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Inspired by investigations of Bose-Einstein condensates (BECs) produced in the Cold Atom Laboratory (CAL)
aboard the International Space Station, we present a study of thermodynamic properties of shell-shaped BECs.
Within the context of a spherically symmetric “bubble trap” potential, we study the evolution of the system
from small filled spheres to hollow, large, thin shells via the tuning of trap parameters. We analyze the bubble
trap spectrum and states and track the distinct changes in spectra between radial and angular modes across the
evolution. This separation of the excitation spectrum provides a basis for quantifying dimensional crossover to
quasi-2D physics at a given temperature. Using the spectral data, for a range of trap parameters, we compute
the critical temperature for a fixed number of particles to form a BEC. For a set of initial temperatures, we also
evaluate the change in temperature that would occur in adiabatic expansion from small filled sphere to large thin
shell were the trap to be dynamically tuned. We show that the system cools during this expansion but that the
decrease in critical temperature occurs more rapidly, thus resulting in depletion of any initial condensate. We
contrast our spectral methods with standard semiclassical treatments, which we find must be used with caution
in the thin-shell limit. With regard to interactions, using energetic considerations and corroborated through
Bogoliubov treatments, we demonstrate that they would be less important for thin shells due to reduced density
but vortex physics would become more predominant. Finally, we apply our treatments to traps that realistically
model CAL experiments and borrow from the thermodynamic insights found in the idealized bubble case during
adiabatic expansion.
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I. INTRODUCTION

The physics of Bose-Einstein condensates that form closed
shell-like geometries is a fascinating and far-reaching topic
which spans a range of physical scales and phenomena.
On astronomic scales, for instance, portions of neutron star
interiors could potentially contain superfluid spherical-shell
structures [1,2]. Exotic stars known as “boson stars” have
also been hypothesized to form when a complex scalar field
couples to gravity [3]. On the microscopic length scales of
trapped ultracold atoms, concentric shells of differing phases
can be generated in the setting of Bose-Fermi mixtures [4–7]
as well as in bosonic optical lattices, which can preferentially
favor superfluid versus Mott insulating phases in different
regions [8–13]. The prospect of realizing isolated shell-shaped
condensates has received a surge of interest [14–27], as
have investigations into the nature of the onset of conden-
sation in other novel geometric settings [28,29]. However,
on Earth, gravity renders such a realization challenging by
causing trapped gases to pool at the bottom of the trap.
Terrestrial experiments done in free fall can mitigate this prob-
lem [25,30,31], but the inherently short condensate lifetimes
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are undesirable. It would thus be ideal to probe shell-shaped
condensates in perpetual free fall. The International Space
Station (ISS) provides precisely these conditions, operating
in a microgravity environment.

Bose-Einstein condensate (BEC) shells in isolation would
provide an arena for studying numerous interesting features
which could translate to salient properties of shells in these
various settings. The topology of hollowed-out fluid structures
shows innate differences from fully filled structures. The pres-
ence of an inner and an outer boundary affects collective mode
spectra, vortex physics, and thermodynamics. With regard to
geometry, all these features show unique characteristic proper-
ties as a spherical system undergoes an evolution from filled to
slightly hollowed out to the thin-shell limit, including telltale
signatures of topological change. In principle, this evolution
can be realized by forming a condensate in a trap that can
produce the standard filled geometry, and then, as exemplified
by the “bubble trap” [14,15], the hollowing out can take place
by tuning trap parameters. A major aspect of BEC shells,
which we address here, is the thermodynamics behind how
a hollow shell condensate structure can be created at finite
temperature. Towards actual realization of such structures,
our theoretical analyses closely target the experiments being
conducted by two of us (D.A. and N.L.) aboard the ISS.

In 2018 the Cold Atom Laboratory (CAL), developed
by the Jet Propulsion Laboratory was successfully launched
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into orbit aboard the ISS. CAL’s design allows for remote
generation of BECs in microgravity [22,26] and has been
able to produce large millimeter-scale ultracold bubbles in
the 10–100 nK temperature range [32]. CAL offers wide
capabilities for generating ultracold mixtures [22], but impor-
tant to this work is its ability to generate so-called “dressed
potentials” [24]. In this mode of operation, an initial non-
hollow condensate is prepared using magnetically trapped
87Rb atoms in the |F = 2, mF = 2〉 hyperfine state [24]. A
radio frequency (rf) signal is then turned on which modifies
the potential experienced by the atoms. By modifying this
rf “detuning” signal, one can produce potentials capable of
harboring BEC shells. The first set of experiments reveal a
dramatic expansion and hollowing out of an initial condensate
as it undergoes significant thermodynamic changes [32].

In this work, complementing the CAL experiments, we the-
oretically investigate the thermodynamic process of a trapped
Bose gas, initially forming a compact filled sphere, undergo-
ing adiabatic expansion due to changing trap parameters to
form a large, thin spherical shell. Specifically, we consider
two aspects of this process: in a bubble trap geometry, for
fixed number of gas particles, how does the temperature of
the system evolve under adiabatic expansion? How does this
contrast with the critical temperature for condensation for a
given set of trap parameters? We also perform an analysis
for the experimental traps employed on CAL. Recent work
has begun to address related issues; aspects of a thin spher-
ical shell’s thermodynamics have been investigated [33,34],
including the fate of the Berezinskii-Kosterlitz-Thouless tran-
sition in a closed, thin-shell geometry [35].

Our findings here make for a comprehensive thermody-
namic study of this unique structure and evolution in and
of itself while also informing the related experiments. They
predict the manner in which the temperature of the Bose gas
would change during the adiabatic hollowing-out expansion.
Comparing with the local critical temperature throughout the
process, we are led to conclude that there is a narrow win-
dow of parameters in which a large thin condensate shell can
be created. We go beyond the semiclassical approximation,
whose predictions should be taken with care in quasi-2D
systems [28,29]. We also include, at first order, the effect
of interactions and show that they are largely unimportant
in the same large thin limit. Our results, while predicting
that the first set of shell-potential experiments aboard the
ISS are unlikely to retain condensation at the larger radii,
point to the range of parameters wherein large condensate
shells occur. They also ascertain the stability of the spectac-
ular systems that these first experiments exhibit: compared to
regular trapped gases of micron-scale, thousand-fold adiabatic
expansion gives rise to exquisite delicate gigantic thermal gas
bubbles.

This paper is organized as follows: we first consider bosons
subject to a radial “bubble trap” potential [14,15]. After ex-
ploring the spectral properties of bubble-trapped states, we
use this information to calculate thermodynamic quantities in
the noninteracting case. In particular, we determine the BEC
critical temperature as the potential evolves from a filled-to-
hollow sphere geometry along with the temperature of the
system when the expansion process is performed adiabati-
cally. Strikingly, we find that adiabatic expansion of a BEC

leads to condensate depletion. We then contrast our results
with the semiclassical approximation and find semiclassical
predictions overestimate the critical temperature and hence
partially conceal the condensate depletion phenomena. Next,
we consider the effects of interactions and dimensionality.
Contrasting zero-temperature Gross-Pitaevskii numerics with
various approximation schemes reveals that, for fixed parti-
cle number systems, the decreasing density of an expanding
bubble means the noninteracting description is well suited
to describe thin-shell geometries. We then use this result to
construct a Bogoliubov description of collective excitations in
this instance. Consistent with the above discussion, we find
thermodynamic predictions for thin shells are relatively close
to those in the absence of interactions. By construction, the
Bogoliubov effective theory assumes excitations dominated
by long-wavelength phase and density fluctuations above a
U (1) symmetry-broken ground state; we indicate the eventual
breakdown of this description as one crosses over into the
quasi-2D limit. Finally, we apply the lessons of the bubble trap
to compute thermodynamics in trapping potentials achieved
with CAL. We conclude with an outlook on how our work
can inform the CAL experiments and discuss possible mani-
festations of nonequilibrium physics.

II. BUBBLE TRAP SPECTRUM AND STATES

Here we introduce the bubble trap as means to con-
tinuously tune the system geometry. We then discuss the
properties of states subject to the bubble trap potential as it
deforms from a filled sphere to a hollow thin shell.

