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Nonadiabatic dynamics in Rydberg gases with random atom positions
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Assemblies of highly excited Rydberg atoms in an ultracold gas can be set into motion by a combination of
van der Waals and resonant dipole-dipole interactions. Thereby, the collective electronic Rydberg state might
change due to nonadiabatic transitions, in particular if the configuration encounters a conical intersection. For
the experimentally most accessible scenario, in which the Rydberg atoms are initially randomly excited in a
three-dimensional bulk gas under blockade conditions, we numerically show that nonadiabatic transitions can be
common when starting from the most energetic repulsive Born-Oppenheimer surface. We outline how this state
can be selectively excited using a microwave resonance, and demonstrate a regime where almost all collisional
ionization of Rydberg atoms can be traced back to a prior nonadiabatic transition. Since Rydberg ionization is
relatively straightforward to detect, the excitation and measurement scheme considered here renders nonadiabatic
effects in Rydberg motion easier to demonstrate experimentally than in scenarios considered previously.
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I. INTRODUCTION

Collections of a small number of highly excited Rydberg
atoms in a cold gas or even BEC are nowadays routinely
created in laboratories. The motion of these atoms can often
be neglected on the timescale of experiments, justifying the
so-called frozen gas approximation. However, under generic
circumstances, namely, for lighter atoms and initial close
proximity, they are easily set into motion on timescales
of interest by nonresonant van der Waals (vdW) or reso-
nant dipole-dipole (DD) interactions [1–5]. The motion of
a randomly distributed assembly of Rydberg atoms in three
dimensions (3D) has been studied in experiments so far,
mainly due to interactions involving a single Rydberg state
[6–10], permanent dipoles [11,12], or transition dipole-dipole
interactions of two Rydberg atoms [13,14]. More complex
dynamics arises when transition dipole-dipole interactions in-
volve a large number of atoms, giving rise to collective exciton
states with a delocalized excitation [15,16]. While a single
Rydberg dimer possesses only strongly repulsive or attractive
electronic states, the multiatom system has states in which
the resonant DD contribution vanishes for the closest pair of
atoms. If the remaining repulsive van der Waals interactions
are too weak to counteract kinetic energy initially gained
from dipole-dipole repulsion, atoms paired in these states can
collisionally ionize if they hit a neighboring Rydberg atom.

An additional feature of collective dipole-dipole inter-
actions are conical intersections (CIs) between adjacent
electronic states of the multiatom Rydberg assembly [17].
Near a conical intersection, nonadiabatic transitions necessar-
ily become likely. These transitions play a key role in many
quantum chemical processes [18], such as photochemistry of
vision [19] or DNA protection from UV radiation damage
[20]. While computational methods can nowadays provide

an impressive level of detail for multidimensional nuclear
wave functions of molecules [21,22], such detail is hard to
record when interrogating molecules experimentally. More
detail may be accessible when studying the dynamics around
conical intersections with cold atoms or molecules [23–26],
Rydberg atoms [16,17], or ions [27].

Towards the long-term goal to quantum simulate the pro-
cesses above with ultracold Rydberg atoms, we study one
of the simplest scenarios that can experimentally give rise
to dynamics involving CIs with Rydberg atoms. Even if
these are initialized in a state in which the nearest atoms
should repel, nonadiabatic transitions or passages through
CIs can transfer the electronic state to a nonrepelling one.
After that transfer, Rydberg atoms can ionize. We demon-
strate that for a suitable choice of parameters, most ionization
events can be traced back to at least one nonadiabatic
transition, implying conversely that ionization is an easily
accessible experimental signature for a nonadiabatic transi-
tion. In comparison to earlier proposals to investigate conical
intersections in Rydberg systems [17,28–30], the scenario
discussed in this article lifts the challenges of constrain-
ing the motion of atoms through trapping, tightly localizing
the Rydberg excitation and high-resolution Rydberg position
measurements.

