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ac polarizability and photoionization-cross-section measurements in an optical lattice
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We use double-resonant two-photon laser spectroscopy to measure the dynamic scalar polarizability of the
rubidium 5D3/2 level, αS

5D3/2
, at a wavelength of λ = 1064 nm. Since λ is shorter than the photoionization (PI)

limit of the Rb 5D3/2 level, this state undergoes significant broadening due to PI. The 1064-nm field is applied
in the form of a deep optical lattice (∼105 photon recoils) generated by an in-vacuum field-enhancement cavity.
In our spectroscopic method, we use known dynamic polarizabilities to eliminate the need to measure the light
intensity. Our method yields, in atomic units, αS

5D3/2
= −524(17), in agreement with estimates. Additionally, we

extract the 5D3/2 photoionization cross section σ at 1064 nm from spectral linewidths; we find σ = 44(1) Mb.

DOI: 10.1103/PhysRevA.104.063304

For some time, neutral atoms have been trapped by off-
resonant optical fields for the purpose of redefining the second
with unparalleled precision [1], simulating theoretical mod-
els [2–4], and constructing quantum computing protocols
[5,6]. An atom in an electric field with a frequency far from
resonance of an electric-dipole transition undergoes an en-
ergy shift due to the ac Stark effect, which is proportional
to the field intensity. In applications of optical-dipole traps
in optical clocks and in spectroscopy, differential ac Stark
shifts of the relevant atomic states must be either very well
known or eliminated using carefully determined “magic”
wavelengths [7–9]. The ac shifts follow �W = −α(ωL )E2

L/4,
with a laser electric field EL and angular frequency ωL,
and state-dependent dynamic polarizabilities α. Following the
intensity-gradient force on the atomic center-of-mass (CM)
coordinate, −∇R�W (R), states with positive (negative) α are
attracted to (repelled from) locations of high field intensity.
Also, the ac shifts of spectral lines of atomic transitions scale
with the difference between the α-values of the relevant states.

For an atomic state |n, l, j, mj〉 in a field with polarization
unit vector ε̂, the dynamic polarizability is

αn,l, j,mj (ωL ) = 2

h̄

[ ∑
n′,l ′, j′,m′

j

|〈n′, l ′, j′, m′
j |ε̂ · d̂|n, l, j, mj〉|2

× ω
n′l ′ j′
nl j(

ω
n′l ′ j′
nl j

)2 − ω2
L

+ p.v.
∑

l ′, j′,m′
j

∫ ∞

0
dε′ρ(ε′)

×|〈ε′,l ′, j′,m′
j |ε̂ · d̂|n,l, j,mj〉|2

ωε′
nl j(

ωε′
nl j

)2−ω2
L

]
,

(1)
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where d̂ is the electric-dipole moment operator, ω
n′l ′ j′
nl j =

(Wn′l ′ j′ − Wnl j )/h̄ for bound state energies Wnl j and Wn′l ′ j′ ,
and ωε′

nl j = (ε′ − Wnl j )/h̄ for free-electron-state (FES) ener-
gies ε′. The quantity ρ(ε′) is the density of FESs with energy
ε′ and is equal to 1 per unit energy, for energy-normalized
states [10]. When the photon energy h̄ωL is large enough
to photoionize the atom, the integral term in Eq. (1) in-
cludes a pole at ωL = ωε′

nl j , with the real-valued principal
integral yielding the FES polarizability contribution. In the
high-frequency limit, ωL > |ωn′l ′ j′

nl j | for all |n′, l ′, j′, m′
j〉, and

in certain cases discussed in the Appendix, the polarizability
approaches the free-electron polarizability, αe = −1/ω2

L [11].
The free-electron polarizability follows from Eq. (1) by tak-
ing the limit ωL → ∞ and using the Thomas-Reiche-Kuhn
sum rule; it becomes even more apparent when evaluating
the polarizability in the velocity gauge of the field [12]. The
free-electron polarizability manifests, for instance, in the near-
free-electron ponderomotive shift of bound Rydberg energy
levels [13,14]. In a treatment beyond Eq. (1), an imaginary
part arises [11] that is proportional to the PI cross section,
which follows from the transition matrix element into the
resonant FES [10].