A. Trapping potential

Our focus is the thermodynamics of ultracold bosonic
gases trapped in potentials that allow geometries ranging from
a filled sphere to a nearly 2D hollow shell. Such dimensional
crossovers have been investigated employing hard-wall spher-
ical potentials and confinement to spherical surfaces [36,37].
Here we employ trapping potential forms that can be contin-
uously tuned to span the whole range and can approximate
the related experimental setting of shell-shaped BECs aboard
CAL [24].

As our starting point, we model the dilute collection of
trapped, interacting bosons in three dimensions using the stan-
dard description provided by the Hamiltonian:

Ĥ =
∫
R3

d3x

[
ψ̂†

(
− h̄2

2m
∇2 + V

)
ψ̂ + g

2
ψ̂†ψ̂†ψ̂ ψ̂

]
, (1)

where ψ̂ (�x) represents the annihilation operator for a boson
of mass m, V (�x) describes an external trapping potential, and
g represents a coarse-grained contact interaction between par-
ticles. In terms of microscopic physics, g = 4π h̄2as/m where
as is the s-wave scattering length [38–41]. Here we study the
cases of no interactions (g = 0) and repulsive ones (g > 0).

First, we consider an idealized rotationally symmetric
“bubble trap” potential which can tune between 3D spheres
and quasi-2D thin spherical shells [14,15]:

Vbubble(�x) = 1
2 mω2

0s2
l

√
[(|�x|/sl )2 − �]2 + (2�)2, (2)
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FIG. 1. Top (bottom) row: surface plots (spatial slices) of the
bubble trap at various detuning values. As � increases, the location
of the radially symmetric potential minimum, sl

√
�, expands out-

wards leading to the formation of shell-shaped structures.

where sl = √
h̄/2mω0 is the oscillator length associated with

frequency ω0 and � and � are dimensionless parameters that
control the radius and width of the potential well [42,43]. For
instance, a positive � sets the potential minimum at a radius of
sl

√
�. By varying these parameters, we can probe thermody-

namics through the range of desired geometries, as shown in
Fig. 1. Physically, � (�) corresponds to the rf detuning (Rabi
frequency) of a trapped atomic gas [24].

When considering the bubble trap above, we work in units
where sl = ω0 = m = kB = 1, and set all other parameters to
correspond closely with the physically relevant case of ongo-
ing CAL experiments. Namely, we take the number of atoms
to be N = 50 000 and the dimensionless “width” parameter to
be � = 250, and (to expand from a filled-sphere to a hollow
shell) we consider a range of values for the dimensionless
“radius” parameter: � = 0 → 1000. By fixing the particle
number, this expansion process differs from [37] where BECs
on the surface of a sphere were investigated and expansions
could be considered by varying the radius at fixed density.
We also note that negative detunings are relevant experimen-
tally, but because the role of � in the bubble trap is to tune
from filled-sphere to thin-shell geometries, we simply con-
sider � � 0. For atoms in the internal state |F = 2, mF = 2〉
subject to a trap with frequency ω0/2π = 80 Hz, these values
correspond to a Rabi frequency of (�ω0/4)/2π = 5 kHz and
a maximum rf detuning of (�ω0/8)/2π = 10 kHz. In cases
where we consider nonzero interactions, we use a value ap-
propriate for both 87Rb and the CAL experiment by setting
the (dimensionless) interaction strength to 8πNas/sl = 7000.
For N = 5 × 104 atoms in an 80 Hz trap, this corresponds to
a scattering length on the order of 5 nm.

B. Spectrum and states

We first find the energy spectrum and eigenstates for a
noninteracting system confined by the bubble trap of Eq. (2).
Due to its rotational symmetry, eigenstate wave functions can
be written in the form

φklml (�x) = 1

r
ukl (r)Y ml

l (θ, φ), (3)

where (r, θ, φ) are spherical coordinates, and Y ml
l are spher-

ical harmonics having l = 0, 1, 2, . . . and ml = −l, . . . , l .
The quantum number “k” completes the indexing by account-
ing for the radial direction. Obtaining the eigenstates then
reduces to solving the radial component of the Schrödinger
equation:(

− h̄2

2m

d2

dr2
+ V (r) + h̄2l (l + 1)

2mr2

)
ukl (r) = εkl ukl (r), (4)

where ukl (0) = ukl (∞) = 0. For fixed angular momentum
quantum number l , the index k = 0, 1, 2, . . . is chosen to cor-
respond to increasing energy eigenvalues: ε0,l � ε1,l � ε2,l �
· · · .

We employ a simple finite-difference method to discretize
and then numerically solve Eq. (4) as the detuning parameter
� is varied. As � increases (see Fig. 1), the peak of each
eigenstate’s probability density will begin to expand radially
outward. Hence, a state localized near the origin for small
� becomes squeezed into a hollow thin shell at large �.
Figure 2(a) shows the evolution of the bubble trap ground
state during this hollowing-out procedure. As the bubble
expands and the ground state eventually hollows out, there
is a change in topology characterized by different second
homotopy groups: the filled-sphere, technically a 3-ball, is
contractible (i.e., a 2-sphere inside this space can be con-
tinuously deformed to a point) whereas the hollow sphere
is not [44]. However, because the ground state probability
density decays gradually towards zero away from its peak,
determining a precise � at which a change in topology occurs
is subtle. We note that another feature of the noninteracting
ground state is that its peak density remains at the origin until
some critical detuning value (� ≈ 27) upon which it begins
to move radially outward.

In the case of a thin spherical shell, it is straightforward to
approximate the geometry of the ground state. In this limit,
the bubble trap potential can be approximated by a shifted
harmonic oscillator with frequency ω0

√
�/� and radial shift

sl

√
� corresponding to the bubble trap’s radial potential min-

imum. Using a 1D shifted oscillator to capture the the radial
behavior of the ground state, we expect the thickness of the
shell to scale as sl (�/�)1/4. This means the approximate
volume of the ground state density scales like s3

l �
3/4�1/4. We

see, therefore, that as the bubble expands with increasing �

and fixed �, the thickness of the shell decreases but the total
volume increases.

Turning our attention to the behavior of the radial com-
ponent of the wave functions ukl (r)/r [Fig. 2(b)], we note
that the quantum number k labels the number of nodes in
each radial wave function (disregarding zeros due to boundary
conditions). Thus, for fixed angular momentum l , increasing k
corresponds both to larger energy eigenvalues and node count.
At large �, k = 0 states, which have no radial nodes, compose
a low-lying energy band [Fig. 2(c)] and constitute a quasi-2D
basis.

A partial spectrum of the bubble trap is shown in Fig. 2(c).
Note that for a given k value, as the angular momentum quan-
tum number l increases, so does the corresponding energy εkl .
Furthermore, for a given l value, we find the energy difference
between adjacent k bands begins to increase with the detuning
parameter �. The spacing between the bottom of the k = 0
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FIG. 2. Eigenstates and spectrum of the noninteracting bubble-
trapped system (a) Probability density for the ground state wave
function in the z = 0 plane at various detuning values. In each plot,
the color is normalized such that black (yellow) corresponds to the
minimum (maximum) value. (b) Radial components of wave func-
tions in the bubble trap, ukl (r)/r. Only the zero angular momentum
states for k = 0, 1, 2 are shown (along with a shifted and scaled
potential in the background). We show the wave functions in the two
extreme limits of a filled sphere, � = 0, and a thin shell, � = 1000.
(c) Partial spectrum of the bubble trap with the potential minimum,
�

h̄ω0
2 , subtracted off. The color is based on the index k, with k = 0

corresponding to blue, k = 1 corresponding to orange, and so on. As
l increases, so does the corresponding energy level εkl for a given k.
Higher angular momentum states have been removed from the image
for clarity.

and k = 1 bands represents the energy scale at which the
system enters a quasi-2D regime.

