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Analytical investigation of focusing Bose-Einstein condensates
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The focusing of a propagating untrapped Bose-Einstein condensate is studied theoretically. We use a scaling
solution method comprising a time-dependent scaling function to analytically examine the dynamics of a falling
Bose-Einstein condensate in different regimes of propagation including the expansion and compression zones.
Our model is based on the Gross–Pitaevskii equation which involves the interparticle interactions between atoms
and, consequently, their influence on the focused structures. We investigate the focused profile characteristic
factors such as the resolution and peak density for various cases of the focusing optical potential parameters as
well as the factors associated with the moving cloud. Our results are compared with numerical solutions of the
Gross–Pitaevskii equation.
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I. INTRODUCTION

The construction of atom-scale devices using multiple
electronic materials in a single step printing process with
high throughput represents the ultimate fabrication capability.
Such implementation enables the design and test of quantum
three-dimensional (3D) computer chips and processors [1,2].
The focusing of neutral atomic beams using optical laser
light in order to create nanostructure sizes has been estab-
lished in Refs. [3–14]. Taking advantage of optical lattices
(standing waves) results in a large array of identical sub-
structures with a high spatial coherence such as photonic
materials [15]. As a case in point, efficient sensors are pro-
duced by an array of uniform nanostructures covering a
significant area [15]. In addition, focusing a beam of neutral
atoms in atom optics can create nanoscale metal dots on a
surface [16], which are utilized to study transport phenomena,
or quantum dot effects when deposited on a semiconductor.
Another significant application is the use of metal dots as an
etch mask [17] to transfer the pattern to a substrate material,
allowing the extension of the fabrication techniques to other
materials.

A vast majority of research conducted in the scope of
atom lithography to date has exploited oven sources of
neutral atoms, which restricts structures to a range of 60–
100 nm. However, using controllable matter waves such as
Bose-Einstein condensates (BECs) for atom lithography [5,7]
offers several advantages over thermal atom sources, includ-
ing smaller de Broglie wavelengths, higher peak densities,
higher-quality spatial modes, and superior coherence [18–20].
A comparison between oven and BEC sources indicates that,
while thermal sources may produce a flux range that is
orders of magnitude higher than condensate sources, they
have limited structural resolutions due to angular divergence.
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Nevertheless, an ultracold source of atoms such as a BEC
enables spatial modes leading to collimated atomic beams
along with an enhanced flux density [19].

Regarding the fact that the neutral alkali-metal atoms such
as Li, Na, K, Rb, and Cs are chemically highly active ele-
ments and could be simply manipulated by the laser fields,
they are an appropriate choice for atom lithography [15]. In
our study, we investigate the properties and physics of atom
deposition techniques utilizing a BEC source of 87Rb since
it is a well-studied system along with defined and measured
experimental parameters for the purpose of analytical and
numerical computations.

The examination of focusing of a confined BEC in a har-
monic trap was conducted theoretically in Ref. [21], where
the focusing time was scaled as a function of different fo-
cusing strengths for a condensate that is constantly trapped.
Later in 2010, Judd et al. [22] studied the evolution of a
compressed BEC utilizing Fresnel zone plates (FZPs) when
passing through the etched holes, which predicted a resolu-
tion of 50 nm. However, there have been studies recently in
applying optical light fields, acting as thick lenses, for focus-
ing untapped BECs. Using an optical lattice and a harmonic
focusing potential, the focusing dynamics of freely propa-
gating BECs was considered via Gross–Pitaevskii equation
(GPE) simulations [23] as well as the analytical variational
method [24] in which the profile linewidths were predicted
to be as narrow as 20 nm in the former and 9 nm in the
latter. In a similar work, the focusing of a quasicontinuous
atom laser beam of 85Rb was studied; employing a two-state
model which involves the two-body atom-atom interactions
and three-body recombination losses, the resolution of 8 nm
was predicted [25]. The fact that conducting numerical GPE
simulations would be feasible at the cost of time, energy,
and using high-end computational processors, necessitates the
development of the analytical methodologies, which offer a
fast processing of the focusing dynamics with relatively high
accuracy.
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In this paper, we introduce a scaling solution method [26]
to consider the dynamics of an untrapped propagating BEC
under an externally optical focusing potential. Applying this
analytical approach, we aim to understand the effect of in-
teratomic interactions within the BECs on the deposited
structures. To this end, factors such as the intensity and geom-
etry of the focusing light field as well as various magnitudes
of imparted momentum kicks to the BECs in the atom de-
position process are investigated. The quality of the focusing
is assessed by examining the width of the BEC and their
resultant atomic density at the focus. Ultimately, comparing
the analytical results with the corresponding numerical GPE
simulations, we evaluate the validity of prediction in our
model for a focused BEC.