In a linearly polarized field, the mj-dependent polarizabili-
ties αn,l, j,mj (ωL ) depend on mj-independent scalar and tensor
polarizabilities, αS

n,l, j (ωL ) and αT
n,l, j (ωL ),

αn,l, j,mj (ωL ) = αS
n,l, j (ωL ) + 3m2

j − j( j + 1)

j(2 j − 1)
αT

n,l, j (ωL ), (2)

where the second term vanishes for j < 1. Otherwise, αS
n,l, j

and αT
n,l, j follow from αn,l, j,mj -values computed for different

|mj |. A third term, proportional to the vector polarizability
αV

n,l, j (ωL ), is added to Eq. (2) only when the field polariza-
tion is not linear. Precision measurements of the dynamic
polarizability have been conducted in various contexts, from
dysprosium cooling and trapping with a 1064-nm dipole trap
[15] to blackbody shifts in optical lattice clocks [16].
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In the present study, we measure αS
5D3/2

for rubidium in an
optical lattice of laser wavelength λ = 1064 nm. Its photon
energy hc/λ suffices to photoionize 5D3/2-atoms trapped in
the optical lattice, in addition to contributing to the polariz-
ability via the FES-term in Eq. (1). While no theoretical or
experimental estimate has been made for the 5D3/2 dynamic
polarizability, the static polarizabilities have been investigated
[17–20], as well as the dynamic polarizability at 778.1 nm for
5D5/2 [21]. Because polarizabilities are related to fundamental
atomic properties such as dipole matrix elements and van-
der-Waals coefficients, measurements are of broad value and
may also be useful for testing sophisticated atomic structure
calculations.

Photoionization (PI), which affects astrophysical [22,23]
and ultracold plasmas [24] that have recently been under
study, also broadens the Rb 5D3/2-levels in a 1064-nm field,
as estimates based on measured Rb 5D5/2 [25] and calculated
[25,26] Rb 5D PI cross sections show. These estimates ex-
hibit that the PI-induced level broadening at 1064 nm is on
the same order of magnitude as the ac Stark shift. Rb 5D-
atoms prepared in a 1064-nm optical lattice, therefore, offer
an excellent opportunity to measure both the dynamic scalar
polarizability and the PI cross section of an atomic state in
a single spectroscopic measurement, which we present here.
While previous PI cross-section measurements have typically
used the saturation technique or the trap loss/loading tech-
nique [27], which suffer from calibration uncertainties in the
photoionizing light intensity and atom numbers, our method
circumvents these difficulties, affording greater precision in
the measurement.

From an applications point of view, the Rb 5D states are
appealing to study for several reasons. First, there has been
continued interest ranging from earlier decades [28–30] to
recent years [31–33] in using the strong and narrow (natu-
ral linewidth <1 MHz) two-photon transition 5S1/2 → 5DJ

as an optical frequency reference, which necessitates pre-
cise calculation or cancellation of the relevant light shifts
[21,34]. This two-photon transition’s wavelength (778 nm)
can be directly generated by a semiconductor laser, or via
second-harmonic generation of a laser at 1556 nm, which
falls within the telecommunication band. Furthermore, the
5S1/2 → 5D5/2 transition is one of the transitions recom-
mended by the Consultative Committee of Length (CCL) for
the practical definition of the meter [35].