III. BUBBLE TRAP THERMODYNAMICS
(NONINTERACTING)

In this section, we use the above bubble-trapped states
to numerically compute thermodynamic quantities in the

FIG. 3. The BEC critical temperature of N = 5 × 104 bosons in
the bubble trap vs the detuning parameter �, which controls the shell
thickness. � = 0 → 1000 corresponds to continuously deforming
the system from a filled sphere to hollow thin shell (Fig. 1). The tem-
perature is given in units of h̄ω0

2kB
where ω0 is the oscillator frequency

in Eq. (2).

absence of interactions as the trap evolves from a filled-sphere
to thin-shell geometry. We find that adiabatic expansion of
a BEC leads to condensate depletion. and hence an initial
condensate can be lost during the process.

A. BEC critical temperature

For a noninteracting system, thermodynamic properties
follow from Eq. (4) (see Appendix A for details on the thermo-
dynamic formalism). Of crucial importance for shell-shaped
condensates is the BEC critical temperature, Tc, which is
computed by solving the implicit equation:

N =
∑
kl 	=0

(2l + 1)
1

e(εkl −ε0 )/kBTc − 1
, (5)

where N is the number of particles in the system and we
denote the single-particle ground state (k = 0, l = 0, ml = 0)
with subscript “0′′. From the spectrum of the bubble trap, we
can determine the BEC critical temperature as a function of
detuning, �. Figure 3 shows that as the system expands from
a filled sphere to a hollow, thin shell, the critical temperature
drops significantly.

Qualitatively, this can be explained by considering the
phase-space density nλ3

T where n = N/Vol is the particle den-
sity with Vol representing the characteristic volume of the
bubble and λT ≡ (2π h̄2/mkBT )1/2 is the thermal de Broglie
wavelength. Condensation should occur when the phase-space
density is on the order of unity. As the system expands from
a filled sphere into a thin shell, the volume of the shell in-
creases while the particle number is fixed, hence the particle
density decreases. Therefore, one must lower the temperature
to obtain a phase-space density on the order of unity.

In addition to the reduction of Tc at large detuning, the
function Tc(�) decreases monotonically with � and also pos-
sesses an inflection point at a small detuning value of � ≈ 38.
With regard to our earlier discussion on the noninteracting
ground state of the bubble trap, this inflection point occurs
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slightly after the peak density of the wave function begins to
move radially outward, but before the ground state becomes
hollow. For � = 38, the density of the ground state wave
function at the origin is approximately 62% of its peak value
and hence clearly has yet to hollow out.

In contrast to a recent calculation by Tononi et al. [33]
of the BEC critical temperature of a Bose gas in a similar
geometry, which relied on the semiclassical approximation,
here we obtain our result using the (numeric) spectrum of
the bubble trap. Shortly, we will directly compare the semi-
classical method with the spectral method and find that the
Tc obtained from the spectrum is lower than that obtained
semiclassically.

B. Adiabatic expansion and cooling

To model the creation of large bubbles on CAL, we con-
sider an initially harmonic trap (and filled, spherical system)
being expanded outwards by increasing the detuning param-
eter �. We assume this process is performed adiabatically
(i.e., without generating heat) and at fixed particle number.
This approach is consistent with experimental CAL results
reported in [32] where the trapping potential was dynamically
deformed sufficiently slow to maintain adiabaticity. Here, we
enforce adiabaticity by considering an isentropic (constant en-
tropy) process and compute the temperature during adiabatic
expansion by solving the implicit equations for net particle
number N and entropy S:

N =
∑

kl

(2l + 1) fkl , (6a)

S = kB

∑
kl

(2l + 1)[(1 + fkl ) ln(1 + fkl ) − fkl ln fkl ], (6b)

where fkl = 1/(eβ(εkl −μ) − 1) is the Bose-Einstein distribu-
tion function at chemical potential μ and inverse temperature
β(= 1/kBT ). We model the adiabatic expansion process as
follows: we fix a starting temperature (prior to expansion, at
� = 0) and then solve Eq. (6) to find the associated entropy.
Next, we model expanding the gas by increasing �. At each
stage of the expansion, we determine the new temperature by
solving Eq. (6) such that both the particle number N and the
entropy S are fixed. Note that when T > Tc one must solve
for both temperature and chemical potential, but when T < Tc

and μ → ε−
0 , one must instead solve for the temperature and

number of condensed particles, N0.
We note that one expects adiabatic expansion of the bubble

cools the system. For instance, during an isentropic process,
a free or harmonically trapped BEC obeys the characteristic
relation Vol T ν = const, where the exponent ν is positive;
hence, increasing the volume of the gas results in a decrease
in temperature.

C. Cooling by adiabatic expansion depletes the condensate

We next present numerical solutions for the temperature of
a bubble-trapped system during adiabatic expansion at various
starting temperatures; the results are summarized in Fig. 4(a).
We note that the BEC critical temperature decreases faster
than the temperature of the gas as it adiabatically expands.
This means that if one does not sufficiently cool the system

FIG. 4. (a) BEC critical temperature (black line) of N = 5 × 104

particles in the bubble trap along with various adiabatic expansion
temperature profiles (colored lines). Each adiabatic expansion cor-
responds to a different initial temperature when � = 0: kBTi/

h̄ω0
2 =

10, 20, 30, . . . . Note that Tc decreases faster than any adiabatic tem-
perature profile; thus, expanding the gas isentropically leads to a
decreasing condensate fraction. (b) Plot of the condensate fraction,
N0/N , during the adiabatic expansions shown in the previous image.
(c) Comparison of the local condensate density (colored dashed
lines) and excited state density (black solid lines) at various stages
of the kBTi = 20 h̄ω0

2 adiabatic expansion (shown along the z-axis).
Above each density curve is the associated value of � (marked at the
potential minimum location sl

√
�).

before beginning to expand it into a bubble shape, an initially
condensed system transitions during expansion into a thermal
gas. An explicit example of this can be seen for the adiabatic
expansion temperature profile with initial temperature kBTi =
30 h̄ω0

2 (which corresponds roughly to a temperature of 60 nK
for a 80 Hz trap). Although the system before expansion is in
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FIG. 5. Comparison of our previous results using the spectrum of
the bubble trap with the semiclassical approximation. We show the
BEC critical temperature for N = 5 × 104 particles along with vari-
ous adiabatic expansion temperature profiles. The undashed (dashed)
black (blue) line is Tc using the spectral (semiclassical) approach.
The undashed (dashed) gray (magenta) lines are adiabatic expansion
profiles using the spectral (semiclassical) approach.

the condensed phase, it eventually finds itself above the con-
densate transition temperature as the parameter � increases.

Even if the initial temperature is low enough to remain
in the condensed phase for the entire expansion, we find
that the condensate fraction decreases as the system expands.
In other words, adiabatic expansion in this case leads to a
loss of phase-space density; this is a negative version of the
long-known phase-space density increases at constant entropy
exploited in various experiments [45–48]. Figure 4(b) ex-
plicitly shows the depletion upon adiabatic expansion for a
few different initial temperatures by plotting the condensate
fraction N0/N . This effect is pronounced when comparing
the local condensate density with the excited state density
at various stages in the expansion process. If we consider
a condensed gas being expanded adiabatically whose initial
temperature is kBTi = 20 h̄ω0

2 , we show in Fig. 4(c) that there
is clear condensate depletion at large �.

It is important to note that although condensate depletion
during adiabatic expansion presents an experimental hin-
drance to observing large BEC shells, Fig. 4(b) also shows
that the degree of severity depends crucially on the initial tem-
perature prior to expansion. A system which starts off colder
experiences depletion at a far slower rate when compared to
one which starts off warmer.

D. Validity of the semiclassical approximation

The semiclassical approximation (see Appendix A) is a
standard technique which allows one to perform calculations
with arbitrary trapping potentials. It is thus instructive to see
how results obtained using this method compare with those
obtained using the (numeric) bubble trap spectrum (Fig. 5).
Importantly, we find that the predictions of the semiclas-
sical approximation become less accurate as the shell is
expanded (in particular, note the difference in predicted BEC
critical temperature at large �). In order to explain these

discrepancies, we note that the semiclassical approximation
assumes the system is large enough to ignore boundary ef-
fects and treat momentum as continuous. During expansions,
however, this assumption is eventually violated in the ra-
dial direction as the shell thickness becomes vanishingly
small. From Fig. 5, we conclude that semiclassical predictions
should be taken with some level of caution for thin-shell
systems or fully expanded bubbles.