II. THE SCALING SOLUTION MODEL

In Ref. [23], the GPE was used to describe the focusing
dynamics of a repulsively interacting BEC in a Gaussian
standing potential. However, in general the GPE is a 3D partial
differential equation that requires a numerical solution and
large grid sizes (particularly for free-space dynamics). This
restricts the development cycle, making rapid prototyping of
focusing protocols unachievable. Hence, we consider a scal-
ing solution approach [26] to estimated the wave function of
the BEC in different regimes during its propagation. We adapt
this methodology to account for an evolving falling BEC,
released from a trap, being eventually focused by a optical
focusing potential.

Let us consider the condensate wave function as
ψ0(x, y, z, t ). It is assumed that the condensate is initially
confined at t = 0 by a trapping potential with a cylindrical
symmetry including two radial tight frequencies along the y
and z axes, ω0y = ω0z = ω0r , and one axial weak frequency
along the x axis, ω0x where ω0x < ω0r . This causes a cigar-
shaped condensate elongated along the x axis. Once the trap
is turned off at t > 0, the BEC is exposed to an external
time-dependent harmonic potential, V (x, r, t ). Therefore, the
whole potential function affecting the BEC is represented by

V (x, r, t ) = 1
2 m

[
ω2

x (t )x2 + ω2
r (t )r2

]
, (1)

where ωx(t = 0) = ω0x, ωr (t = 0) = ω0r , r2 = y2 + z2, and
ωx(t ) and ωr (t ) are, respectively, the time-dependent axial
and radial frequencies of the optical focusing potential. The
evolution of the condensate wave function ψ0(x, r, t ) in such
a potential is described by the Gross–Pitaevskii equation

ih̄
∂ψ0(x, r, t )

∂t
=

{
− h̄2

2m

(∇2
x + ∇2

r

)+ m

2

[
ω2

x (t )x2 + ω2
r (t )r2

]

+ g|ψ0(x, r, t )|2
}
ψ0(x, r, t ), (2)

where m and h̄ are the atomic mass and Planck’s constant, g =
4π h̄2as

m measures the interaction strength, as is the scattering
length, ∇2

x = ∂2/∂x2 and ∇2
r = ∂2/∂y2 + ∂2/∂z2.

Since the harmonic frequencies vary over time, the time
and distance scales are changed such that the rescaled coordi-
nates are turned to ρx = x/bx(t ), ρr = r/br (t ) where bx(t ) and
br (t ) are the dimensionless scaling factors, and the rescaled
time is introduced by τ (t ) [26,27]. In this case, the wave

function of the cigar-shaped condensate is given by

ψ0(x, r, t ) = 1√
K (t )

χ0(ρx, ρr, τ (t )) exp{i	(r, x, t )}, (3)

where K (t ) = bx(t )b2
r (t ) is a dimensionless quantity, and the

dynamical phase is defined by

	(x, r, t ) = m

2h̄

(
ḃx(t )

bx(t )
x2 + ḃr (t )

br (t )
r2

)
. (4)

The total number of atoms in the rescaled system
within the BEC is achieved by the normalization condi-
tion

∫ |χ0|2dρxd2ρr = ∫ |ψ0|2dxd2r = N0. The GPE for the
rescaled wave function χ0(ρx, ρr, τ (t )) is gained by substitut-
ing Eqs. (3) and (4) into Eq. (2),

ih̄
dτ

dt

∂χ0

∂τ
=

{
− h̄2

2m

[
1

b2
x(t )

∇2
ρx

+ 1

b2
r (t )

∇2
ρr

]

+mρ2
x

2

[
b̈x(t )bx(t ) + ω2

x (t )b2
x(t )

]
+mρ2

r

2

[
b̈r (t )br (t ) + ω2

r (t )b2
r (t )

] + g|χ0|2
K (t )

}
χ0.

