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Metastable spin-phase diagrams in antiferromagnetic Bose-Einstein condensates

E. Serrano-Ensástiga * and F. Mireles †

Departamento de Física, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 14,
22800 Ensenada, Baja California, México

(Received 5 September 2021; revised 26 October 2021; accepted 29 November 2021; published 13 December 2021)

Spinor Bose-Einstein condensates under external magnetic fields exhibit well-characterized spin domains
of its ground state due to spin-dependent interactions. At low temperatures, collision-induced spin-mixing
instabilities may promote the condensate to dwell into metastable states occurring near the phase boundaries. In
this paper, we study theoretically the metastable spin-phase diagram of a spin-1 antiferromagnetic Bose-Einstein
condensate at zero and finite temperatures. The approach makes use of Hartree-Fock theory and exploits the
symmetry of the Hamiltonian and of the order parameters yielding a closed system of transcendental equations
for the free energy, fully avoiding the use of self-consistency methods. Our results are consistent with recent
experiments and allow us to explain qualitatively the different types of observed quench dynamics. In addition,
we found that similar phenomena should occur in antiferromagnetic spinor condensates with a sudden change in
the temperature. It is shown also that the increase in temperature induces a traceable shift of the ferromagnetic-
polar transition boundary, behavior previously not noted by self-consistent mean-field calculations.
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I. INTRODUCTION

Spinor Bose-Einstein condensates (BECs) of ultracold
atoms can be manipulated nowadays with astonishing pre-
cision offering unprecedented opportunities to study spin-
dependent many-body physics [1–3]. Of crucial importance
is the underlying physics of the phase diagram in spinor
BECs where the nature of the spin domain phases strongly
depends on the atomic species and on the external fields. The
study of the spin-phase diagram in spinor BECs via mean-
field theories were introduced first for spin f = 1 [4,5] and,
subsequently, for higher spins ( f = 2–4, 6, 8) [1,6–9] where
the usual parameters of the phase diagram are the coupling
factors of the different spin-dependent interactions and/or the
coefficients of the linear and quadratic Zeeman interactions.
The predicted phase diagrams have been confirmed for spin-1
BECs with antiferromagnetic (23Na [10–12]) and ferromag-
netic spin-dependent interactions (87Rb [13] and 7Li [14]) to
mention a few.

It is known that in spinor BECs, there may occur the co-
existence of several domain phases in which its different spin
states and associated order parameters are not continuously
transformed at the phase boundary leading to a first-order tran-
sition. Owing to the noncontinuity of the order parameters,
both phases may remain stable, whereas the ground state is
given by the lowest-energy state. Consequently, near the phase
boundaries may exist metastable phases [15–22] which play
a crucial role in a variety of phenomena, such as quantum
tunneling [23,24], domain formations [25,26], and quench
dynamics [27–29], among others [30,31]. In particular,
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recent experiments have reported the observation of dynami-
cal quantum phase transitions under different types of quench
dynamics in an antiferromagnetic spinor BEC [29], including
a more recent experiment that involves a phase transition
between excited states [32]. A dynamical phase transition
refers to a nonanalytical change in the quench dynamics of
the condensate [33], occurring by the sudden change in the
controlling parameters that modifies the free energy and sta-
bility of each spin phase. Under this perspective, the different
quench processes and the existence of dynamical phase tran-
sitions can also be understood through the analysis of its
corresponding metastable spin-phase diagram.

In this paper, we analyze within Hartree-Fock (HF) theory
the emergence of metastable spin domains in a spin-1 anti-
ferromagnetic condensate at finite temperatures. The resulting
phase diagrams offer further insights of the nature of the dif-
ferent quench processes observed in Ref. [29]. Our approach
starts with the HF approximation [34–36] but take advantage
of the common symmetries between the Hamiltonian and the
order parameter of the condensate to then reduce the problem
to the solution of a system of algebraic-transcendental equa-
tions instead to appeal self-consistency. This framework leads
us to closed expressions for the study of the metastable phase
diagrams and their physical properties, including analytical
expressions at low temperatures. The formalism is quite gen-
eral and can be applied for a spinor condensate of any spin
value and any spin-dependent interaction in mean-field theory.

We show the appearance of overlapping regions of the
spin domains which tend to increase as the temperature is
increased. This allows us to infer similar quench processes due
to a sudden change in the temperature, instead of an abrupt
change in an external field as performed experimentally in
Ref. [29]. We characterize the spin phases in the overlapping
regions through calculations of the spin magnetization and the
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atom fraction in the magnetic sublevels in order to further
distinguish the spin domains among each other. We also un-
cover a sizable shift of the ferromagnetic-polar (FM-P) phase
boundary driven by temperature, in sharp contrast with earlier
self-consistent HF results that predicts a fixed phase boundary
with temperature [36]. Moreover, the approach enables us to
extract a useful analytical approximation of the FM-P phase
boundary valid for a wide range of temperatures.

II. MODEL

Let us consider a dilute f = 1 spinor Bose-Einstein gas
confined in an optical trap with potential U (r), and subject to
linear (p) and quadratic (q) Zeeman fields oriented along the
z axis. The coefficients (q, p) depend explicitly on external
fields [1],

p = −gμBB, q = qB + qMW, (1)

where g is the Landé hyperfine g factor, μB is the Bohr magne-
ton, and B is the strength of the external magnetic field. Note
that the coefficient q is contributed by the external magnetic-
field qB and from a microwave (MW) field qMW. Hence, the
parameters (q, p) can be manipulated independently in a lab-
oratory [37,38], and here they will be our parameters in the
phase diagram. We restrict ourselves to p � 0 values because
the phase diagram is symmetric by inversion p → −p [1]. The
system is assumed to be weakly interacting and sufficiently
diluted such that only two-body collisions are predominant
and the s-wave approximation is still valid. The full Hamil-
tonian of the atomic gas, constituted by the single-particle
and interaction terms, is written in the second-quantization
formalism as [1,3]

Ĥ =
∫ {

�̂
†(

hs13 − pFz + qF 2
z

)
�̂ + c0

2

∑
i, j

ψ̂
†
i ψ̂

†
j ψ̂ jψ̂i

+ c1

2

∑
α,i, j,k,l

(Fα )i j (Fα )kl ψ̂
†
i ψ̂

†
k ψ̂l ψ̂ j

}
dr, (2)

where hs = −h̄2∇2/2M + U (r) is the spatial Hamiltonian.
The 13 is the 3 × 3 identity matrix, and Fαs are the angular
momentum matrices of spin f = 1 with α = x, y, or z and
scaled by h̄, then the Fα matrices are dimensionless. The
spinor-quantum field associated with the spinor condensate
is denoted by �̂ = (ψ̂1, ψ̂0, ψ̂−1)T , where ψ̂ms are the field
operators with m = −1, 0, 1 as the possible magnetic quan-
tum numbers, and T denotes the transpose. From now on,
we will employ bold Greek symbols for the 1-spinors and
bold Latin symbols for the three-dimensional vectors in real
space. The Hamiltonian (2) has a symmetry group isomorphic
to SO(2) × Z2, constituted by the rotations about the z axis
and the reflection across the yz plane. The spin-independent
and spin-dependent coupling factors c0 and c1, respectively,
are related to the s-wave scattering lengths a0 and a2 of the
total spin-F channel aF (F = 0, 2) [4,5],

c0 = 4π h̄2(a0 + 2a2)