This article is organized as follows: In Sec. II, we introduce
the model for collective dipole-dipole interactions of Rydberg
atoms, the quantum-classical propagation scheme employed,
and our phenomenological model of the excitation sequence.
In Sec. III, we explore nonadiabatic dynamics with individ-
ual trajectories of the classical motion of Rydberg atoms,
to clearly connect ionization with nonadiabatic transitions.
Finally, in Sec. IV, we portray the dynamics in the trajectory-
averaged energy spectrum of the system.
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II. DIPOLE-DIPOLE INTERACTIONS
IN 3D RYDBERG GASES

We consider an assembly of N lithium Rydberg atoms,
each with mass M ≈ 11 000 a.u. and principal quantum
number ν. All atoms can move freely in 3D, with their
collective positions described by the 3N-component vector
R = (r1, . . . , rN )T , where rk is the position of atom number
k. We are interested in the joint effect of DD and vdW inter-
actions. Hence, besides constraining ν, we consider angular
momentum states |s(l = 0)〉 and |p(l = 1), m〉. For scenarios
with only a single Rydberg atom in a |p〉 state, the collective
electronic basis can then be written as {|πn(m)〉}, where

|πn(m)〉 = |s . . . (p, m) . . . s〉 (1)

represents the state where the nth atom carries the p excitation
with magnetic quantum number m, and all other atoms are in
the |s〉 state. We thus neglect spin-orbit coupling, a reasonable
approximation for light atoms such as lithium.

The resulting Hamiltonian for our system reads

Ĥ = − h̄2

2M
∇2

R + Ĥel (R), (2)

where the first term accounts for the kinetic energy of the
Rydberg atoms and Ĥel (R) = Ĥdd (R) + Ĥvdw(R), with the
resonant dipole-dipole interactions

Ĥdd (R) =
N∑

n,n′=1
m,m′

V (dd )
mm′ (Rn,n′ )|πn(m)〉〈πn′ (m′)|. (3)

Here, V (dd )
mm′ (Rn,n′ ) are the matrix elements for the dipole-

dipole interactions between atoms n and n′. They depend on
Rnn′ = rn−rn′ and are explicitly given by [5]

V (dd )
mm′ (Rnn′ ) = −

√
8π

3

μ2

4πε0R3
nn′

(−1)m′

×
(

1 1 2
m −m′ m′ − m

)
Y2,m′−m(θnn′ , φnn′ ),

(4)

where μ is the transition dipole moment of the Rydberg atoms
associated with the transition between the state |s〉 and state
|p〉, Rnn′ = |Rnn′ |, θnn′ and φnn′ are the polar angle and az-
imuthal angle of the interatomic distance vector, respectively,
as shown in Fig. 1, and the six numbers in the parentheses
denote the Wigner 3 − j symbol. Note that resonant dipole-
dipole interactions are, in general, anisotropic due to the
dependence on θ and φ in (4) and mix the different azimuthal
sublevels m. The anisotropy and the azimuthal state mixing
could be suppressed using Zeeman shifts [29]; however, here
we are interested in the pristine scenario.

The term Ĥvdw(R) in Ĥel (R) pertains to the nonresonant
van der Waals interaction,

Ĥvdw(R) = −1

2

N∑
n,n′=1

C6

R6
nn′

I, (5)

where I is the unit operator in the electronic space and C6

is the dispersion coefficient which characterizes the strength
of the van der Waals interactions dependent on the principal

FIG. 1. Sketch of a randomly distributed assembly of Rydberg
atoms (spherical balls) in a 3D bulk gas (gray shade) at locations
r1, . . . , r6. Rbl is the blockade radius shown by the smaller transpar-
ent sphere, representing the initial minimal distance. After passing
through a conical intersection (double cones) or region of strong
nonadiabatic coupling, atomic repulsion can be overcome and the
collision of two Rydberg atoms (here, 4 and 5) results in ionization.

quantum number ν. The van der Waals interactions only be-
come relevant at small interatomic separations since they fall
off as 1/R6

nn′ . At large separation, the dipole-dipole interaction
given in Eq. (4) dominates over the van der Waals interaction
due to the 1/R3

nn′ dependence on the distance of the former.
Throughout this article, we shall assume atoms in ν = 80 and
hence C6 = −1.7 × 1022 a.u. from [31] and μ = 4096 a.u.
in (4).