Notably, the semiclassical prediction for Tc in the thin
shell becomes considerably higher than that obtained using
the spectrum. At the highest detuning shown, the difference
is about 6.5 h̄ω0

2 (roughly 12.5 nK for a 80 Hz trap). Hence,
for some range of initial temperatures before expansion, the
semiclassical approximation will incorrectly predict that an
expanding gas will remain condensed when in fact it will
transition to the normal phase.

Finally, we note that when T � Tc, the temperature predic-
tions during adiabatic expansion don’t vary greatly between
the spectral and semiclassical methods. Furthermore, even
below Tc, the difference between the two methods is far less
severe than that seen in the prediction of the BEC critical
temperature.

IV. EFFECTS OF INTERACTIONS AND DIMENSIONALITY

Below the inclusion of interactions is discussed as the
bubble trap potential is modified to expand a filled sphere
condensate into a thin shell. At T = 0, if the particle number
is held fixed, we find a noninteracting description to be a
good approximation for thin shells. We then use this result
to develop an effective low-temperature theory in a sponta-
neous U (1) symmetry-broken phase and find, in the thin-shell
regime, that interactions do little to modify the results ob-
tained previously. We conclude by considering the breakdown
of this mean-field theory approach as one crosses over from
3D to 2D physics.

A. Validity of the noninteracting description

Having described the thermodynamics of a bubble trapped
gas in the noninteracting (g = 0) limit, we now address the
question of where the noninteracting description accurately
captures salient features even when interactions are present.
Working at zero temperature, we consider the evolution of
a condensate in the bubble trap as the detuning parameter
increases and show that for thin shells at fixed particle num-
ber, the noninteracting picture indeed constitutes a reasonable
description. We justify this assertion in two ways: (1) we ana-
lyze numeric solutions of the Gross-Pitaevskii equation for an
experimentally relevant interaction strength and contrast these
data with both weakly interacting and interaction-dominated
regimes of the Gross-Pitaevskii equation and (2) we perform
a variational calculation to gain insight into the role of inter-
actions in the thin-shell limit.

1. Comparing condensate wave functions

The many-body ground state of Eq. (1) is character-
ized by a condensate wave function ψc(�x) which obeys the
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time-independent Gross-Pitaevskii (GP) equation

0 =
(

− h̄2

2m
∇2 + V (�x) − μ + g|ψc(�x)|2

)
ψc(�x) (7)

and is normalized as
∫

d3x|ψc|2 ∼ N as T → 0. Because the
GP equation is nonlinear, analytic solutions are typically un-
feasible. Fortunately, in cases which correspond physically to
noninteracting and interaction-dominated regimes of the GP
equation, analytic solutions can be found. When the effect
of interactions can be considered small relative to the kinetic
and potential terms in Eq. (7), one can take the g → 0 limit
of the GP equation and denote the corresponding solution as
the noninteracting (NI) condensate wave function: ψNI(�x) =√

N0φ0(�x) where the subscript “0” denotes the ground state
of Eq. (4). In the opposite limit, when the interaction term
dominates the GP equation, we use the Thomas-Fermi (TF)
approximation which treats the kinetic contribution to Eq. (7)
as negligibly small [38,39]. Dropping the kinetic term allows
one to solve the GP equation to obtain the TF condensate
wave function: |ψTF(�x)| = √

[μ − V (�x)]/g when V (�x) < μ

and ψTF = 0 otherwise [38,39].
Numerical solutions for the ground state of Eq. (7) [at

a range of � values for the bubble trap potential, Eq. (2)]
were found using an imaginary-time algorithm [49] and taking
the experimentally relevant value of dimensionless interaction
strength, 8πNas/sl = 7000.

We now calculate and compare the kinetic energy,∫
d3xψ∗(− h̄2

2m ∇2)ψ , trap potential energy,
∫

d3xV |ψ |2, and
interaction energy,

∫
d3x g

2 |ψ |4, at zero temperature using the
numerically solved GP (ψ → ψc), NI (ψ → ψNI), and TF
(ψ → ψTF) forms of the condensate wave functions. Consis-
tent with the TF approximation, we treat the kinetic energy of
ψTF as negligibly small in comparison to the energy stored in
interactions. In the case of the NI condensate wave function,
its smooth spatial profile allows one to insert it into each en-
ergy functional (including the interaction energy). However,
in order for the NI approximation to be self-consistent, the in-
teraction energy associated with ψNI must be small compared
to kinetic and potential energy contributions. Figure 6(a)
shows the energy fractions as � is increased (expanding the
system from a filled sphere to a thin shell) at T = 0, with fixed
particle number, using the three wave functions.

From the numerically solved GP results, one can see
clearly that the energy stored in interactions is the dominant
contribution for small � (filled spheres), but becomes the
least significant contribution for large � (thin shells). For
parameter regimes in which the interaction energy fraction
is sufficiently suppressed, one expects the NI case to give a
reasonable description of the system.

Let us now compare results between the various conden-
sate wave functions. For small �, the TF approximation does
reasonably well compared to the numerical solution (GP)
whereas the NI approximation does poorly; hence, interac-
tions are expected to be important in the description of a
bubble-trapped system in this parameter regime. Conversely,
as � increases, and the shell expands, the TF approxima-
tion becomes a poor approximation of the GP numerics,
whereas the NI approximation performs reasonably well. In
particular, the TF energy fractions become nearly constant,

FIG. 6. Comparison between the zero-temperature
Gross-Pitaevskii (GP), noninteracting (NI), and Thomas-Fermi (TF)
condensate wave functions at various detunings for N = 5 × 104

atoms in the bubble trap. (a) From left to right, the fraction of
energy stored as kinetic, trap potential, and interaction energy. Note:
the bubble trap reference energy has been subtracted off from the
potential. We also treated quantum depletion as nearly negligible
for the NI condensate wave function [38] (we set N0 = 0.99N for
T = 0). (b) Local condensate density at various detunings. The
density is plotted in the z = 0 plane: nc(x, y, 0) = |ψc(x, y, 0)|2.
In each plot, the color is normalized such that black (yellow)
corresponds to the minimum (maximum) density value. (c) Local
condensate density plotted against the radial coordinate for the
detunings � = 50, 500, 1000 displayed in (b).

whereas the GP interaction energy fraction falls drastically
and begins to converge with the NI wave function results for
� � 300. Thus, for thin shells, we expect a NI description
is a good approximation to the full solution with interactions.
The breakdown of the TF approximation as � increases is due
to its failure to capture the rising kinetic energy fraction of
the GP condensate in this regime. We also note that, although
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the NI and GP interaction energy fractions begin to converge,
the NI wave function systematically overestimates the kinetic
and underestimates the trap potential energy fractions. To
further contextualize these conclusions, we direct the reader to
Figs. 6(b) and 6(c), which show the (T = 0) local condensate
density at various detuning values. Here one can see clearly
that for filled spheres (thin shells) the TF (NI) condensate
wave function captures the salient spatial features of the GP
results.

2. Variational calculation

To further understand the thin shell results, let us look for
an origin to the decreasing interaction energy fraction during
the zero-temperature expansion. One might suspect interac-
tions play a prominent role when the shell becomes thin and
atoms get squeezed into a space of small width. However, one
should keep in mind that the particle density reduces as the
system becomes thinner: the particle number is held fixed,
while the condensate volume, which we argued earlier should
scale as s3

l �
3/4�1/4 in the NI case, is increasing as the bubble

expands.
To see this more concretely, we perform a variational cal-

culation [38] with a trial condensate wave function:

ψtrial(�x) = A F

( |�x| − a

b

)
eiϕ(�x), (8)

where the variational parameters A, a, and b are all nonnega-
tive real constants, ϕ(�x) is the phase of the condensate wave
function, and F (·) is a dimensionless (nonnegative) smooth
real function which decays to zero for large arguments [50].
For example, we could use a Gaussian, F (u) = e−u2/2 [38,50],
from which one can see the length scales have a natural
interpretation: a ≈ (Rout + Rin)/2 describes the average shell
radius and b ≈ Rout − Rin describes the shell thickness where
Rout (Rin) is the outer (inner) radius of the condensate shell.
In this context, we can define a thin shell as one for which
a/b � 1.