(5)

We now break down χ0(ρx, ρr, τ (t )), into the time and posi-
tion scales,

χ0(ρx, ρr, τ (t )) = η(ρx, ρr ) exp [−iμτ (t )/h̄], (6)

where μ is the chemical potential, defined by [28]

μ = 1

2
h̄ω0

(
15N0as

√
mω0

h̄

)2/5

, (7)

where ω0 = [ω0xω0yω0z]1/3. Using Eq. (6) as well as applying
the Thomas-Fermi (TF) approximation [28], Eq. (5) reduces
to

mρ2
x

2

[
b̈x(t )bx(t ) + ω2

x (t )b2
x(t )

]
+ mρ2

r

2

[
b̈r (t )br (t ) + ω2

r (t )b2
r (t )

] + g|η|2
K (t )

− μ
dτ

dt
= 0.

(8)

The scaling equations for bx(t ), br (t ), and τ (t ) are then ob-
tained by the following choices:

b̈x(t ) + ω2
x (t )bx(t ) = ω2

0x

bx(t )K (t )
, (9)

b̈r (t ) + ω2
r (t )br (t ) = ω2

0r

br (t )K (t )
, (10)

τ (t ) =
∫ t dt ′

K (t ′)
, (11)

where the initial conditions for the scaling factors are given
by

bx(0) = br (0) = 1, (12)

ḃx(0) = ḃr (0) = 0. (13)
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FIG. 1. Schematic illustration of the focusing process through
an optical focusing potential. The BEC is released from a trapping
potential, indicated by the 3D parabola, and propagates and expands
along the z axis in the expansion zone indicated by the light red rect-
angle. The compression zone is depicted by a light green rectangle
in which the BEC is focused as it approaches the focusing potential,
which is indicated by the two parallel yellow-red hills. A complete
focused BEC occurs between the two adjacent peaks of the focusing
potential, which has a harmonic distribution along the focusing x
axis. The problem has a symmetry along the y axis.

Substituting Eqs. (9)–(11) into Eq. (8), this reduces to

m

2

(
ρ2

x ω2
0x + ρ2

r ω2
0r

) + g|η|2 − μ = 0. (14)

Equation (14) results in the Thomas–Fermi wave function in
terms of the rescaled coordinates,

η(ρx, ρr ) =
√

μ

g

(
1 − ρ2

x

R2
x

− ρ2
r

R2
r

)
, (15)

where Rx = ( 2μ

mω2
0x

)1/2 and Rr = ( 2μ

mω2
0r

)1/2 are, respectively,
the condensate TF radii along the axial and radial trap axes
at t = 0. By defining Rx(t ) = bx(t )Rx and Rr (t ) = br (t )Rr ,
which indicate the evolving TF radii at t > 0, the TF wave
function in the original cylindrical coordinates is achieved:

η

(
x

bx(t )
,

r

br (t )

)
=

√
μ

g

(
1 − x2

R2
x (t )

− r2

R2
r (t )

)
. (16)

Hence, the general symbolic wave function of the evolving
BEC is obtained by using Eqs. (3), (4), (6), and (16),

ψ0(x, r, t ) = 1√
K (t )

η

(
x

bx(t )
,

r

br (t )

)

× exp {i	(x, r, t ) − iμτ (t )/h̄}. (17)

To estimate the scaling functions, we split the problem
into two regimes, the expansion and compression zones, as
depicted in Fig. 1. Initially, at t = 0, the condensate is trapped

by a harmonic trapping potential. At t > 0, the condensate
is released from the trap and starts expanding freely while
moving towards the focusing potential along the z axis. The
BEC then enters the second regime where it undergoes the
action of a focusing potential and starts being compressed
until it is optimally focused by the potential.