3M
, c1 = 4π h̄2(a2 − a0)

3M
, (3)

where M is the atomic mass. Experimental measurements
indicate that 23Na atoms have a0 = 47.36(80)aB and a2 =

52.98(40)aB [1,39] with aB as the Bohr radius, yielding a
BEC with antiferromagnetic interactions (c1 > 0). Our theo-
retical calculations will be based on a BEC of 23Na atoms for
which the values of the coupling factors are c0/a3

B = 0.42 eV
and c1 = c0/27, derived with scattering lengths aF within
the quoted experimental values and their uncertainties. Other
species could present ferromagnetic interactions (c1 < 0) as
87Rb [13] and 7Li [14].

Mean-field approximation at zero temperature (T = 0) as-
sumes that all the atoms in the spinor condensate are in the
same quantum state described by an spinor order-parameter
〈�̂〉 = � [1,3]. The ground-state � = (φ1, φ0, φ−1)T of the
BEC minimizes the functional mean-field energy E [�] =
〈Ĥ〉. We will consider the uniform case with U (r) = 0 and,
hence, the ground-state φ j (r) = φ jeik·r with k = 0. E [�] con-
strained to a fixed number of particles N = �†� is reduced to

E [�] = �†
( − pFz + qF 2

z

)
� + c0

2
(�†�)2

+c1

2

∑
α

(�†Fα�)2 − μ(�†� − N ), (4)

where μ is the chemical potential, i.e., the required energy to
add an atom to the condensate. The conditions δE [�]/δφ∗

m =
0 yield the so-called multicomponent Gross-Pitaevskii (GP)
equations. For spin-1 we have five solutions of the GP equa-
tions [1,10], identified through the spinor order-parameter �.
Here we only scrutinize the solutions for the antiferromag-
netic cases c1 > 0 and p � 0, which leads to the following
phases of the spin-1 BEC:

(1) Ferromagnetic (FM) phase: The spinor order parameter
is equal to � = √

N (1, 0, 0)T . It is symmetric under rota-
tions about the z axis, imposing that the symmetry group
is isomorphic to the special orthogonal group SO(2). Each
atom is fully magnetized along the z axis, Mz ≡ 〈Fz〉/N = 1,
and M⊥ ≡ (〈Fx〉2 + 〈Fy〉2)1/2/N = 0, where Mz and M⊥ are
dimensionless quantities.

(2) Polar (P) phase: Here � = √
N (0, 1, 0)T . Its symmetry

group, which is isomorphic to SO(2) × Z2
∼= O(2), consists

of rotations about the z axis and time-reversal symmetry
(equivalent to an inversion through the origin) [40]. It has zero
magnetization Mz = M⊥ = 0.

(3) Antiferromagnetic (AF) phase: It consists of a fam-
ily of quantum states � = √

N (cos χ, 0, sin χ )T with χ ∈
(0, π/4]. A family of states that represents a phase are also
called noninert states [41]. The whole set is symmetric over
two geometric operations, a rotation by π about the z axis, and
a reflection across the yz plane, implying that the symmetry
group is isomorphic to Z2 × Z2. Note that the AF phase
tends to the FM phase when χ → 0. On the other hand, the
AF phase tends to the P phase but oriented over the y axis
when χ → π/4. The magnetic moment depends on χ, Mz =
cos(2χ ) and M⊥ = 0.

The FM and P phases exist according to mean-field theory
for each (q, p) value. On the other hand, the AF phase satisfies
[1]

cos χ =
√

c1N + p

2c1N
, (5)
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which implies that the AF phase does not exist for p > c1N .
The limit case p = c1N saturates the spin magnetization of
the AF phase Mz = 1. The phase diagram in the case for zero
temperature (T = 0) is amenable to analytic results, plotted in
Fig. 1 [10]. The ground state for each (q, p) point is the one
that minimizes (4). The region of each phase is labeled by FM,
P, and AF and painted by a primary color, blue (upper left), red
(right), and yellow (lower left), respectively. The solid lines
delimit the phase transitions.

The HF approximation [34–36] which, despite being the
simplest many-body theory after the mean-field approxima-
tion, is known to capture the main relevant physics occurring
in the phase diagram and its concomitant boundary regions.
Moreover, it allows us to study the spinor condensates at finite
temperatures [42]. Formally, in the HF approximation the field
operator is given by the order parameter and a perturbation δ̂ j ,
i.e., ψ̂ j = φ j + δ̂ j . For simplicity, we neglect the three-field
correlations 〈δ̂iδ̂ j δ̂

†
k 〉 (Hartree-Fock-Bogoliubov approxima-

tion) and the anomalous density 〈δ̂iδ̂ j〉 (Popov approximation)
[35], which gives a reasonable first approximation for di-
luted gases at all temperatures below the critical temperature
[43,44]. Moreover, it has been shown in Refs. [36,45] that the
anomalous density does not affect quantitatively the results
for a spin-1 87Rb condensate with the notable exception of
the T → 0 limit because of the ratio between the interaction
factors c0/|c1| ≈ 200. In our case with 23Na atoms, c0/c1 =
27 and, hence, the contribution of the anomalous density at
zero temperature is significantly reduced. We now apply the
elements of the HF theory following Ref. [36] with slight
changes in the notation.

The condensate (c) and noncondensate (nc) atoms are rep-
resented by a density matrix ρc

i j = Ncφ∗
j φi and ρnc

i j = 〈δ̂†
j δ̂i〉,

respectively. The trace of each density matrix is equal to the
number of atoms of each part Tr(ρa) = Na for a = n, nc. The
noncondensate atoms ρnc act as a cloud of atoms thermally
excited that interacts nontrivially with the condensate frac-
tion ρc. The total system is then denoted by ρ = ρc + ρnc

with Tr ρ = N = Nc + Nnc. Hence, the HF energy with its
Lagrange multiplier μ(N − Tr ρ) is given by

EHF = Es + Tr
[
ρ
( − pFz + qF 2

z

)] − μ(Tr ρ − N )

+c0

2
{N2 + Tr[ρnc(2ρc + ρnc)]}

+c1

2

∑
α

{Tr[ρFα]2 + Tr[FαρncFα (2ρc + ρnc)]},

(6)

where the trace involves a summation over the spatial and
spinor quantum numbers. For U (r) = 0, Es is the kinetic
energy, and then, the spatial quantum number is the wave-
vector k. The two-body interactions have two terms, the direct
and the exchange interactions. The effect of each term over
the spin coherence and the distribution of the atoms in the
magnetic sublevels is discussed in Ref. [36].