A full-fledged quantum mechanical simulation of the time-
dependent Schrödinger equation (TDSE) for the Hamiltonian
defined in Eq. (2) is computationally not possible for useful
atom numbers N . Hence we employ Tully’s surface hopping
algorithm [32], which was extensively benchmarked for sce-
narios such as the present one by direct comparison with
Schrödinger’s equation in smaller systems, and showed ex-
cellent performance [28,33,34]. This is because the repelling
assembly of Rydberg atoms never revisits the same many-
body coordinate twice, and hence the phases of the nuclear
wave function that are not captured by the method cannot
become relevant. Tully’s algorithm is a quantum-classical
method in which the motion of the Rydberg atoms is simu-
lated classically using Newton’s equation of motion,

M
∂2R
∂t2

= −∇RUs[R(t )], (6)

where s is the index of the Born-Oppenheimer (BO) surface
Uk=s[R(t )] on which the Rydberg system is presently evolv-
ing. The surfaces follow from the eigenvalue equation

Ĥel (R)|ϕk (R)〉 = Uk (R)|ϕk (R)〉, (7)

where we order eigenstates according to increasing energy
with increasing index k.

In contrast to the positions, the electronic state of the
Rydberg assembly |ψ (t )〉 = ∑

nm cnm(t )|πn(m)〉 is evolved
quantum mechanically with Schrödinger’s equation,

ih̄
∂

∂t
cnm(t ) =

∑
n′m′

〈πn(m)|Ĥel (R)|πn′ (m′)〉cn′m′ (t ). (8)

It is instructive to also express (8) in the adiabatic basis
|ψ (t )〉 = ∑

k c̃k (t )|ϕk (R)〉 formed by the solutions of (7). In

063303-2



NONADIABATIC DYNAMICS IN RYDBERG GASES WITH … PHYSICAL REVIEW A 104, 063303 (2021)

terms of this basis, the TDSE reads

ih̄
∂

∂t
c̃k (t ) = Uk[R(t )]c̃k (t ) − ih̄

∑
l

dkl (t )c̃l (t ), (9)

with nonadiabatic coupling vectors

dkl ≈ − 1

M
〈ϕk (R)|∇R|ϕl (R)〉 · ∂R

∂t
. (10)

The latter couple the different BO surfaces, which is imple-
mented into the motional dynamics (6) of Tully’s method by
allowing stochastic jumps of the index s → s′ with a proba-
bility set by dss′ . The adiabatic and the diabatic coefficients
are connected by the relation c̃k = ∑

nm cnm〈ϕk (R)|πn(m)〉.
Our simulations employ Tully’s method with Eq. (8) coupled
to Eq. (6), but one can refer to Eq. (9) for understanding
nonadiabatic transitions.

Excitation process and blockade

The initial excitation of Rydberg atoms to states involving
|πn(m)〉 is a two-step process. First, within a bulk ultracold
gas, ground-state atoms are excited to the Rydberg state |s〉,
typically using a two-photon excitation [35]. Due to the strong
vdW interactions between Rydberg atoms in the state |s〉,
this step is affected by the dipole blockade, which prohibits
the excitation of more than one atom within a sphere with
blockade radius Rbl . We estimate Rbl as the distance at which
the strength of the van der Waals interactions becomes equal
to the broadened linewidth of a laser with Rabi frequency

las [36,37], resulting in

Rbl =
( |C6|


las

)1/6

. (11)

For our simulation, we assume 
las/(2π ) ≈ 60 MHz, which
for ν = 80 results in Rbl = 5.9 μm. The bulk excitation and
blockade are then phenomenologically taken into account by
drawing random positions from a sphere of radius R = 4Rbl

in 3D, and discarding those with Rnm < Rbl for any pair of
Rydberg atoms. A more sophisticated approach could model
the excitation process using classical rate equations [38]. The
radius of the sphere is practically motivated to ensure that
the atoms are not crammed too closely initially, and not too
far spaced to miss colliding with each other after the initial
acceleration. After completing this first step of the process,
we have an assembly of N Rydberg atoms all in the state |s〉
(hence in a many-body state |s..s..〉) at random positions Rini

consistent with the excitation blockade.
In the second step, we induce a p excitation to en-

able resonant dipole-dipole interactions with a near resonant
microwave pulse to |πn(m)〉, linearly polarized along the
quantization axis. The corresponding Hamiltonian reads

