 10(b) and 10(d)], corroborating our
findings that some particles escape into the reservoirs even at
η = 0.2.

FIG. 9. Localization length ξ as a function of η for a dumbbell
with a short channel length of 36 μm. The symbols and colors are
the same as those in Fig. 6.
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(a)

(b) (c) (d)

FIG. 10. Momentum distribution of atoms. Panel (a) depicts the
initial distribution of the modulus of momentum after releasing the
initial harmonic trap (t = 1 ms). The distribution of the modulus
of momentum is also plotted in the right well (b), in the channel
(c), and in the left well (d) after t > 250 ms. The curves in panels
(b)–(d) correspond to three fill-factors: η = 0.0 (black dash-dotted
line), η = 0.1 (blue solid line with star-shaped marker), and η = 0.2
(red solid line with triangle marker). The dumbbell parameters are
(L,W, R) = (180, 36, 45) μm.

B. Regularly distributed scatterers

We have also analyzed the transport properties of atoms
within regularly distributed scatterers and contrasted particle
transmission at t > 250 ms with that of random scatterers
(see Fig. 11). The bottom of Fig. 11 shows ρ1D at t >

250 ms. One can clearly see the dumbbell reservoirs be-
ing filled up by atoms for regularly distributed scatterers as
atoms are in extended states while particles stay localized
within the randomly disordered channel. The second obvi-
ous difference is in the bottom panels of Fig. 11 where ρ1D

exhibits an exponential decay profile for randomly located
disorder and no decay for the regularly located potential
spikes.

For comparison the particle numbers in the reservoirs
(combined) and in the channel are shown as functions of time
in Fig. 12. The wells of the dumbbell with regular scatterers
are eventually occupied with around twice as many atoms as
in the random case. In contrast, the right axis of Fig. 12 shows
twice the number of atoms within the channel for the random
system compared to that in the periodic case. The normalized
atom number in each part is derived by integrating over the
density function in each segment along both horizontal and
vertical axes and then normalized by the total atom number.
One may ask why the atom number in the random case does
not become stable with time. The reason lies in the dynamics:
some of the atoms, which are in the extended states, reach
the walls of the reservoir at longer times. They then reflect
back after hitting the reservoir’s walls and return into the
channel, moving again toward the wells, creating a sloshing
background density. This, however, does not affect our general
conclusions.

FIG. 11. A comparison of two-dimensional (top panels) and one-
dimensional densities (bottom panels) after t = 250 ms time of
expansion for impurities distributed regularly and randomly. The top
panels provide a visual representation of ρ2D within the dumbbell
and suggest qualitatively different behavior for the two cases. In the
case of regularly distributed impurities the density seems to be more
or less uniform although it also shows weak filamentary structures,
while the randomly distributed impurities seem to result in a more
localized density distribution. The triangular shape of ρ1D on the
logarithmic scale is apparent for randomly distributed impurities,
suggesting localization. The left and right reservoirs are indicated
with shaded areas and vertical blue dashed lines.

Furthermore, we compare the momentum distributions for
random and regular distributions in Fig. 13. Atoms are in the
extended states in the regular case; therefore, the particles’
distributions have a similar pattern in each segment. In con-
trast, particles just with high kinetic energy can reach to the
left and right wells in the random case, since propagation of
atoms halts due to Anderson localization. Therefore, there is
a significant separation between the momentum distribution
in three regions of the random case. The majority of parti-
cles within the channel have small |k| < 1, while those with

FIG. 12. Normalized number of particles in the channel (two
curves starting on the top at t = 0) and in the reservoirs (two curves
starting at the bottom at t = 0) are depicted as functions of time.
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(a) (b) (c)

FIG. 13. Momentum distributions of atoms are shown in the
three segments of the dumbbell for regularly and randomly dis-
tributed impurities at fill-factor η = 0.2. The left and right wells are
depicted in panels (a) and (c), while panel (b) represents the channel
segment. The black solid curves belong to the case of regularly
distributed impurities, while the blue solid curves with star-shaped
markers depict the data for the random distribution. The dumbbell
geometry is given by (L,W, R) = (180, 36, 45) μm.

large |k| could escape from the channel and move toward the
wells.