The condensate fraction of the system ρc = Nc��† is
a pure state with k = 0. Hence, the resulting GP equations
δEHF/δφ

∗
m = 0 are given by a system of three (nonlinear)

equations involving φm and ρnc. On the other hand, ρnc is
written as a sum of its eigenvectors ξλ = (ξλ

1 , ξλ
0 , ξλ

−1)T

P AF P AF P AF P AF

FIG. 1. Top: Ground-state spin-phase diagram of the spin-1 BEC
gas at T = 0, obtained either by the mean-field approximation [1]
or by the HF theory. The FM, P, and AF phases are denoted by
a primary color, blue (upper left), red (right), and yellow (lower
left), respectively. The solid lines define the phase transitions, and
the region of each phase is, respectively, labeled. Center: Metastable
spin-phase diagram of the spinor condensate at T = 0 calculated
with the HF theory and the approach described in Sec. III. The over-
laps between the phases FM and P, and AF and P, are denoted by their
respective secondary colors purple (upper-center) and orange (lower-
center). The boundaries of the admissible region of each phase are
indicated by dotted (FM), dashed (P), and dashed-dot (AF) lines,
respectively. The lower (upper) boundary of the admissible region
of the FM (AF) phase coincides with the solid line that delimits
the phase transition. Bottom: Schematic graphics of the thermody-
namic potential �HF (14) versus an order-parameter variable of ρc

or ρnc, included in the set � = {φm, ρnc
i j } for (q, p) = (n, 0)c1N with

n = −1.5, −0.5, 0.5, 1.5, respectively. The (red) point in the graph
indicates the initial state of the spinor condensate (P phase), and the
arrows denote the phase transition via quantum tunneling or by the
presence of an effective force

weighted by their Bose-Einstein distribution factor nλ,

ρnc
i j =

∑
λ

nλξ
λ
i ξλ∗

j , nλ = (eβελ − 1)−1. (7)
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The global subindex λ includes the spatial and spinor quan-
tum numbers λ = (k, ν) with ν = 1–3 and β = 1/kBT where
kB is the Boltzmann constant. The eigenvectors ξλ and their
associated energies ελ are obtained by the noncondensate
Hamiltonian A, given by Ai j = δEHF/δρ

nc
ji . The decoupling

of the spatial and spinor parts in the Hamiltonian A leads to
ελ = −h̄2k2/2M + κν with κν as the eigenvalue of the spinor
part of A. The spatial part of ρnc can be integrated using that∑

k → (2π )−3
∫

dk,

ρnc
i j =

3∑
ν=1

ξν
i ξν∗

j

Li3/2(e−βκν )

λ3
dB

, (8)

where Li3/2(z) is the polylogarithm function and λdB =
h/

√
2πMkBT is the thermal de Broglie wavelength. The

eigendecomposition of Ai j , which is now a 3 × 3 matrix, is
called the HF equation.

Before to end this section, we write here the general ex-
pressions of the GP-HF equations. We use a similar notation
as in Ref. [36] but with the use of the subindices for ρc and
ρnc as in Ref. [34]. The condensate fraction ρc = Nc��† is
obtained by the GP equations δEHF/δφ

∗
m = 0, which are equal

to

μ� = L�,

L = −pFz + qF 2
z + c0(N13 + ρnc)

+ c1

∑
α

{Tr[Fαρ]Fα + FαρncFα}, (9)

where α = x, y, and z. On the other hand, the noncondensate
Hamiltonian Ai j = δEHF/δρ

nc
ji has the following expression:

A = L − μ13 − c0ρ
c + c1

∑
α

FαρcFα

= −μ13 − pFz + qF 2
z + c0(N13 + ρ)

+ c1

∑
α

{Tr[ρFα]Fα + FαρFα}. (10)

Usually, the GP-HF equations (9) and (10) are solved
self-consistently [34–36]. However, we will avoid the
self-consistent procedure as it is explained in the next
section.

III. APPROACH AND RESULTS

We start by restricting ρc to a particular phase, FM, P, or
AF. Each phase exhibits some symmetries in common with
the full Hamiltonian (2). By a well-known result (Sec. 8.4
of Ref. [34]), the perturbation of the system ρnc inherits the
common symmetries of ρc and Ĥ , reducing its degrees of
freedom. This approach simplifies the GP-HF equations from
a set of equations of the components of ρc and ρnc, to a system
of three algebraic-transcendental equations of the κμ energies.

Let us illustrate our approach by considering the FM phase
� = Nc(1, 0, 0)T . In general, one must find the variables of
ρnc

i j and Nc, subject to the condition Nc + Nnc = N , which
gives a total of nine unknown variables. However, the degrees
of freedom of ρnc are reduced by its symmetries, consisting

of the rotations over the z axis by a generic angle θ, Rz(θ ) =
e−iθFz , inherited by the FM phase and the Hamiltonian (2)
[34]. In particular, this implies that ρnc must commute with
the generator Fz, and, hence, ρnc and Fz must have the same
eigenvectors,

ρnc =
1∑

m=−1

�m |1, m〉 〈1, m| , �m = Li3/2(e−βκm )

λ3
dB

,

(11)
where the eigenvalues are given by Eq. (8). The atom fractions
Nc and Nnc can be written in terms of κm because Nc =
N − Nnc and Nnc = ∑

m �m, reducing the unknown variables
to the three eigenenergies κm of the HF Hamiltonian A =
δEHF/δρ

nc
ji . Another useful visual way to infer the rotational

symmetries over the quantum states, which allows to simplify
the degrees of freedom, is through the stellar Majorana rep-
resentation for pure [46] and mixed states [47]. The chemical
potential μ is calculated by substituting the order parameter
of the FM phase in the GP equations (10),

μ = −p + q + c0(�1 + N ) + c1(N + �1 − 2�−1). (12)

On the other hand, the eigenvalues κm of A are obtained after
we substitute (11) in (10), yielding

κ
(FM)
1 = (c0 + c1)(N − �1 − �0 − �−1),

κ
(FM)
0 = p − q − (c0 + c1)�1 + (c0 − c1)�0 + 2c1�−1,

κ
(FM)
−1 = 2(p − c1N ) − (c0 + c1)�1

+ 2c1�0 + (c0 + 5c1)�−1. (13)

Here, the superscript index denotes the spin phase of the
condensate fraction ρc. For simplicity, we call the resulting
phase, which is now a mixture of spin states as the phase of the
condensate fraction ρc. For example, the solutions of Eqs. (13)
are called the FM phase at a given temperature T and (q, p)
values. We derive similar equations for the P and AF phases
in Appendix B.