For the case of free expansion in the time interval 0 < t �
t0 (t0 is the end time of expansion), and given ωx(t ) = ωr (t ) =
0 in the expansion zone, Eqs. (9) and (10) reduce to

b̈xe(t ) = ω2
0x

b2
xe(t )b2

re(t )
, (18)

b̈re(t ) = ω2
0r

b3
re(t )bxe(t )

, (19)

where the index e refers to the expansion case. Given that the
condensate is initially elongated along the x axis [ω0r � ω0x,
or Rr (0) � Rx(0)], the expansion along the radial direction
would be much faster once the BEC is released from the trap.
As a result, at t < t0, one can consider bxe(t ) as a constant
variable over the expansion process, meaning that bxe(t ) =
bxe(0) = 1. Applying this condition, the solution for (19)
reads

bre(t ) =
√

1 + ω2
0rt

2, (20)

which then is substituted into (18) and leads to

bxe(t ) = 1 +
(ω0x

ω0r

)2
[(ω0rt ) tan−1(ω0rt )

− ln(
√

1 + (ω0rt )2)]. (21)

Note that Eqs. (18) and (19) can also be solved numerically,
which consequently results in the numerical solution of the
rescaled expansion time function τe(t ) [see Eq. (11)]. Finally,
Eq. (17), specifically for the expanding BEC in t0 < t � t1,
converts to

ψe(x, r, t ) = 1√
bxeb2

re

√
μ

g

(
1 − x2

R2
xe(t )

− r2

R2
re(t )

)

× exp

[
im

2h̄

(
ḃxe

bxe
x2 + ḃre

bre
r2 − 2μτe

m

)]
. (22)

Turning to the condensate compression process, the fo-
cusing potential is switched on at t > t0 and varies in the
time interval t0 < t � t1 (t1 is the end of compression process
where the BEC is optimally focused). We assume that the
dipole force gradient [29] caused by the focusing potential is
only applied along the x axis, and there exists no other external
forces exerted to the BEC along the radial, y and z axes such
that ωx(t0) = 0, ωx(t > t0) > 0, and ωr (t0) = ωr (t > t0) = 0.
The choice for the focusing potential configuration will be
discussed in Sec. III. As a result, Eqs. (9) and (10) change
to

b̈xc(t ) + ω2
x (t )bxc(t ) = 0, (23)

b̈rc(t ) = 0, (24)

where the index c refers to the compression case. The solution
for brc(t ) is simply obtained by integrating twice from both
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sides of Eq. (24),

brc(t ) = Ct + D, (25)

where the constant coefficients, C and D, are determined
by using the boundary conditions bre(t0) = brc(t0) = b0re and
ḃre(t0) = ḃrc(t0) = ḃ0re:

C = ḃ0re, (26)

D = b0re − ḃ0ret0. (27)

Since ωx(t ) is a time-dependent function, it makes Eq. (23)
complicated to solve analytically. Hence, it is reasonable to
estimate bxc(t ) via a numerical solution of Eq. (23) in the
time interval t0 < t � t1 using the above-mentioned boundary
conditions. The rescaled compression time function, τc(t ), is
obtained consequently by a numerical integration of Eq. (11).
Overall, Eq. (17), for the compression process, in t0 < t � t1,
is rewritten as

ψc(x, r, t ) = 1√
bxcb2

rc

√
μ

g

(
1 − x2

R2
xc(t )

− r2

R2
rc(t )

)

× exp

[
im

2h̄

(
ḃxc

bxc
x2 + ḃrc

brc
r2 − 2μτc

m

)]
. (28)

III. THE FOCUSING POTENTIAL

To investigate the compression dynamics of the BEC,
one needs to determine the required focusing time-dependent
frequency. We assume two counterpropagating laser beams
creating a focusing light field along the x axis. The BEC
propagates along the z axis perpendicular to the propagation
of the light field. Atoms are assumed to move slowly enough
inside the light field to avoid the spontaneous emission, and
they also maintain the adiabatic conditions [30]. In this case,
the BEC is influenced by the dipole force [31] along the x axis.
The corresponding dipole potential resulting from the interac-
tion between an induced atomic dipole moment and the light
electric field, experienced by the moving BEC [23–25,32] is
given by

Udip(x, z) = h̄�

2
ln

(
1 + γ 2

γ 2 + 4�2

I (x, z)

Is

)
, (29)

which depends on factors such as spontaneous decay rate of
the excited state, γ , the detuning from the resonance �, and
the saturation intensity Is associated with the atomic D2 line,
5 2S1/2 −→ 5 2P3/2, for 87Rb. The potential intensity profile
I (x, z) is chosen to be harmonically shaped along the x axis
with a single node at x = 0, which can be practically produced
using a spatial light modulator [33,34]. In addition, the profile
comprises a Gaussian distribution along the z axis, resulting
in

I (x, z) = I0 exp
( − 2z2

/
σ 2

z

)
(k2x2), (30)

where I0 is the maximum intensity of the spatially varying
harmonic profile, σz is the radius of the beam at 1/e2 of the
maximum intensity, k = 2π/λ determines the strength of the
potential and λ is the wavelength of the field. In such a case,
the light forces applied to moving atoms along the transverse y
axis are negligible compared with those along the x axis [30].