C. Quantum impedance

As a final measure of the transport properties, we in-
troduce a quantum analog of wave impedance, Z , which is
usually interpreted as resistance experienced by a wave prop-
agating in a medium (cf. electronics [53], acoustics [54],
optics [55]). Quantum impedance was first defined by Bril-
louin [53] and later redefined by Khondker et al. [56] for
a typical one-dimensional scatterer, i.e., a plane wave ap-
proaching a potential barrier of finite size with the wave
reflected from and transmitted through this potential barrier.
For the wave function ψ , the probability current den-
sity is j = −i h̄

2m [ψ∗(∇ψ ) − ψ (∇ψ∗)]. Introducing φ(x) =
−i h̄

m ∇ψ , one may also write j ∝ Re(φψ∗), which resembles
the expression for the average power, Re(V I∗), delivered in an
electrical circuit. The similarity suggests the introduction of a
position-dependent quantum impedance:

Z (x) = φ(x)

ψ (x)
.

Specific cases, especially those considering periodic po-
tential barriers within semiconductors, can be found in the
literature [57–64]. Our focus here is mainly on suppressed
matter wave transport. For localized states a significant part
of the probability density is confined within a small volume
(relative to the available volume) and hence must have ex-
ponential decay around the boundary of this small volume.
We may thus assume that ψ (x) ∼ ψ0(x)e−|x|/ξ , where ψ0 is
a slowly varying function and ξ is a characteristic length
scale. With this assumption the impedance is real, and hence
resistive, and Z ∼ (∇ψ0/ψ0) + 1/ξ . Alternatively, for an ex-
tended state, ψ (x) ∼ ψ0(x)eikx, one would arrive at a complex
impedance describing the interaction of a resistive element
and a reactive element, and Z ∼ (∇ψ0/ψ0) + ik.

We estimate |Z| for a range of η for randomly and regu-
larly distributed impurities. The results are shown in Fig. 14.

FIG. 14. The absolute value of impedance, |Z|, is plotted as
a function of η for randomly (top curve) and regularly (bottom
curve) distributed scatterers. The geometry is given by (L,W, R) =
(180, 36, 45) μm.

As one can see for the random channel, |Z| increases as a
function of η and reaches its maximum for η = 0.5 before
it decreases again and reaches its initial value. The scatterers
are static. At η = 0.5, half of the channel is filled randomly
by scatterers; however, for increasing η one may consider an
elevated “bottom” potential which is decorated by holes with
fill-factor ηholes = 1 − η. This particle-hole duality, used ex-
tensively in condensed matter physics, qualitatively explains
the symmetry of Fig. 14. For regular distribution, however,
|Z| increases for η � 1, reaches a plateau lower than that for
random disorder for 0.1 < η < 0.2, and then rapidly dimin-
ishes for even higher fill-factors. This fast decay indicates the
breakdown of our assumption for exponential decay of ψ , i.e.,
localization itself.

IV. CONCLUSION

We have studied propagation of a Bose-Einstein conden-
sate in a 2D dumbbell-shaped trap with two realizations of
impurities within the dumbbell channel. The dumbbell trap
consists of two wells connected via a channel. The condensate
is located initially in the middle of the channel and propa-
gates through the channel towards the wells. We considered
impurities within the channel of the dumbbell distributed first
randomly and then regularly. The differences between the
atomic transport through these channels was investigated and
showed atoms stay in localized states in a randomly located
disorder channel, while they are in extended states when im-
purities are placed periodically. We utilized the exponential
decay profile of the 1D density of atoms to distinguish the
localized regime from the nonlocalized regime. We also con-
sidered the momentum distributions of the atoms and showed
particles with high energies can escape from being localized
within the random disorder channel and reach the wells. These
high-energy particles are in states with extension comparable
to the system size and demonstrate an effective mobility edge
due to the finite size of the system and the particular properties
of our impurity potentials. We also defined and measured
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an atomtronic impedance function Z (η) for these two cases
and showed a randomly located disorder channel has higher
impedance in comparison with its regular counterpart.

Finally we mention two directions for future work. The
first is investigating how Anderson localization depends on
the regularity of the underlying disorder distribution or, in
other words, the importance of how the correlation structure of

scatterers affect the onset of Anderson localization. A second
avenue could be the analysis of the changes in the physical
picture if thermal effects are also considered. We intuitively
expect localization to prevail at sufficiently low, but nonzero
temperatures, even though the thermalization process is not
well understood [65–68]. A detailed study of these thermal
effects could be of interest.
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