We now insert the trial condensate wave function into
H[ψ∗, ψ] − μN[ψ∗, ψ] where H[·] and N[·] are the Hamilto-
nian and particle number functionals, respectively. Consider-
ing no superflow, h̄

m ∇ϕ = 0, we extremize the functional and
obtain the following forms for the kinetic, trap potential, and
interaction energy terms in the thin shell limit, b/a → 0:

E trial
kin ≡

∫
R3

d3x ψ∗
trial

(
− h̄2

2m
∇2

)
ψtrial ∼ C1

N

b2
, (9a)

E trial
pot ≡

∫
R3

d3x V |ψtrial|2 ∼ C2 a2b2N ∼ C′
2 ω2

shb2N, (9b)

E trial
int ≡

∫
R3

d3x
g

2
|ψtrial|4 ∼ C3

N2

a2b
, (9c)

where we used the relationship N ∼ C0A2a2b as b/a → 0
to replace the (amplitude) variational parameter A with the
particle number N (which normalizes the trial wave function),
we introduced coefficients C0, . . . ,C3 (and C′

2) which do not
change as the system is expanded, ωsh ≡ ω0

√
�/� is the fre-

quency of the effective shifted harmonic oscillator one obtains
in the thin-shell limit of the bubble trap, and in order to reach
Eq. (9b), we took the thin-shell limit such that � remained

fixed and assumed the variational parameter a was close to the
location of the bubble trap’s potential minimum: a ∼ sl

√
�.

For clarity, in Eq. (9b) we also subtracted off the contribution
due to the bubble trap reference energy � h̄ω0

2 .
From these asymptotic results, one finds that the fraction

of energy stored in interactions relative to the total energy
becomes vanishingly small in the thin-shell limit. This occurs
because the ratio of interaction energy over kinetic energy is
proportional to Nb/a2. Therefore, for fixed particle number,
the zero-temperature interaction energy fraction tends toward
zero for increasingly thin shells. Using this result we can
further simplify our expression for the trap potential energy
by recalling that in the noninteracting system the thickness
of a thin shell scales as sl (�/�)1/4. By substituting this into
Eq. (9b), one finds the trap potential energy, just as the kinetic
energy, scales as N/b2.

B. Do interactions help preserve the condensate?

In the NI case, we found earlier that adiabatically ex-
panding a condensate into a thin shell led to a decreasing
condensate fraction. A natural question is how interactions
modify this picture. However, based on the arguments of the
previous section, we should not expect dramatic changes in
the thin-shell limit where the NI case is expected to be a good
approximation. In general, computing thermodynamics in the
presence of interactions is far more involved than in their ab-
sence [40,41]; here we proceed using a standard Bogoliubov
quasiparticle description (see Appendix A). In particular, at
temperatures far below the U (1) symmetry-breaking transi-
tion, we develop a mean-field theory by expanding the boson
field about the condensate wave function ψc(�x). Importantly,
we assume that the NI condensate wave function is a reason-
able approximation to the true solution of the GP equation,
ψc(�x) ≈ ψNI(�x), which we have shown above to be correct
for a thin shell. Thermodynamics then follow from solutions
to the Bogoliubov equations (see Appendix B for the case of
the bubble trap), which we solve numerically using a finite-
difference method.

As a means to probe the effect of interactions on the ther-
modynamics of an expanding system, we set a condensate
fraction, N0/N , and then model expanding the gas by increas-
ing �. Instead of doing the expansion adiabatically, here we
simply ask: what temperature is required to maintain the given
condensate fraction? This is motivated by the fact that the
NI condensate wave function is a poor approximation of the
true condensate wave function at low detunings. To evolve an
initial (� = 0) temperature isentropically, we need to deter-
mine and fix the entropy at the start of the expansion, but
because our effective theory assumes the NI condensate wave
function is a reasonable reference state, any thermodynamic
predictions we make at such small � are suspect.

In Fig. 7 we compare the temperatures required for an 80%
condensate fraction in the NI and Bogoliubov formalisms.
In the regime of applicability of our Bogoliubov description
using the NI condensate wave function, � � 300, we see
that over this range of geometries interactions do increase the
temperature required to obtain the given condensate fraction,
but that this effect is very small. Consistent with the arguments
of the the previous section, we thus find that interactions do
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FIG. 7. Bubble trap expansions of N = 5 × 104 atoms done at
a fixed-condensate fraction N0/N . The black line shows the nonin-
teracting (NI) BEC critical temperature, whereas the colored lines
show the temperature required for an 80% condensate fraction. The
solid lines correspond to NI data, whereas the markers correspond
to Bogoliubov collective excitations. Because this Bogoliubov for-
malism assumes the NI condensate wave function is a reasonable
approximation to the GP equation, we show data points only for
� � 300 where this assumption can be justified.

little to change the thermodynamics of thin shells. In a future
work, we intend to investigate this question over the entire
range of geometries afforded by the bubble trap by using the
numerically solved GP condensate wave function as the mean
field.

C. Dimensional crossover

While the previous thermodynamic calculations depend on
mean-field considerations, there are several limits in which
these approaches would not suffice. First, the finite size of the
sphere results in deviations from the thermodynamic limit. In
principle, first-order corrections could be taken into account
using finite-size scaling analyses [51].

As we consider thinner shells, a more drastic effect comes
from reduction in effective dimensionality. The system enters
the quasi-2D regime at temperatures below which excitations
along the radial direction become energetically unfavorable.
More precisely, appealing to the energy spectrum in Fig. 2(c),
energy levels εkl are characterized by excitations along the
radial (k) and angular (l) directions. For temperatures low
enough to excite only the k = 0 band, we have the condition
kBT < ε1,0 − ε0,0. At the highest detuning shown in Fig. 2(c),
we find ε1,0 − ε0,0 ≈ 4 h̄ω0

2 , which corresponds to a temper-
ature scale on the order of 10 nK for a 80 Hz trap. Below
this temperature, and at the largest detunings, we expect the
emergence of 2D physics; this regime clearly requires treat-
ments that go beyond mean field. As has been demonstrated
in planar settings, the crossover from effective 3D to quasi-2D
physics is particularly rich in the transition into Bose-Einstein
condensed states [29].

As with disk-shaped geometries, defects such as vortices
form the natural source of excitations that complement the
mean-field hydrodynamic long-wavelength, low-frequency

excitations [52]. In previous work by two of the current
authors and collaborators, we explored the physics of a vortex-
antivortex pair in a thin spherical condensate shell and found
the energy of the pair scales with shell thickness [53]. Fur-
thermore, explorations in disk-shaped quasi-2D trapped gases
show there is a temperature regime in which vortex-antivortex
pairs appear [54,55]. Thus, as the bubble-trapped system hol-
lows out, depending on the parameters, even before entering
the 2D limit, we may well access a finite-thickness regime
in which vortex-antivortex pair excitations become favorable,
destroying condensation in the system.

In the uniform 2D limit, the proliferation of such vortex-
antivortex pairs renders the critical temperature to take the
Berezinskii-Kosterlitz-Thouless (BKT) form [56,57]. The ef-
fect of curvature on such physics is highly interesting in and of
itself [58–63]. In recent work, Tononi and co-workers demon-
strated that in the precise shell setting considered here and
of relevance to CAL, the BKT transition finds its finite-size
manifestation [35].

V. APPLICATIONS TO THE CAL TRAP

Having found the change in temperature and condensate
transition temperature of a system undergoing adiabatic ex-
pansion from a filled sphere to a thin shell in an idealized
bubble trap, we now consider the expansion of a system in
a realistic CAL trap: V (�x) = VCAL(�x). In the microgravity
environment aboard the ISS, CAL is able to produce ex-
ceptionally large millimeter-scale bubbles in both filled and
hollow regimes. Figure 8 shows a small sample of the CAL
dressed potentials experienced by magnetically trapped 87Rb
atoms. As discussed in [24], these remarkable dressed poten-
tials are generated using atom-chip current configurations. By
increasing the rf detuning signal, one can deform the trap ge-
ometry to produce shell-shaped potential-minimum surfaces.
The CAL trap is thus broadly similar to the bubble trap. As a
result, much of the bubble trap physics discussed above should
be applicable to the CAL experiment.