As a result, a translational symmetry is formed along the y
axis.

For the purpose of simplicity in the computational process,
the BEC is assumed to be situated in a stationary frame while
the focusing potential is located in a moving frame approach-
ing the BEC [23,24]. Furthermore, considering relatively low
values of I0, and relatively large values of �, Eq. (29) converts
to

Udip(x, t ) = h̄�γ 2

(γ 2 + 4�2)

I0

Is
k2x2 f (t ), (31)

where

f (t ) = exp

(−2

σ 2
z

[z0 − z(t )]2

)
, (32)

where z0 is the initial distance between the center-of-mass
of the condensate and the center of the focusing potential,
z(t ) = 1

2G t2 + v0t is the varying distance in terms of time,
following the free falling motion, G denotes gravity, and v0

is the condensate’s initial longitudinal velocity. Since Eq. (31)
has a harmonic configuration, one can write

V (x, t > 0) = 1
2 mω2

x (t )x2 = Udip(x, t ), (33)

where the time-dependent focusing frequency along the x axis
is achieved as

ω2
x (t ) = h̄�γ 2k2

m(γ 2 + 4�2)

I0

Is
exp

{−2

σ 2
z

[
z0 −

(
1

2
G t2 + v0t

)]2}
.

(34)
Equation (34) implies that the focusing potential, propa-

gating along the x axis, is configured as a time-dependent
function in 0 < t < ∞ with a Gaussian distribution starting
from zero to its peak intensity, then falling back to zero along
the z axis. Hence, it is reasonable to consolidate the compres-
sion and expansion states and numerically solve the scaling
factors bx(t ) and br (t ) directly from Eqs. (9) and (10) for
0 < t < ∞ considering the time-dependent frequency from
Eq. (34). Accordingly, the BEC wave function is scaled by
Eq. (17) at any t from the solution of bx(t ) and br (t ).

IV. RESULTS

We now conduct a number of simulations using the scaling
solution method to study the condensate evolution under a
focusing potential. We suppose a cylindrical 87Rb BEC with
N0 = 105 confined in a harmonic trap including ω0x = 2π ×
10 Hz, ω0y = ω0z = 2π × 70 Hz. The ground state of BEC
inside the trap is obtained by assuming that the condensate is
highly repulsive having the scattering length of as = 100a0

(a0 is the Bohr Radius, a0 = 5.29 × 10−11 m). The wave-
length of the focusing potential, apart by z0 = 500 μm from
the BEC, is taken as λ = 312 μm (400 times greater than
the actual D2 line transition of 87Rb, λD2 = 780.027 nm). By
adjusting the potential power appropriately, we aim that the
BEC reaches its maximum focused state (optimal focus) at
the center of the focusing potential [24].

Figure 2 indicates a numerical solution of Eqs. (9) and (10)
for the scaling factors bx(t ) and by(t ) = bz(t ) in the time
interval 0 � t � 3 ms when the BEC is exposed to a time-
dependent potential whose frequency follows Eq. (34). Here,
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FIG. 2. Numerical solution for the scaling factor (associated with
the 87Rb BEC) as a function of time for three-momentum kicks, p =
32h̄k [solid and dashed blue curves (the thickest)], p = 64h̄k [solid
and dashed red curves (middle thickness)], and p = 128h̄k [solid and
dashed green curves (the thinnest)]. While the solid curves indicate
the evolution of the scaling factor along the x axis, b2

x (t ), the dashed
ones show this procedure along the radial y and z axes by b2

y(t )
and b2

z (t ). The parameters used in this simulation are z0 = 500 μm,
σz = 100 μm, λ = 312 μm, � = 200 GHz, Is = 16.5 W/m2, γ =
37 MHz, ω0x = 2π × 10 Hz, and ω0y = ω0z = 2π × 70 Hz.