The main components of the apparatus, atomic energy
levels, and optical beam geometries are exhibited in Fig. 1.
We load 85Rb atoms from a magneto-optical trap, initially
prepared in the F = 3 ground-state hyperfine level, into
the near-perfect TEM00 mode of a near-concentric field-
enhancement cavity with a finesse of ≈600 at λ = 1064 nm
[36]; the cloud of atoms is cooled in the geometric center of
the cavity where the optical lattice is focused [37–39]. After
loading, the lattice is adiabatically ramped to a maximum
depth of ∼105Er , where Er = h × 2.076 kHz is the photon re-
coil for 85Rb at 1064 nm. To observe the lattice-shifts affecting
the D1 line, we pulse a 795-nm probe laser for a duration of
∼15 μs and scan it from −36 to 1344 MHz with respect to the
frequency of the |5S1/2, F = 3〉 → |5P1/2, F ′ = 2〉 transition.
A copropagating 762-nm probe laser is pulsed on for ∼500 ns
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FIG. 1. (a) Sketch of the experimental apparatus, and (b) energy
level diagram with outlined ac Stark shifts for atoms on the standing-
wave antinodes as a Gaussian function of radial position transverse
to the longitudinal axis of the 1064 nm optical lattice (not to scale).

and is independently scanned from 57 to −843 MHz with re-
spect to the lattice-field-free frequency difference between the
|5P1/2, F ′ = 2〉 and |5D3/2, F ′′ = 3〉 states. Lattice-induced PI
of atoms excited into 5D3/2 yields a count of atoms in this state
when the resulting ions are guided onto a microchannel plate
detector (MCP) with an extraction voltage. This procedure
yields a two-dimensional map of ion counts as a function of
the two probe laser frequencies, as shown in Fig. 2(a).

In Fig. 2(a) we display ion counts as a function of the
frequencies of both probe lasers. The figure exhibits two diag-
onally aligned branches of 5D3/2 atomic signals. The branches
correspond to the intermediate hyperfine states F ′ = 2 and 3,
which present two pathways through which the atoms can be
excited into 5D3/2 via stepwise, double-resonant, two-photon
excitation. For the two pathways F ′ = 2 and 3, we define
detunings �F ′

795 and �F ′
762 of the excitation lasers from their

respective lattice-field-free resonances [see Fig. 1(b) and the
axis insets in Fig. 2(a)].

The ac shifts evident from the slopes of the signal branches
in Fig. 2 are caused by the dynamic polarizabilities of all
relevant atomic states, 5S1/2, F = 3, 5P1/2, F ′ = 2 or 3, and
5D3/2, F ′′ = 1–4. At lattice depths of ∼105 photon recoils,
this ac Stark shift actually splits the 5D3/2 into 12 lines corre-
sponding to the product spaces of quantum numbers |mj | and
mI for nuclear spin I = 5/2, but the significant broadening
brought on by the large PI cross section for 5D3/2 completely
masks this effect in our study [38,40]. For the ground- and
intermediate-state polarizabilities at 1064 nm, we use the the-
oretical values αS

5S1/2
= 687.3(5) [41] and αS

5P1/2
= −1226(18)

[40] (in atomic units and applicable to all hyperfine sublevels).
The objective of the measurement then is, in principle, to
extract the scalar and tensor polarizabilities, αS

5D3/2
and αT

5D3/2
,

from the slopes of the signal branches in Fig. 2. From an esti-
mate given below, it is predicted that the magnitude of αT

5D3/2
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FIG. 2. (a) Results of two-photon spectroscopy as a function of
795- and 762-nm probe laser frequencies (ν795 and ν762, respec-
tively). The reference frequencies ν1 and ν2 correspond to splittings
between the lattice-field-free 5S1/2, F = 3 and 5P1/2, F ′ = 2 levels,
and between the lattice-field-free 5P1/2, F ′ = 2 and 5D3/2, F ′′ = 3
levels, respectively. Data are averaged over 30 experimental cycles.
(b) Numerical simulation (see the Supplemental Material [51]) for
input parameters αS

5D3/2
= −524, αT

5D3/2
= 0, and σ = 40 Mb.

is at or below the level of uncertainty of the experimental
method. In the following, we therefore restrict our analysis
to the case αT

5D3/2
= 0.