There are crucial differences in the details though;
unlike the bubble trap, the CAL trap is spatially in-
homogeneous, breaking rotational symmetry. This means
quantum-mechanical modeling of CAL trap thermodynamics
is significantly more difficult, requiring solutions of 3D par-
tial differential equations as opposed to 1D radial equations.
Fortunately, some of the experimentally relevant adiabatic
expansions occur at temperatures above Tc, and hence numer-
ically expensive diagonalization can be avoided through use
of the semiclassical approximation. We also note that these
experimental expansions start with traps at negative detunings
which were not considered earlier with the bubble trap. This
does not pose a serious problem when comparing condensate
physics between the CAL and bubble traps as negative de-
tunings are not differentially meaningful from zero detuning
in the sense that condensates in traps below resonance up to
resonance form filled geometric structures.

Here we use the semiclassical approach to obtain ther-
modynamics during system expansion in the CAL trap. To
carry out our calculations, CAL atom-chip current data are
used as input to generate a spatial grid of dressed potentials,
VCAL(�x), appropriate for 87Rb atoms in the |F = 2, mF = 2〉

063310-9



BRENDAN RHYNO et al. PHYSICAL REVIEW A 104, 063310 (2021)

FIG. 8. Spatial slices (a) and qualitative surface plots (b) of the CAL trap at various detuning frequencies. In contrast to the bubble trap,
the CAL trap is anisotropic, hence the images are shown along different spatial axes. Each consecutive row of images corresponds to a higher
detuning frequency, with the first row corresponding to the initial or “bare” trap.

hyperfine state [24]. Using the semiclassical approximation
for NI atoms, we compute both the BEC critical temperature
and the temperature of the system during adiabatic expan-
sions for initial temperatures relevant to the CAL run reported
in [32] (Ti = 90, 290, 390, 600 nK) with the results displayed
in Fig. 9. We see both the BEC critical temperature and
the temperature during adiabatic expansions decrease with
applied detuning frequency. However, Tc does not decrease
noticeably faster than the adiabatic curve for the case of
the initially condensed gas. This same phenomenon can be
observed in the semiclassical treatment of the bubble trap
(see Fig. 5). In the case of the bubble trap, we saw that
for temperatures at or below Tc, the semiclassical approach
became less accurate as detuning increased and the bubble be-
came thin. Most notably, we saw that the semiclassical model
overestimates the BEC critical temperature for large bubbles.
Hence, we find it is likely that, at these experimentally relevant

FIG. 9. BEC critical temperature (black line) of N = 5 × 104

noninteracting 87Rb atoms in the CAL trap along with various
adiabatic expansion temperature profiles (colored lines) calculated
semiclassically. The adiabatic expansions use experimentally rele-
vant initial temperatures in [32]: Ti = 90, 290, 390, 600 nK.

starting temperatures, adiabatic expansions in the traps on
CAL will produce thermal clouds rather than condensates.

VI. OUTLOOK

In summary, we have presented a thorough study of the
thermodynamic properties of BECs in shell-shaped geome-
tries while working in parameter regimes applicable to CAL
experiments. We began by charting out the spectrum and
eigenstates of a bubble trap potential through the evolution of
trap parameters for a condensate from a filled sphere to hollow
thin shell. Based on this analysis, we numerically computed
thermodynamic quantities for a noninteracting system and
found that adiabatic expansion leads to condensate depletion.
Even in the presence of interactions, we argued that our con-
clusions hold for fixed particle systems in the thin-shell limit.
Finally, using semiclassical methods to calculate thermody-
namic properties of 87Rb atoms in CAL experimental traps,
we made the connection between this realistic system and the
bubble trap more concrete.

While several immediate avenues open up with regard to
BECs in shell-shaped geometries, we first note that the CAL
experiments, corroborated by theory, show something remark-
able. In the microgravity environment, the shell inflation
mechanism provided by the bubble trap allows for macro-
scopically large, suspended, and contained gas structures to
emerge. While macroscopic quantum coherence across these
structures is likely to take further efforts, topologically non-
trivial thermal gases that span linear dimensions of the order
of millimeters could present an alternative source of nK-scale
large clouds for atom interferometry, typically obtained other-
wise via delta-kick cooling [64] or adiabatic expansion [65].
Our studies show here that it is not impossible to retain
condensation during adiabatic expansion into these remark-
able bubbles. The next-generation CAL experiments intend to
achieve such condensate shells [32], providing fertile ground
for future studies.

With regard to equilibrium and linear response features,
previous works have elucidated several prospects. These ther-
modynamic analyses would require further developments
to connect with experiments, such as more sophisticated
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techniques for handling interactions, higher computational
power for handling realistic trap geometries, and accounting
for the strong asymmetry present in actual traps. Thermo-
dynamic studies would also serve well to interface with
other aspects of condensate shells that are being studied,
including collective modes and vortex physics. Connecting
the thermodynamic studies presented here with other set-
tings for shell-shaped condensates, such as in stellar bodies,
optical lattices, and Bose-Fermi mixtures, would offer new
insights.

An additional realm poised for investigation involves
nonequilibrium dynamics. In this work, we assumed adi-
abaticity and that the dynamic shell evolution involved a
quasistatic process. Generally, there can be a variety of dy-
namical situations where adiabaticity breaks down; tracking
the rate of entropy growth would be one step towards quanti-
fying such deviations. Perhaps the most drastic deviation from
adiabaticity concerns regimes in which the system is dynam-
ically tuned across the BEC transition. Our results do indeed
suggest that such transitions during expansion are likely. In
this situation, given that the intrinsic relaxational timescale
of the system diverges at criticality, no matter how slow the
tuning, adiabaticity breaks down and the system falls out of
equilibrium. Such nonequilibrium critical behavior results in
the universal Kibble-Zurek scaling of various quantities, such
as defect densities, wherein the exponent depends only on crit-
ical exponents and the dimensionality of the system [66–70].
In the context of BECs, the nonequilibrium production and
scaling of defects, specifically vortices [67,71–73] and more
complex defects in spinful condensates [74–78], has been
studied. In the shell situation considered in this work, several
variations would come into play. In the expansion considered
here, the sphere evolves from a condensed to a thermal gas. In
thereby tuning through the critical point, we do indeed expect
to enter a nonadiabatic regime and fall out of equilibrium
due to the divergence of the system’s intrinsic relaxational
timescale [68], though we do not expect to see vortices since
the system enters an uncondensed phase. However, reversing
the process across the critical point into the condensed phase
would show such nonequilibrium production of vortices. In
such tuning through the critical regime, finite-size effects
would be significant. Moreover, with the thinning down of the
shell, we expect dimensional crossover to occur, providing a
different aspect for critical scaling. While these variations are
interesting in their own right, the ubiquitous feature that we
expect is the breakdown of adiabaticity in tuning across the
critical point.

These form but a few considerations in the fascinat-
ing and diverse realms that host these unique shell-shaped
condensate structures from stellar bodies to systems of co-
existent phases on Earth to the ongoing studies aboard the
International Space Station. A common underlying thread
is the extreme conditions and dynamic tuning offered by
Nature at the astronomical realms and by advances in the
ultracold experiments. One might speculate on how much
of the thermodynamics of expanding shells discussed here
would be relevant in stellar evolution and formation of neu-
tron stars. In the meanwhile, while we have demonstrated
that retaining a condensate through expansion can be a del-
icate matter, we have shown, consistent with hints from

CAL, that in the ultracold experimental realm, it is entirely
possible to create remarkable, gigantic, diaphanous thermal
bubbles.
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APPENDIX A: THERMODYNAMICS OF DILUTE BOSONS

Consider the Hamiltonian Ĥ for a collection of dilute
interacting bosons in R3, Eq. (1). We are interested in ther-
modynamics, hence compute thermal averages using 〈· · · 〉 =
Tr( 1

Z e−β(Ĥ−μN̂ ) · · · ), where the trace is over Fock space, β(=
1/kBT ) is the inverse temperature, μ is the chemical poten-
tial, N̂ is the number operator, and Z is the grand partition
function:

Z = Tr(e−β(Ĥ−μN̂ ) ) = N
∫

[Dψ∗Dψ] e−S[ψ∗,ψ]/h̄. (A1)

Above, we introduced the coherent state path integral in
the usual way [79]: N is an unimportant constant pref-
actor, [Dψ∗Dψ] is the integration measure of a complex-
valued field ψ (τ, �x) with “time” coordinate τ ∈ [0, β h̄) (the
field obeys periodic boundary conditions in time), and the
action is

S =
∫

dτd3x

[
ψ∗

(
h̄∂τ − h̄2

2m
∇2 + V − μ

)
ψ + g

2
|ψ |4

]
.