three different momentum kicks, p = mv0 = 32h̄k, 64h̄k, and
128h̄k, are initially applied to the condensate. The required
power to bring the BEC to its optimum focus at the center of
the potential (z = 0) is determined by treating the atoms as
classical particle trajectories [23–25]

P0 = (5.37)
π

4

E0

h̄�

γ 2 + 4�2

γ 2

Is

k2
, (35)

where E0 = 1/2mv2 represents the condensate’s kinetic en-
ergy, and v = (2G z0 + v2

0 )1/2 denotes the condensate’s final
velocity at z = 0. Thus, the corresponding powers are es-
timated as P32h̄k = 19.544 mW, P64h̄k = 65.532 mW, and
P128h̄k = 249.481 mW for the final velocities of [v(z =
0)]32h̄k = 21.315 cm/s, [v(z = 0)]64h̄k = 39.031 cm/s, and
[v(z = 0)]128h̄k = 76.156 cm/s, respectively. As a reference,
we set σz = 100 μm, � = 200 GHz, Is = 16.5 W/m2, γ =
37 MHz (based on the data from the 87Rb D2 line). Since the
focusing potential is applied along the x direction, it causes
b2

x(t ) to become very close to zero at a certain time depending
on the BEC momentum kick and the corresponding potential
power. As shown in Fig. 2, increasing the initial momentum
kick yields the minimum point for b2

x curves at earlier times
such that this occurs at [t (z = 0)]32h̄k = 2.262 ms, [t (z =
0)]64h̄k = 1.266 ms, and [t (z = 0)]128h̄k = 0.654 ms for p =
32h̄k, p = 64h̄k, and p = 128h̄k respectively, shown by the
solid blue, red, and green lines. The dashed lines illustrate
the evolution of the scaling factors b2

y(t ) and b2
z (t ) along

the radial axes in which no focusing dipole force is applied.
Therefore, the three dashed curves are of ascending trend over
the condensate propagation process due to the presence of re-

0 20 40 60 80 100 120
0

100

200

300

0 20 40 60 80 100 120
0
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1.5

2
106

4.21 10.2 28.16 58.1 100.02 153.91 219.78

FIG. 3. Results for the focused 87Rb BEC at z = 0 derived from
the scaling solution model for different values of momentum kick
and focusing power while considering two different potential beam
sizes, σz = 100 μm (indicated by the blue dots) and σz = 200 μm
(indicated by the red stars). The upper graph illustrates the values
of FWHM and the lower one shows the corresponding peak den-
sities. The horizontal axis at the bottom of the figure represents
the corresponding optimal power values to the momentum kicks.
The parameters used are N0 = 105, z0 = 500 μm, λ = 312 μm,
� = 200 GHz, Is = 16.5 W/m2, γ = 37 MHz, ω0x = 2π × 10 Hz,
ω0y = ω0z = 2π × 70 Hz, and as = 100a0 = 5.29 × 10−11 m.

pulsive s-wave interactions. In addition, this trend undergoes
a considerable boost for all the radial curves right at their
t (z > 0) where the condensate leaves the focus point inside
the potential and begins to expand significantly to release
saved potential energy. Utilizing the values for the axial and
radial scaling factors at the focus point (z = 0), one is able
to obtain the 3D density profile for the focused BEC at z = 0
using Eq. (28).

The results for the values of condensate full width at half
maximum (FWHM) and peak density for different momentum
kicks, from p = 0h̄k to p = 128h̄k, are represented in Fig. 3.
We have considered two various potential radii, σz = 100,
200 μm to investigate the focused profile. Every momentum
kick requires a certain optimum potential power to focus the
BEC at z = 0. For each potential radius, an increase in the
magnitude of momentum kick [and consequently power, see
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FIG. 4. Numerical solution for the scaling factor b2
x (t ) as a func-

tion of time for three different axial trapping frequencies ω0x = 2π ×
10 Hz (solid blue curve), ω0x = 2π × 40 Hz (red dashed curve),
and ω0x = 2π × 70 Hz (green dash-dotted curve). The parameters
are z0 = 500 μm, σz = 100 μm, λ = 312 μm, � = 200 GHz, Is =
16.5 W/m2, γ = 37 MHz, and ω0y = ω0z = 2π × 70 Hz.