The two signal branches in Fig. 2 yield two measurements
for the slopes, d�F ′

762/d�F ′
795, associated with the two inter-

mediate states 5P1/2, F ′ = 2 and 5P1/2, F ′ = 3. The scalar
polarizability αS

5D3/2
then follows from

αS
5D3/2

(F ′) = αS
5P1/2

− d�F ′
762

d�F ′
795

(
αS

5S1/2
− αS

5P1/2

)
. (3)

This measurement method is similar to a method used in
[38]. Because Fig. 2(a) yields two readings for the slope
d�F ′

762/d�F ′
795, we obtain two measurements for αS

5D3/2
that

correspond with the intermediate hyperfine pathways F ′ = 2
and 3. The method is self-calibrating in the sense that a direct
measurement of the lattice intensity in the atomic sampling
region is unnecessary.

The experimental data are acquired by scanning the de-
tuning of the 762-nm laser, ν762 − ν2, for a set of values for
the detuning ν795 − ν1 of the 795-nm laser. A vertical slice of

FIG. 3. (a) σ̃ vs I at the atoms’ locations. The data and a fit
result depicted in red yield a 5D3/2 photoionization cross section of
σ = 45(1) Mb. The inset shows a typical spectral peak [a single, ver-
tical slice from Fig. 2(a)] characterized by the 762-nm laser detuning
at a fixed 795-nm frequency setting (ν795 − ν1 = 0.984 GHz), along
with 
 and �F ′=3

762 obtained from its Lorentzian fitting parameters.
We average ion counts over 30 experimental cycles. (b) Lorentzian
peak centers in ν762 − ν2 and their uncertainties vs ν795 − ν1 for the
F ′ = 3 signal branch in Fig. 2(a). The slope of the weighted linear fit
to these data is d�F ′

762/d�F ′
795 = −0.371(6). We repeat this procedure

for the F ′ = 2 branch.

the map in Fig. 2(a) at a value of ν795 − ν1 = 0.984 GHz is
provided in the inset of Fig. 3(a) as an example. We find that
the spectral lines along each frequency setting of the 795-nm
laser follow near-perfect Lorentzian shapes, down to the noise
level several linewidths away from the line centers. This ob-
servation serves as experimental evidence that the line profiles
are the result of a level decay mechanism, which in our case
is the PI of the 5D3/2 levels. For each of the individual spectra
at fixed ν795 − ν1, we obtain the line centers and linewidths
using Lorentzian fits. Depending on whether the signal has
contributions from both signal branches F ′ = 2 and 3 in Fig. 2
or from just one, we employ double- or single-Lorentzian fits,
respectively. The line centers yield two sets of data points
�F ′

762 (�F ′
795) for F ′ = 2 and 3. We present the sets for the

F ′ = 3 branch in Fig. 3(b). The slopes d�F ′
762/d�F ′

795 from
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TABLE I. Summary of quantities used to extract αS
5D3/2

, as well
as a summary of results (in atomic units).

Quantity Value Source

αS
5S1/2

687.3(5) [41]a

αS
5P1/2

−1226(18) [40]

d�F ′=2
762 /d�F ′=2

795 −0.36(1) Experimental data, this work

d�F ′=3
762 /d�F ′=3

795 −0.371(6) Experimental data, this work

αS
5D3/2

(F ′ = 2) −537(27) Eq. (3)

αS
5D3/2

(F ′ = 3) −516(22) Eq. (3)

αS
5D3/2

−524(17) Weighted average

aPrevious calculations and measurements are found in [11,42–45].

respective weighted linear fits yield a pair of measured values
of αS

5D3/2
via Eq. (3). Essential inputs from other sources and

our results are summarized in Table I. The uncertainties in
the scalar polarizability measurements are dominated by the
statistical errors of the linear fits and the given uncertainty
in αS

5P1/2
. Systematic effects from stray electromagnetic fields,

atomic collisions, and laser frequency linearity are negligible.
The weighted average over the pair of measured dynamic
scalar polarizabilities is αS

5D3/2
= −524(17) atomic units.