Ĥmw =
∑

n




2
[|πn(0)〉〈s| + c.c.] −

∑
n

�|πn(0)〉〈πn(0)|,
(12)

where 
 is the Rabi frequency of the microwave and � its
detuning from the bare sp transition. By this detuning, it is
possible to excite a chosen exciton state |ϕk〉 in (7) based
on the knowledge of the initial distribution of the position of
the atoms and thus the mean exciton energies, while avoiding

more than one p excitation [34]. Even if, for randomly placed
atoms such as here, we encounter an accidental two-photon
resonance of an exciton state with two p excitations [39], the
intermediate singly excited state will be off resonant, slowing
the double excitation down such that it is negligible for short
microwave pulses.

In practice, after atoms have been excited to Rydberg s
states at random initial positions Rini as discussed above, the
relative excitation probability Pr (k) of state |ϕk (Rini )〉 will de-
pend on two factors: (i) The transition matrix element between
|s..s..〉 and |ϕk (Rini )〉, which depends on the microwave polar-
ization direction, and (ii) the microwave frequency (detuning).
We incorporate both effects phenomenologically in Tully’s
algorithm by randomly starting the simulation in exciton state
k with relative probability

Pr (k) = N e
− (Uk −�)2

2σ2
U P̃r (k), (13)

where Uk are the exciton energies defined in Eq. (7), � is the
microwave detuning, σU is the microwave linewidth, and P̃r (k)
is a polarization-dependent factor, discussed in the Appendix,
that takes into account the matrix element. The normaliza-
tion factor N ensures

∑
k Pr (k) = 1, and trajectories with

|Uk − �| > 2σU for all k are discarded. Importantly, Pr (k)
contains a twofold dependence on the initial positions of the
Rydberg atoms after they have been excited to |s..s..〉: through
the exciton energies Uk and the interplay of microwave polar-
ization and locations encoded in P̃r (k).

III. NONADIABATIC DYNAMICS FROM RANDOM
INITIAL POSITIONS

We are now in a position to study the motional dynamics
of N = 6 Rydberg atoms, starting from initial locations Rini

as discussed in Sec. II to explore how motion depends on the
choice of the initially excited repulsive BO surface k defined
in Eq. (7). Such a configuration is illustrated in Fig. 2(a),
where the colored spheres represent the initial positions of the
Rydberg atoms. A single realization of the time evolution of
atomic positions when the system is prepared in the highest-
energy repulsive state (i.e., k = 3N = 18) is shown by the
solid lines in 3D with the projection of trajectories onto the
XY plane indicated by the dashed lines. Figure 2(b) shows the
time evolution of all the electronic energy surfaces Uk[R(t )]
on the left y axis, together with the minimum distance dmin =
minnmRnm between the atoms, shown as a thick gray line
using the right y axis. We have selected a trajectory without
nonadiabatic transition, staying on the highest-energy repul-
sive surface. Even when the initially accelerated atoms now
encounter new collision partners, which happens around t ≈
5 μs and causes dmin to exhibit a local minimum, the repulsion
prevents a close encounter with ionization. A qualitatively
different trajectory is shown in Figs. 2(c) and 2(d), where the
system undergoes a sequence of nonadiabatic transitions from
the highest-energy repulsive surface to the surface with index
k = 15, as shown by the adiabatic populations in Fig. 2(c) and
the red dashed lines in Fig. 2(d). The transitions are due to
significant nonadiabatic coupling terms dkl in Eq. (9), usually
when adjacent BO surfaces approach each other closely in
energy. We find that on the surface k = 15, atoms no longer
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FIG. 2. Electronic and motional Rydberg dynamics for the sys-
tem prepared in the highest-energy electronic state. (a),(b) Trajectory
without nonadiabatic transition. (c),(d) Trajectory with nonadiabatic
transition. (a) Initial configuration (colored balls) and trajectories
(solid lines) of the atomic positions rk (t ). Colored circles and dashed
lines show the projection of initial positions and trajectories onto the
XY plane. (b) Time evolution of potential energies Uk[R(t )] and the
minimum distance dmin between atoms (thick gray line, right axis)
without nonadiabatic coupling. dion is the ionization distance defined
in Eq. (14) (gray dotted line). (c) Adiabatic populations on the four
highest-energy repulsive surfaces, showing nonadiabatic dynamics.
(d) Time evolution of potential energies Uk[R(t )] similar to (b). The
presently propagated surface s in Eq. (6) is shown as a red dashed
line, and the three highest potential energies and dion are color coded
as in (c).

