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Photoexcitation measurement of Tan’s contact for a strongly interacting Fermi gas
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We derive theoretically an exact relation between Tan’s universal contact and the photoexcitation rate of a
strongly interacting Fermi gas, in the case of optically transferring fermionic pairs to a more tightly bound
molecular state. Our deviation generalizes the relation between Tan’s contact and the closed-channel molecular
fraction found earlier by Werner, Tarruell, and Castin [Eur. Phys. J. B 68, 401 (2009)]. We use the relation
to understand the recent low-temperature photoexcitation measurement in a strongly interacting 6Li Fermi gas
[Liu et al., arXiv:1903.12321] and show that there is a reasonable agreement between theory and experiment
close to the unitary limit. We propose that our relation can be applied to accurately measure Tan’s contact
coefficient at finite temperature in future experiments.
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I. INTRODUCTION

In 2008, in a series of seminal works [1–3], Tan presented
a set of elegant exact relations, showing that the short-range,
large-momentum, and high-energy behaviors of a strongly
correlated atomic gas, both statically and dynamically, can be
universally governed by a coefficient. These relations together
with the coefficient, namely Tan’s relations and Tan’s contact
coefficient, pave an entirely new direction to understanding
complicated quantum many-body systems [4–6].

To date, Tan relations have been experimentally verified in
both Fermi gases [7,8] and Bose gases [9]. The key Tan’s con-
tact coefficient has also been measured in a number of ways
[7,8,10–13], following different Tan relations [14–21]. In par-
ticular, great efforts have been taken to accurately determine
the contact coefficient of a unitary Fermi gas with an infinitely
large s-wave scattering length, by using Bragg spectroscopy
[11,12] and radio-frequency (rf) spectroscopy [13]. At finite
temperature, the measured contact of a homogeneous unitary
Fermi gas clearly shows a dramatic change at the superfluid
transition temperature, providing an unambiguous signature
for the onset of the superfluid transition [12,13].

In this work, we would like to propose that photoexcita-
tion, in which a fermionic pair absorbs a photon to form an
excited molecule, may give an alternative, potentially more
accurate method to measure a finite-temperature Tan’s contact
for a strongly interacting Fermi gas at the crossover from
a Bose-Einstein condensate (BEC) of tightly bound dimers
to a Bardeen-Cooper-Schrieffer (BCS) superfluid of loosely
bound Cooper pairs [22,23]. This opens the way to experi-
mentally determine the superfluid transition temperature at the
entire BEC-BCS crossover, which remains elusive so far.

Our proposal is based on the derivation of an exact Tan
relation for the photoexcitation rate, if we optically trans-
fer fermionic pairs to a more tightly bound molecular state
[24–26]. In the limit of a weak laser intensity or a small Rabi
coupling, our relation recovers the known relation between

Tan’s contact and the closed-channel molecular fraction, pre-
dicted earlier by Werner, Tarruell, and Castin [15]. The
advantage of our relation is that it also works at a moderately
large laser intensity, where the accuracy of the photoexcitation
measurement could be greatly enhanced. This leads to a more
accurate way to measure Tan’s contact at finite temperature.
As an application, we use our relation to better understand a
recent photoexcitation measurement in a strongly interacting
6Li Fermi gas at the University of Science and Technology
of China (USTC), Shanghai [26]. We show that the puz-
zling huge discrepancy between theory and experiment, at
about two orders of magnitude, can be reasonably resolved,
although there is still a factor of three difference found on
the BCS side at the largest magnetic field considered in the
experiment.

The rest of the paper is organized as follows. In the next
chapter (Sec. II), we sketch the photoexcitation scenario and
present the model Hamiltonian. In Sec. III, we derive the
Tan relation for the photoexcitation rate. In Sec. IV, we dis-
cuss the experimental relevance, first on analyzing the recent
photoexcitation measurement and then on the proposal for
future finite-temperature contact measurements. Finally, we
conclude in Sec. V.