Expanding upon previous results from other works, the-
oretical estimates for αS

5D3/2
and αT

5D3/2
can be obtained. We

use the listings of energy levels [46], and of dipole matrix
elements or contributions of transitions to other polarizabil-
ities [44,47], to compile energies and matrix elements for the
5D3/2 and the perturber states (n′ � 7)F5/2 and (n′ � 8)PJ

required in the first term in Eq. (1). For the (n′ � 8)F5/2 and
(n′ � 9)PJ contributions, we use energy levels and dipole ma-
trix elements from our own Rydberg-atom calculations [48],
which employ model potentials given in [49]; values agree
well with those from an online calculator [50]. We estimate
the bound-bound contributions to the dynamic polarizabilities
αS

5D3/2
and αT

5D3/2
at 1064 nm to be −540 and 16, respectively.

To estimate the continuum integral in Eq. (1), we compute
bound-free matrix elements on a dense FES energy grid (spac-
ing ∼h × 40 GHz) over a range from ε′ = 0 up to ∼20 eV,
yielding continuum contributions of 19 for αS

5D3/2
and −3 for

αT
5D3/2

. The core contribution to αS
5D3/2

, not shown in Eq. (1),
is estimated at a value of 9, provided in [21] for dc and for
778 nm. Our estimates for the scalar and tensor polarizabilities
sum up to totals of αS

5D3/2
= −511 and αT

5D3/2
= 13. From our

simulation described in the Supplemental Material [51], we
estimate that the presence of a tensor polarizability of 13
would cause a positive shift of <10 in the deduced scalar
polarizability when using Eq. (3). Therefore, we conclude that
the estimated systematic uncertainty in αS

5D3/2
related to the

tensor polarizability lies within the uncertainty of ±17 of the
measurement value, αS

5D3/2
= −524(17), reported in Table I.

In the following, we discuss a measurement of the 5D3/2

PI cross section. For a given detuning �F ′
795, the 1064-nm

light intensity I at the locations of atoms contributing to
the peak in the ion signal in the F ′ branch is given by I =
2h�F ′

795cε0/(αS
5S1/2

− αS
5P1/2

), with an uncertainty arising from
the polarizabilities and the natural linewidth of the rubidium

D1 line (5.75 MHz [52]). The linewidth of ion spectra for
fixed �F ′

795 and scanned �F ′
762, 
/2π , obtained from Lorentzian

fits as shown in Fig. 3(a), then provides an upper limit of the
PI decay rate 
PI at intensity I . Using


PI = σ I

h̄ωL
(4)

for each measured decay rate 
(I ), we obtain an upper bound
σ̃ (I ) = h̄ωL
(I )/I for the Rb 5D3/2 PI cross section σ . For
atoms located near the bottoms of the lattice wells, corre-
sponding to the largest �F ′

795 and the largest intensities I , the
broadening is almost exclusively given by PI. In contrast, at
the lowest �F ′

795 and intensities I , other mechanisms, such as
the excited-state hyperfine coupling and residual off-resonant
two-photon signals, are principal. As a result, σ̃ (I ) ≈ σ at
large I and σ̃ (I ) 
 σ at low I . This effect is exhibited in
Fig. 3(a), where the quantity σ̃ converges to σ (and 
 to 
PI)
at the high-intensity end of the I-axis.

Quantitatively, we obtain σ from the data in Fig. 3(a) using
two methods. In method A, we take the arithmetic average
of σ̃ in the asymptotic region I � 45 GW/m2 and utilize the
standard error of the mean as its uncertainty. Method A yields
σ = 45(1) Mb. In method B, we apply a fit function σ̃ =√

σ 2 + γ 2/I2, where γ accounts for broadening mechanisms
other than PI. This fit also gives σ = 45(1) Mb. Combining
the two methods, we have σ = 45(1) Mb. Our simulations,
explained in the Supplemental Material [51], show that the
measurement method likely overestimates the PI cross section
of an isotropic atom sample by ≈1.7%, leading to our slightly
corrected final result of σ = 44(1) Mb. Based on the good
qualitative agreement of measured and simulated strength ra-
tios between the F ′ = 2 and 3 signal bars in Fig. 2, where
the atom sample in the simulation is isotropic, we do not
believe that optical pumping causes a significant deviation of
our measured PI cross section from what it would be under
perfectly isotropic conditions.