Eq. (35)] results in a lower profile FWHM improving the res-
olution of the created structures. A rise in potential power also
enhances the exerted dipole force to the BEC, bringing higher
peak densities. As a case in point, imparting p = 128h̄k to the
BEC, respectively, leads to a resolution and peak density of
7.29 nm and 1.682 × 106 atoms/μm2 in the plane of x-z (the
profile has been integrated over the y axis), for σz = 100 μm.
Moreover, since increasing the potential size σz causes a
smaller laser intensity according to I0 = 8P0/πσ 2

z [24,30], it
is expected that this negatively affects the profile resolutions
and lowers the peak densities of the focused condensate (see
the bottom graph in Fig. 3).

It is also worth investigating the influence of different BEC
geometries on the deposited profile. Here, we consider three
various cases in which the condensate is initially trapped
by using three different axial trapping frequencies, ω0x =
2π × 10, 2π × 40, and 2π × 70 Hz forming highly cylindri-
cal, moderate cylindrical, and spherical BECs, respectively,
assuming that ω0r = 2π × 70 Hz is the same for all the three
cases. The numerical results of solving b2

x(t ), are illustrated
in Fig. 4. For ω0x = 2π × 70 Hz, the variation slope of scal-
ing curve is more significant than that of ω0x = 2π × 40 Hz
and ω0x = 2π × 10 Hz, both before (t < 2.262 ms) and after
(t > 2.262 ms) the focal spot. The reason for this is due to
the greater amount of potential energy saved in the confined
BEC. This potential energy is converted to kinetic energy
when the BEC is released from the trap as well as when
it leaves the focal spot. Moreover, while the scaling factor
b2

x(t ) has the largest values for ω0x = 2π × 70 Hz, it takes
the lowest values for ω0x = 2π × 10 Hz, in 0 � t � 3 ms so
that (b2

x )2π×70 Hz > (b2
x )2π×40 Hz > (b2

x )2π×10 Hz.
The results at t = 0 (BEC ground state) and t = 2.262

ms (focused state) are applied to the BEC density profile
[Eq. (28)] and are depicted in Figs. 5(a)–5(f). While the left
column graphs, from top to bottom [Figs. 5(a), 5(c), and 5(e)],
indicate the BEC ground state for ω0x = 2π × 10, 40, 70 Hz

FIG. 5. (left column) Top view of the TF ground-state density
profile in the (x-z) plane for (a) ω0x = 2π × 10 Hz, (c) ω0x =
2π × 40 Hz, and (e) ω0x = 2π × 70 Hz. (right column) The resul-
tant focused BEC density profile estimated by the scaling solution
method for (b) ω0x = 2π × 10 Hz, (d) ω0x = 2π × 40 Hz, and
(f) ω0x = 2π × 70 Hz. The color maps in all graphs illustrate the
values of density profile in atoms/μm2. The parameters are N0 =
105, z0 = 500 μm, λ = 312 μm, σz = 100 μm, � = 200 GHz,
Is = 16.5 W/m2, γ = 37 MHz, ω0y = ω0z = 2π × 70 Hz, and as =
100a0 = 5.29 × 10−11 m for 87Rb.

respectively, the right column graphs [Figs. 5(b), 5(d),
and 5(f)] show the corresponding focused BEC at t (z = 0) =
2.262 ms. It is clear that increasing the axial trapping fre-
quency while keeping the radial one constant, results in a
wider (less resolution) and shorter (less peak density) focused
condensate as this brings smaller b2

x. Hence, it is expected
that focusing a cigar-shaped BEC leads to a higher resolution
and peak density compared with a spherical BEC given that
a cylindrical BEC is elongated along the direction where the
dipole force is applied (the x axis in this case).

Following the consideration of various BEC geometries,
we have considered the profile characteristic factors (FWHM
and peak density) in the range of 2π × 10 � ω0x � 2π ×
70 Hz for p = 32, 64 and 128h̄k, shown in Figs. 6. As
observed, narrower and higher structures are achieved when
utilizing lower axial trapping frequencies for any magnitude
of p. Furthermore, the influence of employing larger mo-
mentum kicks on the improvement of focused structures is
displayed, which offers the best results for p = 128h̄k.