repel, and hence the minimal distance dmin decreases contin-
uously after ≈2 μs when two Rydberg atoms encounter one
another. If that happens, they would typically ionize, which we
phenomenologically model by declaring atoms collisionally
ionized when they come closer than an ionization distance
dion where the simulation is aborted, as shown in Figs. 2(c)
and 2(d). We take dion as the distance below which the Ryd-
berg energy spectra become dense when taking all electronic
states into account. For such close distances, our effective
state model based solely on |s〉 and |p〉 would break down.
A complete treatment of ionization would thus require the full
electronic space state, which would go substantially beyond
the scope of the present paper. Hence we use a rough estimate
of dion, which is provided by the formula [16]

dion(n) = 2

[
μ2n3

�Epd (n)

]1/3

, (14)

where �Epd is the energy difference between |p〉 and the
nearest Rydberg state not included in the model, |d (l = 2)〉.
For the example shown in Fig. 2, the nonadiabatic transition
therefore ultimately leads to ionization of the Rydberg atoms
after t = 4 μs, much earlier than the lifetime τ ≈ 50 μs of our
six-atoms system [16,40].

Next, we show that qualitatively similar dynamics can be
found when the Rydberg assembly is initialized on the next
few less energetic energy surfaces, starting in Fig. 3 from
k = 17. The figure illustrates the atomic dynamics up to the
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FIG. 3. The same as Fig. 2, but starting from the the second most
energetic electronic eigenstate k = 17, instead of the highest energy
one k = 18.

ionization time, in Fig. 3(a) together with the time evolu-
tion of the electronic energy eigenstates and in Figs. 3(b)
and 3(d) with the minimum distance between atoms. We see
in Figs. 3(c) and 3(d) that due to the nonadiabatic coupling,
the system can quickly jump from surface k = 17 to k = 15,
where it is later ionized. To underscore the need for nonadia-
batic transitions, we also show in Fig. 3(b) the time evolution
of eigenstates and minimal distance when nonadiabatic jumps
of the surface index s in Eq. (6) are disabled, but using the
same initial configuration as in Figs. 3(c) and 3(d). As a
consequence, the system remains on the surface k = 17, main-
taining repulsive dynamics without ionization. The scenario
is qualitatively similar when starting on the surface k = 16. In
all cases, the first surface for which repulsion is lost and the
Rydberg atoms can ionize is k = 15 for N = 6. Consequently,
we find that when starting on k = 15, ionization is possible
even without a prior nonadiabatic transition. This is not the
case for any of the higher surfaces. These characterizations
of surfaces are for six Rydberg atoms. If we vary the number
of atoms, we find that for N atoms, the ionization takes place
from the 3(N − 1)th energy surface. We can understand this
by inspection of a dimer, which has three repulsive surfaces
due to the availability of three azimuthal quantum numbers.
This property is inherited by the many-atom system since the
collision properties are only governed by the closest proximity
pair.

Our inspection of single trajectories starting on the three
highest-energy surfaces with indices k = 16, 17, 18 has re-
vealed that ionization of Rydberg atoms must be preceded by
at least one nonadiabatic transition. Therefore, the observation
of collisional ionization of Rydberg atoms after initializing the
system repulsively can be used as a signature of nonadiabatic
transitions in the experiment.