In a calculation based on fine-structure-less model poten-
tials from [49], we have found a total shell-averaged PI cross
section of 32.4 Mb at 1064 nm and 43.7 Mb at the PI threshold
wavelength, which is close to calculations in [25] and [26].
Trap-loss measurements in [25] for Rb 5D5/2 gave a result of
18 Mb at 1064 nm and an estimate of 25 Mb at threshold.
The discrepancies between the results for the Rb 5D PI cross
sections await a future explanation.

In summary, we have spectroscopically measured the dy-
namic scalar polarizability of the rubidium 5D3/2 state in a
1064 nm optical lattice using two probe lasers at 795 and
762 nm. We report αS

5D3/2
= −524(17) and estimate |αT

5D3/2
| �

|αS
5D3/2

|. The observed PI-induced line broadening has yielded
a PI cross section of σ = 44(1) Mb. Future experimental
directions involve the measurement of αS

5P1/2
with a Ryd-

berg excitation field probing the 1064-nm lattice shifts of the
intermediate 5P1/2 state and auxiliary Rydberg levels [38].
Our measurement will also aid in the preparation of recently
predicted Rydberg-atom-ion molecules [55] and of novel
high-angular-momentum Rydberg states in a deep, 1064-nm
Rydberg-atom optical lattice [56,57] using stepwise excitation
via an intermediate Rb 5D state. It would also be desir-
able to obtain theoretical estimates of αS

5D3/2
and improved
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theoretical values for σ to compare with experimental results.
The system presented in this study involving different forces
from the internal-state-dependent optical potentials acting on
the atoms could furthermore be numerically investigated us-
ing the fewest switches surface hopping (FSSH) algorithm
[58,59].
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APPENDIX

1. Contribution of bound-FES matrix elements
to the dynamic polarizability

The expression in Eq. (1) for the dynamic polarizability
of an electron in a bound atomic state includes a sum over
bound-bound couplings and a continuum integral over FES,
regardless of whether the laser wavelength is above or below
the photoionization threshold. In this Appendix, we explore
the contributions in Eq. (1) to the dynamic 5D3/2 polarizability
as a function of laser wavelength.

For a Rb 5D3/2 atom in a 1064-nm optical field, the
integrand under the FES term exhibits a singularity at a free-
electron energy of ε′ = h̄ωL + W5D3/2 = 0.17 eV. This leads to
an integrand of the form f (ε′)/(ε′ − 0.17 eV) with a function
f (ε′) that varies smoothly across the singularity (which is
inside the integration range). Cauchy’s principal value (p.v.)
of the integral contributes to the ac polarizability and Stark ef-
fect. The pole also realizes an imaginary quantity proportional
to the PI cross-section that broadens the atomic energy level
[not exhibited in Eq. (1)]. The p.v. integral can be evaluated
in a straightforward manner by numerical integration from
ε′ = 0 to a large enough value for the p.v. integral to con-
verge. Convergence is reached because the bound-free dipole
moment drops off sufficiently fast.

In Fig. 4, we exhibit the contributions of the FES term to
the scalar and tensor polarizabilities for the Rb 5D3/2 level
over a wide range of the optical wavelength, λ = 2πc/ωL.
At wavelengths longer than the PI wavelength, there is no
pole in Eq. (1), and the contributions to the scalar and tensor
polarizabilities asymptotically approach dc limits of 102 and
−23, respectively (off-scale to the right in Fig. 4). Adding
FES and bound-bound contributions, we find the total scalar
polarizabilities shown in Fig. 5. At short wavelengths, the FES
contribution to the scalar polarizability is about half that of
the bound-bound contribution, with both contributions adding
up to the free-electron polarizability, αe = −1/ω2

L. The FES
and bound-bound contributions to the tensor polarizability
approximately cancel at short wavelengths.

The cusp behavior of the FES contribution near the PI
threshold at 1250 nm, seen in Fig. 4, arises because in that
case the pole is just inside or outside the integration range
ε′ > 0. Due to the continuity of the energy-averaged oscillator
strengths across the PI threshold, the cusp of the FES contri-
bution at the PI threshold disappears upon adding FES and

FIG. 4. Contributions of the FES term toward the Rb 5D3/2 dy-
namic polarizabilities over a range of wavelengths from above to
below the PI threshold (indicated by dashed, blue line). The con-
tribution to the scalar polarizability is indicated by the black curve,
while the tensor is indicated by the red curve.

bound-bound contributions, as seen in Fig. 5. The divergences
in Fig. 5 seen at wavelengths longer than the PI threshold
are due to bound-bound resonances from 5D3/2 into Rydberg
states.