The maximum temperature where the HF theory predicts
a spin phase Tmax can be estimated by the condensation tem-
perature of an ideal spin-1 BEC in a box T spin

c . It is known
that T spin

c is equal to the condensation temperature of an
ideal scalar gas T0 rescaled by the three internal spin-states
T spin

c = (1/3)2/3T0 ≈ 0.48T0 [36], where T0 is calculated by
the well-known formula T0 = 3.31h̄2N2/3/(kBM ) [2]. For our
paper, we use the atomic density commonly obtained in exper-
iments for a 23Na condensate N = 1014 cm−3 [11], yielding
T0 = 1.5 μK and equal to T0 = 572c1N/kB in terms of the
spin-dependent interaction. Another way to estimate Tmax is
by considering the fact that an atomic gas does not condensate
for temperatures such that kBT 
 μ, thus, one can assume
thermal energies greater than the chemical potential by an
order of magnitude kBT � 10μ. For example, for the FM
phase with (q, p) = (0, 0), the chemical potential (12) is min-
imized in the hypothetic case �−1 = N (implying �1 = 0),
yielding that μ = 26c1N and, hence, Tmax ≈ 0.45T0. A similar
estimation can be calculated for the P and AF phases and for
any (q, p) values. Both estimations obtained a similar Tmax,
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and then we will study the spin-1 BEC for temperatures up to
0.4T0.

A. Metastable phase diagrams

The approach is applied to calculate the allowed region of
each phase in the temperature interval [0, 0.4T0] and (q, p)
values of up to (±3, 2)c1N . The results reported in this paper
were obtained by solving numerically Eqs. (13), (B13), and
(B21)–(B23) for the FM, P, and AF phases, respectively. Let
us discuss first the HF results for T = 0 [48] plotted in Fig. 1,
which gives the same ground-state spin-phase diagram in
mean-field theory. We denote the allowed region of each phase
with a primary color: the FM, P, and AF phases with blue
(upper left), red (right), and yellow (lower left), respectively.
Remarkably, we find also overlapping regions, implying that
there could be some metastable phases upon some (q, p)
values. The overlaps of the FM and P(upper-center), and the
AF and P (lower-center) phases are shown with the respec-
tive secondary colors purple and orange. The boundaries of
the FM, P, and AF phases are denoted with dotted, dashed,
and dashed-dot lines, respectively. The solid lines delimit the
region where each phase is the ground state, which minimizes
the HF thermodynamic potential [34],

�HF = EHF − T SHF, (14)

with EHF given by Eq. (6), and SHF is the HF entropy (A4).
As expected, the thermodynamic potential �HF reduces to the
HF energy EHF at T = 0.

The quench dynamics of a spinor condensate, i.e., its evo-
lution after the sudden change in a control parameter, could
be explained with a metastable phase diagram. For an exam-
ple at hand, let us consider first that our spinor condensate
is prepared in the P phase with control parameters (q, p) =
(1.5c1N, 0) at T = 0. Here the only admissible phase is the
polar one, hence, the graph of the thermodynamic potential
�HF versus an order-parameter variable of ρc and ρnc, in-
cluded in the set � = {φm, ρnc

i j }, has a global minimum. We
plot a sketch of �HF versus a variable of the set � in Fig. 1.
Essentially, there are three possible �HFs with substantial
changes to affect the quench dynamics of the spinor conden-
sate. We exemplify each case in Fig. 1, corresponding to the
points with p = 0 and the following values of q:

(1) q = 0.5c1N : �HF has now two minima related to the
P and AF phases. The atoms of the spinor condensate would
rather stay in the P phase by the difference ��HF.

(2) q = −0.5c1N : Here, we also have two admissible
phases, but now the AF phase is the ground state. The quantum
tunneling is now stimulated to the AF phase. The smaller is
��HF between the phases, more atoms oscillate between the
phases with respect to the time. However, dissipation-energy
effects would favor the tendency of the atoms to stay in the
ground state.

(3) q = −1.5c1N : The AF phase is now the only admissi-
ble phase, producing an abrupt change of the atoms without
oscillations between the phases.

In particular, Ref. [29] reported the experimental observa-
tion of three different types of quench dynamics given by the
sudden change in q and with fixed magnetization of the spinor
condensate. The three types of quench dynamics fit qualita-

FIG. 2. Metastable phase diagrams at temperatures T equal to
0.1T0 (top) and 0.2T0 (bottom). The conventions of the colors, lines,
and labels are as in Fig. 1. There are two new overlapping regions,
the green FM and AF (middle-left) zone and the dark-gray AF, FM,
and P area (center) where the three phases coexist.

tively well with the ones explained above. The metastable
phase diagram in Fig. 1 also helps us to predict similar quench
processes given by a sudden change in the p parameter instead
of q or by a more general sudden change involving the (q, p)
values.

We will discuss now the results obtained at finite tem-
peratures. We plot in Fig. 2 the metastable phase diagram
for T/T0 = 0.1 and 0.2, which includes two new regions:
the green region (middle-left) associated with the overlapping
of the FM and AF phases, and a dark-gray region (center)
where the three phases coexist. The last one is associated
with a free-energy �HF with three critical points, a new
scenery not seen at T = 0. The overlapping regions among
the phases are also affected by the temperature, implying that
the same quench processes described above can be produced
by a change in T instead of q. For instance, let us consider
a BEC in the FM phase at T = 0.2T0 over the parameters
(q, p) = (−2, 0.9)c1N . If one cools down the BEC to nearly
0 K, the FM phase is no longer an allowed phase, and the
atoms would migrate to the AF phase, the only available phase
at this (q, p) point.

The approach applied in this paper not only leads to obtain
the whole region of each phase, but also to the physical nature
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FIG. 3. Magnetization per atom over the z axis Mz of the FM, P,
and AF phases at T = 0.2T0, respectively. The boundaries of each
region are specified as in Fig. 1. The inset graphic in the AF phase
is the magnetization per atom of the condensate fraction Mc

z . The
color (grayscale) legend applies only for the admissible region of
each phase.

of their boundaries. The HF approximation inserts the new
ingredient of the thermal atoms ρnc, populated with respect
to the energies κν plus the kinetic energy. For the atoms in
the thermal cloud with k ≈ 0, the energy levels are given only
by κν , which are interpreted as the additional energy to add an
atom in the thermal cloud ρnc instead of ρc. Therefore, κν > 0
for all ν = 1–3, otherwise it is energetically favorable or equal
to populate ρnc than ρc. A phase would be forbidden as long
κν � 0 for any ν. We list here the physical conditions of the
emergence of the boundaries of each phase seen in Figs. 1 and
2 (see also Fig. 3):

(1) FM phase boundary (dotted lines): ρnc and Fz share the
same eigenstates |1, m〉, with m = 0,±1. The two boundaries

are given when κ0 or κ−1 = 0 where the subindex denotes the
quantum number m.

(2) P phase boundary (dashed lines): The eigenvectors of
ρnc are, again, the states |1, m〉, and the boundary is given by
the condition κ1 = 0. The condition κ−1 = 0 is also plotted in
Fig. 3.