(A2)

As T → 0+ (β → ∞), only field configurations which min-
imize the action contribute significant weight to the partition
function. We denote such configurations as “condensate wave
functions” ψc [38,39]—they are static and obey the time-
independent Gross-Pitaevskii equation, Eq. (7).

1. Thermodynamics of noninteracting bosons

With interactions turned off (g = 0), thermodynamics are
obtained from the spectrum and wave functions of the single-
particle Schrödinger equation [38,39]. In this section, let “α”
(εα) denote the eigenstates (eigenvalues) of the Schrödinger
equation: (

− h̄2

2m
∇2 + V (�x)

)
φα (�x) = εαφα (�x). (A3)

Further, let α = 0 denote the ground state of this equa-
tion (which we assume is nondegenerate) and ε0 denote
the ground state energy. Expanding the field operator as
ψ̂ (�x) = ∑

α φα (�x)b̂α in the operator formalism or the field
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as ψ (τ, �x) = ∑
nα e−iωnτ φα (�x)ψnα , where ωn are bosonic Mat-

subara frequencies [79], in the path integral formalism gives

Z =
∏
α

1

1 − e−β(εα−μ)
, (A4)

where μ < ε0 in order to keep the trace bounded. From
derivatives of the grand free energy, − 1

β
lnZ , various thermal

expectation values can be computed:

N =
∑

α

fα, (A5a)

E =
∑

α

fαεα, (A5b)

S = kB

∑
α

[(1 + fα ) ln(1 + fα ) − fα ln fα], (A5c)

where we denote the system’s particle number, energy, and en-
tropy by N , E , and S, respectively, and fα = 1/(eβ(εα−μ) − 1)
is the Bose-Einstein distribution function. If we move onto
spatially resolved quantities, such as the one-body density
matrix,

〈ψ̂†(�x)ψ̂ (�x′)〉 =
∑

α

φ∗
α (�x)φα (�x′) fα, (A6)

we see these require information on the wave functions.
Thus, at least formally, solving Eq. (A3) gets us the
thermodynamics.

2. The semiclassical approximation

When solutions to Eq. (A3) are intractable a useful ap-
proximation exists. Provided the temperature is much larger
than the single-particle energy level spacing, one can ap-
proximate thermodynamic quantities by replacing sums over
eigenstates with integrals:

∑
α → “

∫
dα′′ [38,39]. Unfortu-

nately, one can only make this replacement if they have a
notion of what the states in Eq. (A3) actually are. However,
at temperatures large enough that the phase-space density
is small, one can instead work with the classical relation
ε �p(�x) = 1

2m | �p|2 + V (�x) [38,39]. Provided the system is large
enough to ignore boundary effects and treat momentum as
continuous, the semiclassical approximation is to make the
following replacement:∑

α

F (εα ) →
∫

d3xd3 p

(2π h̄)3
F [ε �p(�x)], (A7)

where F (·) is a function of the dispersion. In the normal
phase, T > Tc, one finds (after integrating over momentum)
the semiclassical expressions of the thermodynamic sums in
Eq. (A5) are

N = nQ

∫
R3

d3x Li 3
2
(e−β(V −μ) ), (A8a)

E = nQ

∫
R3

d3x

[
3

2
kBT Li 5

2
(e−β(V −μ) ) + V Li 3

2
(e−β(V −μ) )

]
, (A8b)

S = kBnQ

∫
R3

d3x

[
5

2
Li 5

2
(e−β(V −μ) ) + β(V − μ) Li 3

2
(e−β(V −μ) )

]
, (A8c)

where nQ(T ) ≡ λ−3
T = (mkBT/2π h̄2)3/2 is the quantum den-

sity and Lis(z) = ∑∞
n=1 zn/ns is the polylogarithm or, as

commonly referred to in this context, the Bose function [80].

3. Thermodynamics of (weakly) interacting bosons
at low temperatures

With interactions turned on (g > 0), computing the thermo-
dynamics is considerably more difficult [40,41]. In general,
path integral Monte Carlo methods offer a powerful way to
proceed [81,82]. Green function methods have found suc-
cess in addressing questions such as the shift in Tc from its
noninteracting value [83–85]. At temperatures well below (or
commensurate to) the BEC critical temperature, it is common
to employ some variation of the mean-field theory introduced
by Bogoliubov [37–39,86,87]. Because our interests lie in
ultracold dilute atomic gases, we will restrict ourselves to
temperatures far below the BEC transition, T � Tc, and use a
Bogoliubov quasiparticle description.

At sufficiently low temperatures, provided the dimension
of space is larger than the lower critical dimension (which
is 2 from the Mermin-Wagner-Hohenberg [88,89] or Cole-
man [90] theorem), the system can spontaneously break the

U (1) symmetry of the Hamiltonian. This is signified by a non-
vanishing field expectation value: 〈ψ̂〉 ∼ ψc as T → 0 where
the ground state field configuration, ψc, is a solution to Eq. (7).
At these low temperatures, we perform a saddle-point analysis
to reach an effective low-temperature theory for fluctuations
out of the condensate; namely, we use the “Bogoliubov shift”:
ψ = ψc + δψ [37,87]. In the operator formalism,

Ĥ − μN̂

= −Ec
int+

∫
R3

d3x δψ̂†

(
− h̄2

2m
∇2+ V − μ+ 2g|ψc|2

)
δψ̂

+
∫
R3

d3x
g

2

(
ψ2

c δψ̂†δψ̂† + H.c.
) + O(δψ̂ )3, (A9)

where Ec
int ≡ g

2

∫
d3x|ψc|4 is the interaction energy of the con-

densate wave function and the fluctuations, δψ̂ , obey bosonic
commutation relations. The quadratic portion of the operator
in Eq. (A9) can be brought into diagonal form by use of a
Bogoliubov transformation [38,39,91]:

Ĥ − μN̂ = −Ec
int + Epair + 1

2M
P̂2

z

+
∑

λ
(Eλ>0)

Eλβ̂
†
λβ̂λ + O(δψ̂ )3. (A10)
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In the equation above, the energies, Eλ, of the (bosonic)
quasiparticles, β̂λ, are given by solving the Bogoliubov equa-
tions [38,39]:

Eλuλ(�x) =
(

− h̄2

2m
∇2 + V − μ + 2g|ψc|2

)
uλ(�x)

+ gψ2
c vλ(�x), (A11a)

−Eλvλ(�x) =
(

− h̄2

2m
∇2 + V − μ + 2g|ψc|2

)
vλ(�x)

+ gψ∗2
c uλ(�x), (A11b)

where we introduced the wave functions uλ(�x) and vλ(�x). For
positive energy solutions, the wave functions can be chosen to
obey the orthonormality conditions [91]:

δλλ′ =
∫
R3

d3x(u∗
λuλ′ − v∗

λvλ′ ), (A12a)

0 =
∫
R3

d3x(uλvλ′ − vλuλ′ ). (A12b)

The Bogoliubov collective excitations in Eq. (A10) are
created by

β̂
†
λ ≡

∫
R3

d3x(uλδψ̂
† − vλδψ̂ ), (A13)

and thus uλ(�x) and vλ(�x) have the interpretation of a “parti-
cle” and “hole” wave function, respectively. We also see the
emergence of a “momentum operator” [38,91],

P̂z ≡
∫
R3

d3x(ψc δψ̂† + H.c.), (A14)

associated with a zero energy eigenvalue (or zero-mode)
solution of the Bogoliubov equations: uz(�x) = −v∗

z (�x) =
ψc(�x) [91,92]. The “mass” in the Hamiltonian, M ≡
∂μ

∫
d3x|ψc|2, is a (positive) inverse energy scale introduced

for convenience [91]. Last, in Eq. (A10) there is a shift in
the reference energy that arises due to the pairing terms in
Eq. (A9). This energy shift, which is nonpositive, is given by

Epair ≡ −
∫
R3

d3x

⎛
⎜⎝ 1

2M
|ψc|2 +

∑
λ

(Eλ>0)

Eλ|vλ|2
⎞
⎟⎠. (A15)

We can define a “position operator,” Q̂z, which obeys the
canonical commutation relation [Q̂z, P̂z] = i as [38,92]

Q̂z ≡
∫
R3

d3x

(
− i∂μψc

M
δψ̂† + H.c.