II. MODEL HAMILTONIAN

We consider the photoexcitation experiments at Rice [24],
Ulm [25], and USTC Shanghai [26], all of which use a
strongly interacting 6Li Fermi gas near the Feshbach reso-
nance at B0 � 832.18 G, where fermionic pairs are in the
superposition with a stable, ground molecular bound state
X 1�+

g (v = 38). A resonant laser transition is used to pho-
toexcite fermionic pairs in the admixture to another excited
molecular bound state A 1�+

u (v′ = 68), which suffers from
the spontaneous-emission loss at the rate γ . In the case that
this is the dominant loss channel, one can determine the pho-
toexcitation rate from the loss rate of the system, i.e., −Ṅ/N.
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The above-mentioned Fermi gas system can be well described
by a two-channel model Hamiltonian H = H (a)

0 + H (a)
int +

H (am) + H (m), where [27–29]

H (a)
0 =

∑
kσ

(εk − μ)c†
kσ ckσ , (1)

H (a)
int = u0

V

∑
kk′q

c†
q
2 +k↑c†

q
2 −k↓c q

2 −k′↓c q
2 +k′↑, (2)

H (am) = g0√
V

∑
kq

[
φ†

gqc q
2 −k↓c q

2 +k↑ + H.c.
]
, (3)

H (m) =
∑

q

(
φ†

gq φ†
eq

)
Mq

(
φgq
φeq

)
(4)

describe respectively the kinetic Hamiltonian of atoms,
the background interaction Hamiltonian of atoms with the
interaction strength u0, the coupling between atoms and
ground-state molecules (g0), and the molecules in both ground
and excited molecular states. Here, εk ≡ h̄2k2/(2m) is the
free dispersion relation, μ is the chemical potential of atoms,
and ckσ , φgq, and φeq are the annihilation field operators
of atoms (with spin σ =↑,↓), ground-state molecules, and
excited-state molecules, respectively. In the last Hamiltonian
for molecules, Mq is a 2×2 matrix,

Mq =
[ εq

2 − 2μ + δg0 �/2
�/2 εq

2 − 2μ + δe0 − 	 − i γ

2

]
, (5)

where � and 	 are the Rabi coupling and detuning of the
photoexcitation laser, respectively, γ is loss rate, and δg0 and
δe0 are the bare detunings of the molecular states.

The subscript “0” in various parameters indicates that
these bare parameters are to be renormalized and related
to some physical observables [28,29]. For example, u0 will
be expressed in terms of the background s-wave scattering
length abg, g0 will be replaced by the width of the Feshbach
resonance W , and finally δg0 and δe0 will correspond to the
detunings of the closed channels. The parameter renormaliza-
tion has been discussed in detail in the literature [28,29]. It
is very easy to implement: we can simply do the following
replacements in final equations derived, i.e.,

u0 → u = 4π h̄2

m
abg, (6)

g0 → g =
√

4π h̄2

m
abgW μag, (7)

δg0 → δg = μag(B − B0), (8)

δe0 → δe = μae(B − B0). (9)

For 6Li atoms near the Feshbach resonance at B0 � 832.18 G,
abg � −1582a0 (a0 = 0.0529177 nm), and W = −262.3 G,
μag = 2μa − μg � 2μB (μB the Bohr magneton) is the differ-
ence in the magnetic moments of atoms and of molecules for
the ground state [30], and similarly μae = 2μa − μe � 2μB.
For the excited molecular state, the loss rate γ � 2π h̄ ×
11.8 MHz. The Rabi coupling � is typically at the order of
2π × 1.0 MHz. In addition, to convert the Zeeman field to
frequency, we could use μB × 1 G � 2π h̄ × 1.3996 MHz.

III. UNIVERSAL TAN RELATION
FOR PHOTOEXCITATION

According to Tan, Braaten, and Platter [4], the loss rate of
a quantum many-body system with short-range interparticle
interactions at the number of particles N is given by

−Ṅ ≡ −dN

dt
= h̄[−Ima(B)]

2πm|a(B)|2 I. (10)

Here, a(B) is the s-wave scattering length at a given Zeeman
field B and I is the contact coefficient of the system. The
loss rate equation can be intuitively understood from Tan’s
adiabatic relation,

dE

d (1/a)
= − h̄2

4πm
I, (11)

which relates the total energy E of the many-body system
to the contact coefficient I. Due to the coupling to the dis-
sipative excited molecular state, the total energy acquires
a relatively small imaginary part E − iEI/2, where EI/h̄ =
−dN/dt can be understood as the loss rate of the system, since
the time evolution of the system can be given by exp[−i(E −
iEI/2)t/h̄]. Correspondingly, the scattering length also has a
small imaginary part. From the adiabatic relation, we have

−EI

2
� Im[dE ] = − h̄2I

4πm
Im[d (1/a)], (12)

which immediately leads to the loss rate equation (10).
Let us now calculate the scattering length a(B) for the

experimental photoexcitation process. Taking into account the
molecule-mediated attraction, the total (unrenormalized) in-
teraction between two atoms can be written into the form

U (q, iνn) = u0 + g0D
(0)
g (q, iνn), (13)

where D (0)
g (q, iνn) is the noninteracting Green’s function of

molecules in the ground-state channel and is the 11 compo-
nent of the 2×2 matrix,

D (0)(q, iνn) = [iνn − Mq]−1. (14)

By explicitly working out the inverse of the matrix, we obtain
that

D (0)
g (q, iνn) =

[
iνn − εq/2 + 2μ − δg0

− �2/4

iνn − εq/2 + 2μ − δe0 + 	 + iγ /2

]−1

.