(3) AF phase boundary (dashed-dot lines): One of the
eigenvectors of ρnc is equal to state |1, 0〉, and the other two
are quantum superpositions of states |1,±1〉 [36] (see also
Appendix B). The vertical bound of the AF phase is given
by κ0 = 0, and the horizontal bound is a generalization of (5),
Mc

z ≡ Tr(ρcFz )/Nc = 1.
The system of three equations of the κν energies for each

phase leads us to analytic approximations of the bounds in
terms of the (q, p, T ) variables for T < T0 (Appendix B),

(FM)κ0 = p − q + F0(T ), κ−1 = 2(p − c1N ) + F−1(T ),

(P) κ±1 = q ∓ p + c1N + G±1(T ), (15)

(AF)κ0 = c1N − q + H0(T ), p = c1N + H ′(T ),

where the last equation is given by the condition Mc
z =

1. The functions Fν, Gν, H0, and H ′ depend only on the
temperature, and all go identically to zero when T = 0
(Appendix B). The approximations are valid up to O(k2

1 ) with
k1 = c1N/kBT0, and they agree well with the numerical results
obtained in the interval of T ∈ [0, 0.2T0]. The equations of
the boundaries of each phase are deduced in Appendix B.
One can observe that Eqs. (15) are linear with respect to the
parameters p and q. Hence, the analytic approximation of the
bounds are straight lines on the (q, p) space such that its slope
remains invariant but its position depends on T for T < T0.
The regions of the phases increase along all the boundaries as
we increase the temperature (see Appendix B) except along
the horizontal bound of the AF phase.

B. Physical properties

The BEC phases can be distinguished among each other by
their physical properties. In Fig. 3, we plot the magnetization
per atom Mz ≡ Tr(ρFz )/N of each phase in its allowed region
at T = 0.2T0. The color density of each plot is normalized
differently, and we denote the boundaries as we did in Fig. 1.
The most of the magnetization of each phase arises from the
condensate fraction ρc, whereas the small deviations can be
understood by the physical origin of the boundaries:

(1) FM phase: Its magnetization Mz decreases in the (q, p)
values close to the boundaries. This is true because as κm de-
creases, more atoms are populated to state |1, m〉, which it has
zero or negative magnetization for m = 0,−1, respectively.

(2) P phase: The magnetization increases for the (q, p)
values adjacent to the line κ1 = 0 and also further away from
the κ−1 = 0 condition. The BEC has null magnetization in the
line p = 0 because it is equidistant to both conditions κ±1 = 0
(15).

(3) AF phase: Similar as for the T = 0 case, the maximum
value of p for the AF phase is when Mc

z = 1, i.e.when the
AF phase is identical to the FM phase. Mz decreases as p de-
creases with minimum Mz = 0 for p = 0. Also, the numerical
calculations reveal that Mz is independent of the q parameter,
which is also confirmed with the analytic approximations for

063308-6



METASTABLE SPIN-PHASE DIAGRAMS IN … PHYSICAL REVIEW A 104, 063308 (2021)

FIG. 4. The fractions fm = 〈1, m| ρ |1, m〉 /N as functions of the temperature for the FM, P, and AF phases calculated numerically in the
triple point at T = 0.2T0, (q, p) = (0.32, 0.68)c1N . The lines correspond to the fractions using the analytic expressions of κν (Appendix B),
which agrees well with the numerical results denoted by the squares (red), circles (blue), and triangles (green), respectively. The black solid
line corresponds to Mz with the scale denoted on the right axis.

T < T0 (Appendix C). The inset plot of the AF phase shows
the condensate magnetization Mc

z . By comparing both figures,
one can deduce that the noncondensate fraction ρnc would
play against the magnetization of the condensation fraction
as discussed in Ref. [36].

Another way to distinguish the phases is by their popu-
lation fractions of the |1, m〉 states, which can be monitored
experimentally by absorption images [12,49]. In Fig. 4, we
plot the fractions fm ≡ 〈1, m| ρ |1, m〉 /N versus the tem-
perature for the (q, p) values of the triple-point at T =
0.2T0, (0.32, 0.68)c1N . The P and AF phases exist for the
temperatures T ∈ [0, 0.2T0]. On the other hand, the FM phase
only exists at the temperature interval T/T0 ∈ [0.09, 0.2]. For
the FM and P phases, their respective fractions begin to de-
crease as one increases the temperature, whereas the other two
projections are populated equally in the thermal cloud. The
AF phase increases (decreases) the fraction f0 ( f±1) as one
increases the temperature. The change in f1 from T = 0 to
T = 0.2T0 is more notorious as one reduces the p parameter
(Appendix D). This result provide us a way to distinguish
the AF and FM phases by comparing the evolution of the
f1 fraction with respect to the temperature. Note that the
change f1 from T = 0 to T = 0.2T0 is, at least, one order
of magnitude greater for the FM phase as for the AF phase
(see Fig. 4 and Appendix C). The black lines of Fig. 4 cor-
respond to Mz = f1 − f−1. The magnetization of FM phase is
screened by the thermal atoms. On the other side, the magnetic
sublevels m = 1 (m = 0) in ρnc are more populated than the
other magnetic sublevels in the P (AF) phase. Consequently,
Mz increases with respect to the temperature.

C. Phase-transition boundaries

To end this section, we plot the phase diagrams for different
temperatures in Fig. 5 where the ground states minimize the
thermodynamic potential �HF. The FM phase reaches lower
p values as the temperature is increased as mentioned in
Ref. [36]. Another feature we reveal here is that the FM
phase also increases to the positive interval of the q parameter.
This can be better understood as we compare the thermody-
namic potentials of the FM and P phases using the analytic
expression of the energies κν (Appendix B), which leads to

�
(FM)
HF − �

(P)
HF = Ng

2
[2(q − p) + c1Ng] + O

(
k2

1

)
, (16)

where g = g(T ) = 1 − 3ζ (3/2)/λ3
dBN with ζ (z) as the Rie-

mann ζ function. The previous equation predicts the linear
behavior of the FM-P boundary in the (q, p) parameters. The
intersection between the AF-FM and FM-P boundaries is the
triple-point of the phase diagram, and its position decreases
on the p and q parameters as the temperature T is increased
(see Fig. 5).

IV. CONCLUSIONS

We have shown that a minimal many-body HF theory
that fully accounts for the Hamiltonian and order parameter
symmetries of a spin-1 antiferromagnetic BEC allows us to
describe the presence of regions where metastable phases
could arise at zero and finite temperatures. The metastable
spin-phase diagram provides a useful and complementary way
to understand the different types of quench dynamics observed
in experiments [29] among other phenomena. In addition, the
metastable spin phases can be created experimentally by the
stimulation of a state transition via rf resonances [22–24] or
the quench process [28] as we discussed in our paper. After
that, the spin phases can be easily distinguished in the labo-
ratory by their physical properties, e.g., its magnetization or
with a time-of-flight imaging technique followed by a Stern-

FIG. 5. Temperature dependence of the phase diagram (solid
line) for T/T0 = 0, 0.1, . . . , 0.4. The FM-AF boundary as a function
of the temperature was described in Ref. [36]. The behavior of
the FM-P boundary is explained by the difference among the HF
potentials of the phases (16).
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Gerlach spin separation to determine the atom fractions of
each magnetic level [21–24,28]. In particular, we enlightened
two unique properties of the AF phase: Its magnetization is in-
dependent of the quadratic Zeeman coefficient q, and the atom
fraction f1 of the condensate remains basically invariant for
sufficiently high values of p as the temperature is increased.
Finally, we found a significant shift of the FM-P boundary
with temperature and derived an analytical expression for its
behavior valid at low temperatures.