IV. AVERAGED DYNAMICS

The single trajectory simulations in Sec. III from selected
electronic states provide a more detailed picture of the dy-
namics, but they would not be individually experimentally
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FIG. 4. (a) Probability distribution ρk of energies Uk , 1 � k �
18, for 5000 random configurations (R) of atoms. We show a zoom
on the high-energy flank in (b) and (c), together with a certain
microwave line profile Pr (thick red line) with detuning (b) � = 120
and (c) � = 200 MHz, respectively. The inset shows the resultant
surface index distribution after excitation, according to Eq. (13).

accessible. Instead, one has to average over many repetitions
of an experiment and address exciton states through the mi-
crowave detuning, corresponding to multitrajectory averages
with random initial electronic states according to (13). We
present these averaged simulations in this section.

In the proposed experiment with random Rydberg excita-
tion location in a bulk gas, initializing a specific exciton state
k will pose practical challenges. The most straightforward
approach would be detuning a microwave, as discussed in
Sec. II, such that it is resonant with that state: � = Uk . How-
ever, the exciton energies Uk depend on all Rydberg positions
Rini, which are random subject to constraints by the blockade.
As an initial step to address this challenge, we show the
histogram of initial exciton energies for those random posi-
tions in Fig. 4. While the energy distribution of energetically
neighboring excitons usually overlaps, we can see that the
tails contain energy regions where only the highest-energy
surface is present. Choosing a detuning in that region, e.g.,
� = 200 MHz and narrow linewidth σU = 15.0 MHz, we can
achieve excitation of the Rydberg assembly almost entirely
on the highest-energy surface, as shown in Fig. 4(c). For
realizations of positions in which the atoms are too far apart
to provide an exciton with these high energies, no excitation
would happen for this detuning in an experiment. We model
only the cases where excitation of a |p〉 state is successful.
For the distribution of excited surfaces, we phenomenolog-
ically model the microwave excitation probability (13) with
more details in the Appendix. Lowering the detuning to � =
120 MHz and σU = 15.0 MHz allows a tuning of the distribu-
tion of surfaces k, with almost equal contributions of the three
highest ones, k = 16, 17, 18.

We now present multitrajectory surface-hopping simula-
tions starting from random initial state distributions as shown
in Fig. 4, using � = 200 MHz such that the probability of

FIG. 5. Mean time-resolved potential energy density on the
(a) second, (b) third, and (c) fourth most energetic BO surface, start-
ing with the microwave detuned to � = 200 MHz so that the system
most likely begins on the first surface. To emphasize low-density
features, we plot the square root of the energy densities and adjust
the color bar range. The insets show (a) the relative initial excitation
probability of each surface, (b) adiabatic populations, and (c) the
mean number of ions per trajectory as a function of time.

excitation onto the highest-energy repulsive surface is 90%;
see inset of Fig. 5(a). The figure shows the time and surface
resolved potential energy density ρs(t ), which we construct by
binning the potential energy Us(t ) of the currently propagated
BO surface s(t ). To this end, the energy axis is divided into
equidistant bins, to then obtain the mean number of trajecto-
ries with Us(t ) within a given bin at each time; see also [30].

We see in Fig. 5 that from the highest-energy surface,
the system jumps nonadiabatically to lower-energy surfaces
and then ultimately can be ionized after reaching the sur-
face with index k = 15. Since ionization is implemented by
stopping the time evolution and sampling constant quantities
thereafter, it shows up in these histograms as (unphysical)
horizontal stripes, which are to be taken simply as a pointer
towards the ionization event (where the stripes intersect the
bulk distribution). If the detuning is reduced to � = 120 MHz
with linewidth σU = 15.0 MHz, one significantly excites three
of the highest-energy surfaces, as shown in Fig. 4(b). This
relative transition probability is again shown in the inset of
Fig. 6(a). Starting from such an initial state, Fig. 6 shows
the evolution of time-resolved potential energy density for the
three most strongly participating surfaces, similarly to Fig. 5.
Since fewer nonadiabatic transitions are required on average
to reach the ionizing surface, this scenario exhibits an about
three-times-higher ionization signal than the one of Fig. 5.

FIG. 6. Mean time-resolved potential energy density similar to
Fig. 5, but for the microwave detuning of � = 120 MHz, such that
more surfaces are populated initially.
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The spectra, as shown in Figs. 5 and 6, are experimentally
accessible through microwave spectroscopy, as in [9].