)
. (A16)

Note that the zero-mode operators P̂z and Q̂z commute with
the {β̂λ} in Eq. (A10). From the new operators, the original
fluctuation field operator can be written as [92]

δψ̂ = ∂μψc

M
P̂z − iψc Q̂z +

∑
λ

(Eλ>0)

(uλβ̂λ + v∗
λβ̂

†
λ ). (A17)

For temperatures far below the U (1) symmetry-breaking
transition, we assume that, when calculating observables, it
is permissible to ignore the third- and fourth-order fluctua-
tion terms in Eq. (A10). For consistency, this requires that

the “condensate depletion” is small: 〈∫ d3xδψ̂†δψ̂〉/N � 1.
Thus, we reach an effective Hamiltonian for the fluctuations:

Ĥeff ≡ −Ec
int + Epair + 1

2M
P̂2

z +
∑

λ
(Eλ>0)

Eλβ̂
†
λβ̂λ. (A18)

The eigenstates of Eq. (A18) are simply those of the P̂z

operator and quasiparticle number operators:

|Pz, {nλ}〉 = e− 1
2 P2

z +i
√

2Pz β̂
†
z + 1

2 (β̂†
z )2

π1/4

∏
λ

(Eλ>0)

(β̂†
λ )nλ

√
nλ!

|vac〉, (A19)

where Pz ∈ R, nλ ∈ Z�0, β̂z is a ladder operator associated
with the zero-mode operators [92] defined as β̂z ≡ (Q̂z +
iP̂z )/

√
2, and |vac〉 is the vacuum state of the β̂z and {β̂λ}

operators.
We should now be in a position to approximate ther-

mal averages in the broken U (1) phase using 〈· · · 〉 ≈
Tr( 1

Z e−βĤeff · · · ), but as discussed in [92] doing so naively
leads to inconsistent results. Because the eigenstates of
the effective Hamiltonian have definite zero-mode “momen-
tum,” i.e. Pz is a good quantum number, we necessarily
find 〈Q̂2

z 〉 diverges as a result of the Heisenberg uncertainty
principle. Because 〈δψ̂†δψ̂〉 contains a term proportional
the variance in the Q̂z operator, we then violate the con-
dition that the condensate depletion be small [92]. Thus,
when using the effective Hamiltonian to compute thermal
expectation values, one cannot simultaneously trace over the
zero-mode “momentum” states and demand the depletion be
small.

Here we avoid this issue in a pragmatic way through our
choice of the condensate wave function. We consider cases
where the condensate wave function is well approximated by
the noninteracting (NI), g = 0, solution: ψc(�x) ≈ ψNI(�x) =√

N0φ0(�x). Although this may seem like a poor choice, we find
in the main text that using the NI condensate wave function
can be justified in the limit of thin shells at fixed particle
number. If one replaces ψc(�x) with

√
N0φ0(�x) one finds both

P̂z and Q̂z vanish if one further neglects fluctuations in the α =
0 mode: δb̂0 ≡ b̂0 − √

N0 → 0. Treating b̂0 as a c-number
is well justified for T � Tc where N0 is macroscopically
large; thus, the approximation is standard in the Bogoliubov
treatment of the weakly interacting Bose gas [38,39,86]. To
summarize, in the U (1) symmetry broken phase, if we assume
(1) the gas is sufficiently dilute that the NI condensate wave
function is a reasonable approximation of the true condensate
wave function and (2) the temperature is far enough below
the BEC transition that it is acceptable to ignore fluctua-
tions in the NI ground state mode, our effective Hamiltonian
is still given by Eq. (A18), but with the P̂z term simply
removed.

Under these assumptions, we can now calculate thermody-
namic quantities in the presence of (weak) interactions. First,
the field obtains a nonzero expectation value, 〈ψ̂ (�x)〉 = ψc(�x),
spontaneously breaking the U (1) symmetry of the Hamilto-
nian. This also states the condensate wave function is the
mean field in the broken symmetry phase for all temperatures
at which the effective Hamiltonian remains valid. Next, the
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one-body density matrix becomes

〈ψ̂†(�x)ψ̂ (�x′)〉 = ψ∗
c (�x)ψc(�x′)

+
∑

λ
(Eλ>0)

[ fλu∗
λ(�x)uλ(�x′)

+ (1 + fλ)vλ(�x)v∗
λ(�x′)], (A20)

where fλ = 1/(eβEλ − 1) is the Bose-Einstein distribution
function for the Bogoliubov quasiparticles. It is then straight-
forward to show in the thermodynamic limit that the number
of particles is

N = N0(T ) +
∑

λ
(Eλ>0)

∫
R3

d3x[ fλ|uλ|2 + (1 + fλ)|vλ|2].

(A21)

Notice that to ensure self-consistency at temperature T , the
number of particles in the NI ground state, N0(T ), must be
chosen such that Eq. (A21) is satisfied.

APPENDIX B: BOGOLIUBOV EQUATIONS IN THE
BUBBLE TRAP

Within the mean-field theory discussed in Appendix A,
thermodynamics of the interacting system follow from so-
lutions to the Bogoliubov equations, Eq. (A11). Due to
rotational invariance of the bubble trap, V (r), and the conden-
sate wave function, ψc(r), we can write Bogoliubov “particle”
and “hole” wave functions, respectively, as

uklml (�x) = 1

r
ukl (r)Y ml

l (θ, φ), (B1a)

vklml (�x) = 1

r
vkl (r)Y ml

l (θ, φ), (B1b)

where the notation is the same as that used in Eq. (3). Here
the radial wave functions ukl (r) and vkl (r) (which obey open

boundary conditions) satisfy the Bogoliubov analog of the
radial equation:

Ekl ukl =
(

− h̄2

2m

d2

dr2
+ V + h̄2l (l + 1)

2mr2
− μ + 2g|ψc|2

)
ukl

+ gψ2
c vkl , (B2a)

−Eklvkl =
(

− h̄2

2m

d2

dr2
+ V + h̄2l (l + 1)

2mr2
− μ + 2g|ψc|2

)
vkl

+ gψ∗
c

2 ukl . (B2b)

The number of particles in the U (1) symmetry broken
phase is then

N = N0(T ) +
∑

kl
(Ekl >0)

(2l + 1)

×
∫ ∞

0
dr[ fkl |ukl |2 + (1 + fkl )|vkl |2], (B3)

where fkl = 1/(eβEkl − 1).
To solve Eq. (B2), one must set the condensate wave func-

tion and chemical potential. In principle, this is done by first
solving the time-independent Gross-Pitaevskii (GP) equation,
Eq. (7); however, within our mean-field theory we treat the
noninteracting (NI) solution of the GP equation as a reason-
able approximation. If one takes g → 0 in the GP equation,
the condensate wave function simplifies to ψc(r) → ψNI(r) =√

N0 uNI
0 (r)/

√
4π r, where uNI

0 (r) is the ground state solution
of the radial equation, Eq. (4), and the chemical potential takes
on the form μ → ε0. Returning to the interacting case, we
insert the approximate condensate wave function ψNI(r) into
the Bogoliubov equations and set the chemical potential μ

such that the k = 0, l = 0, ml = 0 mode of Eq. (B2) is a zero
mode. This is done because the true condensate wave function
ψc(r) corresponds to a zero-mode solution of the Bogoliubov
equations.
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