This paper opens up a number of routes that can be ex-
plored within the framework presented here for the study
of spin-1 antiferromagnetic BEC. Indeed, the approach is
quite general as it can be straightforwardly applied to spinor
condensates with different spin-dependent interactions and/or
higher internal spin values. We should remark that whereas
the ground-state configuration of any spinor condensate is
understood to be stable by definition, the emergent metastable
states could be unstable under some weak perturbations or in-
stabilities. Even tough, the approach is still suitable, and it can
be formally extended, e.g., through the aid of the Hessian of
the thermodynamic potential to characterize the instabilities
of the metastable phases.
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APPENDIX A: EXPRESSIONS OF Es AND SHF

Here we derive the spatial energy Es in Eq. (6) and the
spatial entropy SHF of the Hartree-Fock theory, which can be
written in terms of the κν eigenenergies,

ρnc
i j =

∑
k,ν

nλξ
ν
i eik·r(ξν

j eik·r)∗

=
∑

ν

ξ ν
i ξν∗

j (2π )−3(4π )
∫ ∞

0
k2(z−1

ν e(β h̄2k2 )/2M − 1)−1dk,

(A1)

where zν = e−βκν . By a change of variable x = β h̄2k2/2M, we
deduce that Eq. (8),

ρnc
i j =

∑
ν

ξ ν
i ξν∗

j

4π
√

2(MkBT )3/2

h3

∫ ∞

0
x1/2(z−1

ν ex − 1)−1dx

=
∑

ν

ξ ν
i ξν∗

j

Li3/2(zv )

λ3
dB

, (A2)

with λdB = h/(2πMkBT )1/2 as the thermal de Broglie wave-
length and Li j (z) as the polylogarithm function. Analogously,
the spatial energy Es is equal to

Es = h̄2

2M

∑
k,ν,i

ξν
i eik·r(ξν

i eik·r)∗nλk2 =
∑

ν

3Li5/2(zν )

2βλ3
dB

. (A3)

Finally, we use the same limit of the wave number for the HF
entropy [34],

SHF = −kB

∑
λ

nλ ln nλ − (1 + nλ) ln(1 + nλ)

= kB

λ3
dB

∑
ν

5

2
Li5/2(zν ) − Li3/2(zν ) ln zν . (A4)

APPENDIX B: EQUATIONS FOR THE κν ENERGIES AND
THEIR ANALYTIC APPROXIMATIONS

To simplify the equations and calculations, we scale the
following variables:

⎛
⎜⎜⎜⎜⎜⎝

p̄
q̄
L̄
μ̄

Ā
κ̄ν

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

p
q
L
μ

A
κν

⎞
⎟⎟⎟⎟⎟⎠
/

|c1|N,

⎛
⎜⎜⎜⎝

N̄c

N̄nc

ρ̄c

ρ̄nc

ρ̄

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Nc

Nnc

ρc

ρnc

ρ

⎞
⎟⎟⎟⎠
/

N,

(B1)

c̄0 = c0

|c1| , T̄ = T

T0
.

The condensate and noncondensate fractions satisfy that N̄c +
N̄nc = 1. ρ̄nc is written as

ρ̄nc
i j =

∑
ν

�νξ
ν
i ξν∗

j , �ν = Li3/2(e−zν )

Nλ3
dB

, (B2)

with N̄nc = ∑
ν �ν and

zν =
( c1N

kBT0

)( κ̄ν

T̄

)
= k1

κ̄ν

T̄
. (B3)

In the following, we will work with the scaled variables, and
we will suppress the bar symbol in each term. We also define
η = c1/|c1| to express our results for any type of interaction:
ferromagnetic (η = −1), antiferromagnetic (η = 1), or with-
out spin-dependent interactions (η = 0). Equations (9) and
(10) are reduced to

μ� = L�, L = −pFz + qF 2
z + c0(13 + ρnc)

+ η
∑

α

{Tr[Fαρ]Fα + FαρncFα}, (B4)

A = −μ13 − pFz + qF 2
z + c0(13 + ρ)

+ η
∑

α

{Tr[ρFα]Fα + FαρFα}. (B5)

Now, we will deduce the system of equations for κν of each
phase. The numerical results exposed through this paper were
obtained by solving Eqs. (B7), (B13), and (B21)–(B23) for
the FM, P, and AF phases, respectively. We also derive the
analytic approximations for κν for each phase. The analytical
approximations agree well with the numerical results in the
low-temperature regime (see Fig. 4).
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1. FM phase

The ferromagnetic phase was already discussed in Sec. III
where the chemical potential and the eigenenergies κ (FM)

m (12)
and (13) in the scaled variables are given by

μ = −p + q + c0(�1 + 1) + η(1 + �1 − 2�−1),

(B6)

κ
(FM)
1 = (c0 + η)(1 − �1 − �0 − �−1),

κ
(FM)
0 = p − q − (c0 + η)�1 + (c0 − η)�0 + 2η�−1,

(B7)

κ
(FM)
−1 = 2(p − η) − (c0 + η)�1 + 2η�0 + (c0 + 5η)�−1.

Here, the superscript index denotes the spin phase. Once we
write the right-hand side of the equations as functions of
the energies κ (FM)

ν = K (FM)
ν (κ (FM)

1 , κ
(FM)
0 , κ

(FM)
1 ), the resulting

algebraic-transcendental equations cannot be solved analyt-
ically. However, we can obtain useful analytic expressions
through some approximations. The first approximation is
given by

�ν = Li3/2(e−zν )

Nλ3
dB

≈ 1

Nλ3
dB

[
ζ

(
3

2

)
− 2

√
πzν − ζ

(
1

2

)
zν + O

(
z2
ν

)]
,

zν = k1κν

T
, (B8)

which is valid for our case because we are interested in
the qualitative behavior around k1κμ/T ≈ 0 where k1 =
c1N/kBT0 = 1.75(10−3). Here ζ (z) is the Riemann ζ function.
We expand the analytic approximations with respect to k1 to
expose compact expressions. In addition, the numerical results
tell us that κ1 > κ0, κ−1. Then, we can also assume on the
right-hand side of (B7) that

κ (FM)
ν ≈ K (FM)

ν

(
κ

(FM)
1 , 0, 0

)
. (B9)