Overall we have shown that for both these microwave
detunings, ionization of the Rydberg atoms is strongly linked
to nonadiabatic transitions since the system will be initialized
solely on surfaces on which ionization does not occur directly,
as shown in Sec. III. We also demonstrated that on the high-
energy tails of the initial energy distribution, a reasonable
control over the initial exciton state is possible through the
microwave detuning. The control over the initial state trans-
lates into control over the ionization probability.

The rate of ionization for the simulations presented here
remains relatively low, which is an artifact of our restriction
to just N = 6 atoms to keep simulations tractable. For only
six atoms, it is relatively unlikely that a pair of atoms initially
repel, the system then undergoes nonadiabatic transitions to
leave the repelling surfaces, and an atom subsequently still
encounters a new collision partner on its outwards journey in
order to ionize. The situation would be very different in an
experiment, where a much larger number of Rydberg atoms
can be easily excited. If the initially repelling atoms are
surrounded in all directions by a larger number of Rydberg
atoms, it is reasonable to expect that the ionization probability
after a nonadiabatic transition could approach unity.

Along the same lines, while the simulations presented
here are for lithium atoms, the equivalent simulations with
rubidium atoms showed qualitatively similar behavior, but
even smaller ionization probabilities within the lifetime of the
atoms due to their larger inertia. This could likely be overcome
by a larger number of atoms in experiments, such that we
expect our results to qualitatively also pertain to rubidium
assemblies.

V. CONCLUSIONS

We have modeled the joint electronic and motional dy-
namics of an assembly of few (N = 6) Rydberg excitations
that are created at random 3D positions in an ultracold
gas. Atoms subsequently move according to resonant dipole-
dipole interactions. With a simple phenomenological model
for microwave excitation with a fixed detuning, we have
shown that experiments can selectively initialize this motional
dynamics in dipole-dipole exciton eigenstates that have en-
tirely repulsive character. We have modeled the motion of the
Rydberg assembly with a quantum classical surface-hopping
algorithm, which permits nonadiabatic transitions between
exciton states.

These simulations reveal frequent nonadiabatic transitions
for the parameters selected, rendering it likely that the group
of Rydberg atoms reaches a Born-Oppenheimer surface that
is no longer repulsive and therefore permits collisional ioniza-
tion of Rydberg atoms. This causal chain of events turns an ion
count into an experimentally accessible flag for nonadiabatic
transitions.

Earlier simulations of nonadiabatic dynamics near conical
intersections in Rydberg systems assumed trapped Rydberg
atoms [17,28,29] or tightly localized excitation beams [30],
and require high-resolution Rydberg position measurements
for the observation of the results. While possible with a
dedicated apparatus [10,12,41,42], these requirements pose
a challenge to most ultracold Rydberg experiments. In con-
trast, the results presented here should be observable using
routinely applied random Rydberg excitation in a thermal gas
and interrogation via ion counting.
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APPENDIX: MICROWAVE TRANSITIONS

The exciton states defined in (7) can be expressed explicitly
in the basis (1) as

|ϕk〉 =
∑
m,n

f (k)
nm |πn(m)〉, (A1)

where f (k)
nm = 〈ϕk|πn(m)〉 are the component amplitudes in the

basis state |πn(m)〉 for the system eigenstate |ϕk〉. With (A1),
the transition probability Pk from the |s..s..〉 state to the exci-
ton state Eq. (A1), using Eq. (12), is proportional to

Pk ∝ |〈ϕk|Ĥmw|s..s..〉|2 ∝
[∑

n

f (k)
n0

]∗[∑
n

f (k)
n0

]
. (A2)

We are not interested in absolute probabilities for the simu-
lation since we only want to model trajectories where some
exciton state has been excited, but (A2) is sufficient to infer
the relative transition probability P̃r (k) onto the BO surface
k as

P̃r (k) = Pk∑
k Pk

. (A3)

Using Eq. (A3), the relative transition probability for different
microwave detunings � is shown in Figs. 4(b) and 4(c). For
simulations in Figs. 5 and 6, we remove trajectories for which
all exciton energies are far from the microwave resonance,
|Uk − �| > 2σU ∀k, since when using an absolute excitation
probability these cases would simply not show any excitation
of Rydberg p states.
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