V. NUMERICAL GROSS–PITAEVSKII EQUATION
SIMULATIONS

To validate the accuracy of the analytical scaling so-
lution approach for estimating the dynamics of focusing
BECs, we carried out GPE numerical simulations. To this
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FIG. 6. Results for the focused 87Rb condensate at z = 0 derived
from the scaling solution model for different values of axial trapping
frequency. The simulations are conducted using three various mo-
mentum kicks, p = 32h̄k (blue dots), 64h̄k (red stars), and 128h̄k
(green squares). The upper graph indicates the values of FWHM
while the lower one shows the corresponding peak densities. Param-
eters used are N0 = 105, z0 = 500 μm, σz = 100 μm, λ = 312 μm,
� = 200 GHz, Is = 16.5 W/m2, γ = 37 MHz, ω0y = ω0z = 2π ×
70 Hz, and as = 100a0 = 5.29 × 10−11 m.

end, we numerically solved Eq. (2) using an embedded
Runge–Kutta method in conjunction with adaptive Fourier
split-step size [24,35]. In this process, the fourth and third
orders were employed, evaluating a local error for an
adaptive step-size control in each iteration of a simula-
tion. The characteristic factors of the focused BEC profile
through a focusing potential were examined by the numer-
ical GPE simulations. The results indicate that the scaling
solution method, in most cases, offers a reliable precision
in predicting the deposited structure linewidths and peak
densities.

Figure 7 displays the profile resolution and peak density
as a function of imparted momentum kick acquired by the
scaling solution and numerical GPE approaches for the same
parameters as in Sec. IV. Concentrating on the profile width,
we notice that the scaling solution (red triangle curve) delivers
higher accuracy in the results for the lower momentum kicks
(i.e., p < 48h̄k). However, according to the GPE simulations,
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FIG. 7. Results for the focused 87Rb condensate at z = 0
achieved by the scaling solution (indicated by the red triangles)
and exact numerical GPE simulation (indicated by the blue crosses)
models. The upper graph illustrates the values of FWHM as a
function of momentum kick whereas the lower graph shows the cor-
responding peak densities. The black bars on the GPE data represent
the standard deviation (SD) error values, which have been derived
from nonlinear Gaussian fits to the structures. Parameters used are
N0 = 105, z0 = 500 μm, σz = 100 μm, λ = 312 μm, � = 200 GHz,
Is = 16.5 W/m2, γ = 37 MHz, ω0y = ω0z = 2π × 70 Hz, and as =
100a0 = 5.29 × 10−11 m.

the resolution tends to a steady state for p > 100h̄k, which
causes a gap between the blue and red curves. As an illustra-
tion, we achieved the linewidth of (�x)res = 15.6 and 7.3 nm
for p = 128h̄k out of the GPE and scaling solution model,
respectively.

In regard to the profile peak density, we found that
the best agreement occurs when setting 40h̄k � p � 88h̄k.
Nonetheless, for extremely-high-momentum kicks, the scal-
ing solution methodology loses its capability to provide the
precise results such that a considerable offset is observed
between the blue and red curves at p = 128h̄k. This is mainly
due to the excitations in the focusing event [24] that be-
come significant when applying larger-momentum kicks to
the BEC, which can be predicted well through the GPE
simulations.
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VI. CONCLUSIONS

In this paper, we investigated the dynamics of focusing
of 87Rb BECs traveling through a harmonic-shaped focusing
optical potential from an analytical point of view. Utilizing the
scaling solution technique, we analyzed the evolution of 87Rb
condensates in the expanding and focusing regimes when
considering the interatomic two-body interactions. We used
a highly repulsive BEC (i.e., as = 100a0), satisfying the re-
quirement for a Thomas–Fermi profile. It was concluded that
the initial geometry of a BEC can play an essential role in the
focused scheme so that better resolutions and peak densities
can be achieved by cylindrical BECs rather than spherical
ones. We showed that using higher potential powers and ini-
tial momentum kicks as well as exploiting smaller potential
radius sizes can significantly improve the resolution and peak

density of deposited structures. Finally, a direct comparison
between the scaling solution and numerical GPE simulations
was conducted. We found a good agreement between the two
approaches, especially for low- and mid-range longitudinal
velocities. Nevertheless, since the proposed analytical method
does not consider the dimensionality disruptions such as exci-
tations in high-momentum kick regimes, the results may not
be as reliable as in the slow regimes.
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