Thus, Eqs. (B7) can now be solved analytically leading to

κ
(FM)
1 = g(c0 + η) − 2k2T [πgk1(c0 + η)3]1/2

+ k1k2T 1/2(c0 + η)2

[
gζ

(
1

2

)
+ 2πk2T 3/2

]
+ O(k2

1 ),

κ
(FM)
0 = p−q + 2k2T [πgk1(c0+η)3]1/2+k1k2T 1/2(c0+η)2

×
[
gζ

(
1

2

)
− 2πk2T 3/2

]
+ O

(
k2

1

)
, (B10)

κ
(FM)
−1 = 2(p − ηg) + 2k2T [πgk1(c0 + η)3/2]1/2

+ k1k2T 1/2(c0 + η)2

[
gζ

(
1

2

)
− 2πk2T 3/2

]
+ O

(
k2

1

)
,

where we have defined

g = g(T ) = 1 − 3

λ3
dBN

ζ

(
3

2

)
= 1 − 3k2T 3/2ζ

(
3

2

)
, (B11)

in which k2 = 1/λ3
0N where λ0 is the de Broglie wavelength

at T = T0. The functions Fν (T ) in (15) are given by the
difference between Eqs. (B10) and their evaluation at T =
0, Fν (T ) = κ (FM)

ν − κ (FM)
ν |T =0.

2. P phase

The polar phase � = (0, 1, 0)T is solved similarly as the
FM phase. In this case, the GP equations lead to

μ = c0(1 + �0) + η(�1 + �−1). (B12)

The eigenvectors of A and ρnc are, again, states |1, m〉. The
exact equations of κν are given by

κ
(P)
1 = q − p + η + c0�1 − c0�0 − 3η�−1,

κ
(P)
0 = c0(1 − �1 − �0 − �−1), (B13)

κ
(P)
−1 = q + p + η − 3η�1 − c0�0 + c0�−1.

Here κ0 > κ±1 in the low-temperature regime. Then, one can
assume

κ (P)
ν ≈ K (P)

ν

(
0, κ

(P)
0 , 0

)
, (B14)

which gives the following approximations:

κ
(P)
±1 = ∓p + q + ηg + 2k2T

(
k1πc3

0g
)1/2

]

+ k1k2c2
0T 1/2

[
ζ

(
1

2

)
g + 2πk2T 3/2

]
+ O

(
k2

1

)
,

κ
(P)
0 = c0g + 2k2T

(
k1πc3

0g
)1/2 + k1k2c2

0T 1/2

×
[
ζ

(
1

2

)
g + 2πk2T 3/2

]
+ O

(
k2

1

)
. (B15)

Here, we observe that the energies κ
(P)
±1 only differ by the sign

of p. The functions Gν (T ) of (15) are obtained similarly as
Fν (T ) for the FM phase Gν (T ) = κ (P)

ν − κ (P)
ν |T =0.

3. AF phase

The family of states of the AF phase are given by the order
parameter � = (φ1, φ0, φ−1) = (cos χ, 0, sin, χ )T with χ ∈
(0, π/4]. For a general χ, ρc is symmetric under a rotation
by π about the z axis Rz(π ) and by the conjugation opera-
tor C, which is equivalent to a reflection over the yz plane.
Both operators are also symmetries of the Hamiltonian Ĥ (2).
Hence, ρnc must possess the same symmetries, implying that

ρnc =
⎛
⎝ a 0 D

0 b 0
D 0 c

⎞
⎠, (B16)

where D must be real. State |1, 0〉 would be an eigenvector of
ρnc and b = �0. For the other two eigenvectors, we follow
a similar analysis of Eqs. (B5) as in Ref. [36]. Also, we
only consider antiferromagnetic interactions η = 1. The GP
equations for the ρc and ρnc mentioned above imply that [36]( −p̃ − μ̃ C−D

C−D p̃ − μ̃

)(
φ1

φ−1

)
=

(
0
0

)
, (B17)
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where

p̃ = p − Nc cos(2χ ) − (c0 + 3)(a − c)

2
,

μ̃ = μ −
(

q + c0 + b + C+(a + c)

2

)
,

C± = c0 ± 1. (B18)

Let us remember that Nc = 1 − Nnc = 1 − (a + b + c). The
eigensystem (B17) yields [36]

μ̃ = ±
√

p̃2 + C2−D2, (B19)

tan(χ ) = − C−D

p̃ +
√

p̃2 + C2−D2
, (B20)

where we assume the negative value of μ̃ to consider the
lowest chemical potential. Equation (B20) implies that D is
negative because χ ∈ [0, π/4]. On the other hand, the Hamil-
tonian A has, as we expected, state |1, 0〉 as an eigenvector
with

κ0 = c0(1 + �0) + 1 − �0 − μ. (B21)

The other two eigenvectors are deduced by the reduced 2 × 2
Hamiltonian Ã that involves only the components |1,±1〉,

Ã =
(

−μ̃ + C+Nc

2

)
12 +

( −p̃ + C+
2 Nc cos(2χ ) C−(Nc cos χ sin χ + D)

C−(Nc cos χ sin χ + D) p̃ − C+
2 Nc cos(2χ )

)
.

The eigenvalues of Ã are equal to [36]

κ± = −μ̃ + C+
2

Nc ±
√(

p̃ − C+Nc cos(2χ )

2

)2

+ C2−(Nc cos χ sin χ + D)2. (B22)

The κ± energies would give the expression of the eigenvalues of ρnc, which implies that

a + c

2
∓

√(a − c

2

)2

+ D2 = �± . (B23)

The Hamiltonian Ã and ρnc have common eigenvectors, concluding that [36]

C−(D + Nc sin χ cos χ )
a − c

2
=

(C+
2

Nc cos(2χ ) − p̃
)

D. (B24)

For the FM and P phases, the unknowns quantities were given by the energies κν , and we only needed three equations (B7) and
(B13), respectively. In this case, we have five unknown quantities (χ, D, κν ) to determine with Eqs. (B20), (B21), (B23), and
(B24). The variables χ and D can be written in terms of the a, b, c variables (and then with κν) with Eqs. (B20) and (B24). In
particular, the equation for χ is given by

cos2 χ = 2(c0 + 3)Nc +
√

4[1 − c0(c0 + 4)]p(a − c) + 8[c0(c0 + 2) − 1](a − c)2 + (c0 + 1)2 p2 − 4(c0 + 2)(a − c) + (c0 + 5)p

4(c0 + 3)Nc
.

(B25)

The resulting equations for χ and D can be substituted in
Eqs. (B21) and (B23) to obtain the system of three equations
for the energies κν . We solve the final equations numerically
to obtain the main results of the text.