(15)

The last term in the bracket gives the conventional Stark
shift to the ground-state molecules due to the coupling to
the excited molecular state. In the vacuum, where we set the
chemical potential μ = 0, the s-wave scattering length a(B) is
then given by

4π h̄2a(B)

m
= u0 + g2

0D
(0)
g (0, 0) (16)

= u − g2

δg + �2/[4(−δe + 	 + iγ /2)]
. (17)
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In the last step, we have replaced the unregularized parameters
with the regularized ones. In the absence of the Rabi coupling,
i.e., � = 0, it is easy to check that we recover the well-known
expression for the scattering length near a Feshbach reso-
nance,

as(B) = m

4π h̄2

[
u − g2

δg

]
= abg

(
1 − W

B − B0

)
. (18)

Here, the subscript “s” in as(B) indicates the s-wave scattering
length without Rabi coupling. In the presence of Rabi cou-
pling, instead we would obtain

a(B) = abg − abg�

δg + �2/[4(−δe + 	 + iγ /2)]
, (19)

where � ≡ μagW is the characteristic energy related to the
width of the Feshbach resonance. It is straightforward to ob-
tain

− Ima(B)

|a(B)|2 =
(

�

abg

)
[�2/(2γ )]

(δg − �)2 + c2[�2/(2γ )]2 , (20)

where the coefficient

c = 1 − 4(δe − 	)(δg − �)

�2
. (21)

By substituting it into the loss rate expression (10), we find
that

− Ṅ

N
= h̄I

2πmN

(
�

abg

)
[�2/(2γ )]

(δg − �)2 + c2[�2/(2γ )]2 . (22)

By recalling that

δg − � = − �

[1 − abg/as]
, (23)

and defining [15]

R∗ = h̄2

mabg�
, (24)

I = 4πNkFF
(

1

kF as

)
, (25)

we finally arrive at

− Ṅ

N
= h̄−1kF R∗F

(
1

kF as

)
L(	), (26)

where the line-shape function of the photoexcitation laser
L(	) takes the form

L(	) = �2/γ

[1 − abg/as]−2 +
[

�2−4(δe−	)(δg−�)
2γ�

]2 . (27)

Under the resonant condition δe = 	 and with a weak
laser intensity �2 
 γ�, the line-shape function is L(	) =
(1 − abg/as)2�2/γ . As h̄−1�2/γ is the effective decay rate of
the ground molecular state for a resonant transition, see, i.e.,
Eq. (15), we may rewrite [24,26]

− Ṅ

N
= Z

�2

h̄γ
, (28)

where Z is the molecular fraction in the ground molecular
state and hence is given by

Z = kF R∗F
(

1

kF as

)[
1 − abg

as

]2

= IR∗
4πN

[
1 − abg

as

]2

. (29)

Thus, in the limit of a weak laser intensity, we recover the
universal relation that links the closed-channel molecular frac-
tion to the contact coefficient, first pointed out by Werner
et al. [15]. Our loss rate equation (26) does not have the weak
probe restriction. It holds as long as the assumption of a single
s-wave scattering length as(B) is applicable.

IV. EXPERIMENTAL RELEVANCE

A. Photoexcitation measurement at USTC Shanghai

In a recent experiment at USTC Shanghai [26], the laser
intensity is weak and the Rabi coupling is measured to be
�2/γ � 2π h̄ × 0.136(1) MHz. This is much smaller than the
characteristic energy of the Feshbach resonance width, i.e.,
� = μagW = 2μB × 262.3 G � 2π h̄ × 734 MHz. Therefore,
for resonant excitation (δe = 	) we may use the weak-
intensity result,