2. Free-electron-polarizability approximation for the rubidium
5D3/2 level

The free-electron polarizability, αe = −1/ω2
L, character-

izes the strength of the ponderomotive force acting on

FIG. 5. Total Rb 5D3/2 dynamic scalar (red-solid) and tensor
(blue-dashed) polarizability as a function of wavelength, neglect-
ing the small and approximately constant core contribution. The
free-electron polarizability αe is also shown. The scalar and tensor
polarizabilities at 1064 nm are on the green, dashed line. Resonances
of electronic transitions to the 5P1/2 and Rydberg Pj- and Fj-states
are indicated.
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FIG. 6. Total dynamic scalar (black), tensor (red-dashed), and
free-electron (green-solid) polarizabilities of the Rb 5D3/2 level at
wavelengths stretching into the far-infrared (fir) regime. The reso-
nance 5D3/2 → 4F5/2 at 9 μm is indicated.

an electron [10] for short optical wavelengths. As can be
seen in Fig. 5, αe is a good approximation for the to-
tal Rb 5D3/2 dynamic scalar polarizability for wavelengths
shorter than about 600 nm, while the tensor polarizabil-
ity is near zero. This approximation for short-wavelength
fields, discussed in depth in [12], arises from the following
expansion:

ω
n′l ′ j′
nl j(

ω
n′l ′ j′
nl j

)2 − ω2
L

= −ω
n′l ′ j′
nl j /ω2

L

[
1 +

(
ω

n′l ′ j′
nl j

)2

ω2
L

+ · · ·
]
. (A1)

When summed over all possible n′, l ′, j′, m′
j , the quantity

ω
n′l ′ j′
nl j |〈n′, l ′, j′, m′

j |ε̂ · d̂|n, l, j, mj〉|2 approaches a constant
per the Thomas-Reiche-Kuhn sum rule. For the Rb 5D3/2

level, this approximation breaks down for wavelengths longer
than about 600 nm, where the downward 5D3/2 → 5P1/2 cou-
pling at 762 nm begins to cause substantial deviations from
the free-electron behavior. At longer wavelengths, additional
resonances due to upward couplings to Fj and other Pj states,
including the Rydberg series, become dominant. It is some-
what coincidental that the dynamic scalar polarizability at
1064 nm is near the free-electron value αe = −1/ω2

L = −545.
Inspection of Fig. 5 shows that this is related to the fact that
1064 nm is about halfway in between the 5D3/2 → 5P1/2 and
the Rydberg resonances, whose effects approximately cancel
at 1064 nm.

Interestingly, the polarizability of Rydberg atoms tends to
equal the free-electron value, αe = −1/ω2

L, for wavelengths
as long as into the mm range [13,14], despite the fact that
Rydberg levels have bound-bound resonances across the ir,
visible, and uv ranges. However, those resonances are weak
and narrow, so that they are only significant at laser fre-
quencies very close to one such resonance. Otherwise, the
Rydberg-atom polarizability approximately equals −1/ω2

L,
and is purely a scalar.

For completeness, in Fig. 6 it is shown that the polarizabil-
ity of the 5D3/2 level in the far-infrared (fir) region behaves
fundamentally differently from that of Rydberg levels. This
is due to strong ir transitions from 5D3/2, most of all the
5D3/2 → 4F5/2 resonance at 9 μm. These have no equivalent
for Rydberg levels. For λ → ∞, the 5D3/2 scalar and tensor
polarizabilities approach dc values of 18 012 and −1093 (in
our calculation), which include small bound-free contribu-
tions of 102 and −23, respectively.
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