Now, let us calculate the analytic approximations for κν

closer to the bounds,

κ
(AF)
0 = 0,

Mc
z = 1 ⇐⇒ χ = 0. (B26)

First, we remark from (B20) that χ = 0 implies that D = 0.
Hence, we consider that χ ≈ 0, D ≈ 0 and κ0 ≈ 0 in (B22)
and (B23) that yields

a ≈ �+ ≈ k2T 3/2

[
ζ

(
3

2

)
− 2

√
πk1κ+

T
− ζ

(
1

2

)
k1κ+

T

]
,

c ≈ �− ≈ k2T 3/2

[
ζ

(
3

2

)
− 2

√
πk1κ−

T
− ζ

(
1

2

)
k1κ−

T

]
,

b = �0 ≈ �0(κ0 = 0) = k2T 3/2ζ

(
3

2

)
. (B27)

with

κ+ ≈ (c0 + 1)Nc ≈ (c0 + 1)

[
a − c − k2T 3/2ζ

(
3

2

)]
,

κ− ≈ 2
[

p − Nc − (c0 + 3)
(a − c

2

)]

≈ 2

[
p − 1 + a + c + k2T 3/2ζ

(
3

2

)]
− (c0 + 3)(a − c).

(B28)

We linearize Eqs. (B27) with respect to a and c, and we solve
them. The expressions up to first order with respect to k1 are
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a = k2T 3/2ζ
(

3
2

)
2

− (c0 + 1)k1k2T 1/2

2ζ
(

3
2

) {
ζ

(
1

2

)
ζ

(
3

2

)
g + 4πg′

}
+ O

(
k2

1

)
,

c = k2T 3/2ζ
(

3
2

)
2

+ k1k2T 1/2

ζ
(

3
2

) {
ζ

(
1

2

)
ζ

(
3

2

)
(g − p) + 4π (g′ − p)

}
+ O

(
k2

1

)
, (B29)

b = �0 ≈ �0(κ0 = 0) = k2T 3/2ζ

(
3

2

)
.

with g′ = 1 − 2k2T 3/2ζ (3/2). The horizontal bound cos χ =
1 in Eq. (B25) gives a quadratic equation for p. The solution
that coincides with p = 1 at T = 0 is, by substituting (B29),
equal to

p = g′ − k1k2T 1/2

(c0 + 1)ζ
(

3
2

)
{

c0(c0 + 1)

[
4πg′ + ζ

(
1

2

)
ζ

(
3

2

)]

− (c0 + 2)(3c0 + 1)k2T 3/2ζ

(
1

2

)
ζ

(
3

2

)2
}

+ O
(
k2

1

)
.

(B30)

The expression of H ′(T ) in Eq. (15) is given by the difference
between the right-hand side of Eq. (B30) and its evaluation at
T = 0.

Finally, let us approximate the vertical bound κ
(AF)
0 = 0.

We use Eq. (B21) with μ̃ ≈ −p̃,

κ0 ≈ (c0 − 2)�0 + 1 + p̃ − q − (c0 + 1)
(a + c)

2

= (c0 − 2)�0 + 1 + p − Nc cos(2χ ) − (c0 + 3)(a − c)

2

−q − (c0 + 1)
(a + c)

2
. (B31)

We approximate �0 on the right-hand side of the equation
with (B8), and we solve the resulting equation for κ0,

κ
(AF)
0 = 1 − q + c0 − 5

2
k2T 3/2ζ

(
3

2

)
+ k1k2T 1/2

(c0 + 1)ζ
(

3
2

)
×

{
(k3g + 4c0 p)ζ

(
1

2

)
ζ

(
3

2

)
+ 4π (k3g′ + 4c0 p)

}

+ O
(
k2

1

)
. (B32)

with k3 = (c0 − 1)(c2
0 + 2c0 − 1). We can observe that the

condition κ
(AF)
0 = 0 also depends on p and then the boundary

line is not a vertical line. However, k3 
 4c0 p for the values
that we consider in this paper for p and T . Hence, one can
neglect the term 4c0 p,

κ
(AF)
0 ≈ 1 − q + c0 − 5

2
k2T 3/2ζ

(
3

2

)
+ k1k2k3T 1/2

(c0 + 1)ζ
(

3
2

)
×
{

gζ

(
1

2

)
ζ

(
3

2

)
+ 4πg′

}
+ O

(
k2

1

)
. (B33)

From the previous equation, one can obtain the expression of
H0(T ) of (15).

For completeness, we calculate also the analytic approxi-
mations of κ± by inserting Eqs. (B29) in (B29),

κ
(AF)
+ = (c0 + 1)

2ζ
(

3
2

)
{

2ζ

(
3

2

)
g′ + k1k2T 1/2

[
4π [(c0 − 1)g′ + 2p] + [(c0 − 1)g + 2p]ζ

(
1

2

)
ζ

(
3

2

)]}
+ O

(
k2

1

)
, (B34)

κ
(AF)
− = 2(p − g′) + k1k2T 1/2

2ζ
(

3
2

)
{

4π
[(

c2
0 + 4c0 + 11

)
g′ − 2p(c0 + 5)

] + [(
c2

0 + 4c0 + 11
)
g − 2p(c0 + 5)

]
ζ

(
1

2

)
ζ

(
3

2

)}

+ O
(
k2

1

)
. (B35)

We can deduce from the previous equations that the analog
functions H± for the κ± energies are dependent of the vari-
ables p and T . The system of equations for the AF phase is
more complicated due to the calculation of two eigenvectors
of A. Then, our approximations would be less accurate as
in the previous phases (see Fig. 4). Even tough, the approx-
imations are acceptable with the numerical calculations for
T � 0.2T0.

APPENDIX C: ANALYTIC APPROACH OF THE TOTAL
MAGNETIZATION IN THE AF PHASE

Figure 3 indicates that the magnetization per atom Mz of
the AF phase is independent of the q variable. We can prove

the previous statement for low temperatures by calculating
Mz with the approximate expressions found in the previous
Appendix,

Mz = Tr(ρFz ) = cos(2χ )Nc + a − c

≈ p + c0k1k2T 1/2

(c0 + 1)ζ
(

3
2

){ζ

(
1

2

)
ζ

(
3

2

)
[(c0 + 3)g − 2p]

+ 4π [(c0 + 3)g′ − 2p]

}
+ O

(
k2

1

)
. (C1)
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FIG. 6. The change in the fraction f1 for the AF phase from T =
0 to T = 0.2 � f1 (D1) versus p for q = −3, −1, 1, respectively. � f1

decreases as one increases p. � f1 for p = 0.68 is at most 0.01.

APPENDIX D: CHANGE IN THE FRACTION f1 FOR THE
AF PHASE WITH RESPECT TO THE TEMPERATURE

In this Appendix, we summarize the numerical results re-
garding the change in the fraction f1 = 〈1, 1| ρ |1, 1〉 for the
AF phase with respect to the temperature. We define

� f1 ≡ f1|T =0.2 − f1|T =0, (D1)

where we are using the scaled variables. � f1 is a function
of the variables (p, q), and it is well defined only when the
AF phase exists for T = 0 and T = 0.2, i.e., for q ∈ [−3, 1]
and p ∈ [0, 0.68]. We plot in Fig. 6 � f1 versus the p variable
for q = −3, −1, and 1, respectively. One can conclude that
the fraction f1 is almost invariant for p = 0.68 in the interval
of temperatures T ∈ [0, 0.2], where � f1 is, at most, equal to
0.01.
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