− Ṅ

N
= kF R∗F

(
1

kF as

)[
1 − abg

as

]2(
�2

h̄γ

)
, (30)

to analyze the experimental data and to calculate the closed-
channel fraction Z in the ground molecular state according to
Eq. (29). In Fig. 1, we present the density dependence of the
closed-channel fraction Z in the unitary limit B = 832 G (a)
and on the BCS side B = 925 G (b), experimentally measured
at USTC Shanghai [26] and theoretically calculated by using
Eq. (29) with the contact obtained either from a Gaussian
pair-fluctuation theory [20,31,32] or from a perturbation the-
ory [15]. The latter is only applicable in the deep BCS limit.
We find a good agreement between theory and experiment in
the unitary limit. However, on the BCS side, there is about a
factor of three difference. In Fig. 2, we show the comparison
as a function of the magnetic field. The agreement seems to
become increasingly worse when we increase the magnetic
field.

We do not fully understand why there is about a factor of
three difference on the BCS side. A possible source for the
discrepancy is the Rabi coupling �, which is only experimen-
tally calibrated on the BEC side and is then assumed to be
invariant across the BEC-BCS crossover. Mathematically, the
Rabi coupling is given by the overlap between the two wave
functions of the bound molecular states [24], i.e.,

� = 〈ψv′=68(S = 0)| �d · �EL|ψv=38(S = 0)〉, (31)

where �d is the transition dipole and �EL is the laser field for
photon excitation. This wave-function overlap could change
notably on the BCS side, as the ground molecular state be-
comes increasingly affected by the admixture with atoms. A
few-body calculation is needed, i.e., following the theoretical
photoassociation work [33], in order to fully understand the
magnetic dependence of the Rabi coupling near a Feshbach
resonance.
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FIG. 1. Density dependence of the closed-channel fraction Z of
a strongly interacting 6Li Fermi gas in the unitary limit B = 832 G
(a) and on the BCS side at the magnetic field B = 925 G. Here,
the density is expressed in terms of the Fermi energy TF . The low-
temperature data from USTC Shanghai group (symbols) [26] are
compared with our zero-temperature theoretical predictions using the
contact obtained from a Gaussian pair fluctuation theory (solid line)
[20] and a perturbation theory (dashed line) [15].

B. Contact measurement at finite temperature

To avoid the complications due to the magnetic field
dependence in the Rabi coupling, we may perform the
photoexcitation measurement at a fixed magnetic field and
consider different temperatures. To calibrate �2/γ , we can
go to the strong laser intensity regime, in the sense that �2/γ

can be enlarged to be comparable to �, as long as there is
no significant heating. This will considerably increase the
experimental resolution for the loss rate measurement.

In greater detail, by increasing the laser intensity I to in-
crease the Rabi coupling (i.e., �2 = αI), under the resonant
condition we may first confirm the predicted line shape in
Eq. (27),

L(	) = 2�
�2/(2γ�)

[1 − abg/as]−2 + [�2/(2γ�)]2 , (32)

which takes a maximum 2�(1 − abg/as). At a given magnetic
field, the detunings 	, δg, δe, and as(B) are known precisely
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FIG. 2. Magnetic-field dependence of the closed-channel frac-
tion Z of a strongly interacting 6Li Fermi gas at the density
characterized by a Fermi temperature TF = 0.45 μK. The low-
temperature data from USTC Shanghai group (symbols) [26] are
compared with our zero-temperature theoretical predictions using the
contact obtained from a Gaussian pair fluctuation theory (solid line)
[20] and a perturbation theory (dashed line) [15].

and the zero-temperature contact has been also determined to
a reasonable accuracy. Using this knowledge, we can deter-
mine the proportional factor α and hence calibrate the Rabi
coupling �. Then, working at a fixed Rabi coupling, we may
tune the temperature of the system and consequently mea-
sure the temperature dependence of the contact coefficient.
As the contact coefficient changes significantly across the
superfluid phase transition, we can ultimately determine the
critical temperature of a strongly interacting Fermi gas across
the BEC-BCS crossover.

V. CONCLUSIONS

In summary, we have derived a universal relation for
the photon-excitation measurement of a strongly interacting
Fermi gas near a Feshbach resonance. We have shown that
the determination of the photoexcitation rate can directly give
Tan’s contact coefficient. In the limit of a weak laser inten-
sity, our relation reduces to the well-known relation for the
closed-channel molecular fraction, derived earlier by Werner,
Tarruell, and Castin [15]. With a strong laser intensity, we
anticipate that the photon-excitation measurement can have
improved experimental resolution and hence provide an ac-
curate way to measure the temperature dependence of the
contact coefficient and also the critical temperature at the
BEC-BCS crossover.
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