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Theory of dipole moment reconstruction by attosecond transient absorption spectroscopy
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We propose a general procedure for the reconstruction of time-dependent dipole moment via transient
absorption spectrum, within the framework of linear response theory. The reconstruction method is demonstrated
with two examples: the self-reconstruction of extreme-ultraviolet-light-atom interaction (analytically) and the
infrared-dressed helium system (numerically). A correlation coefficient is introduced to quantify the fidelity
of the reconstruction, which reaches almost 100% over a wide range of laser parameters and thus indicates
the robustness of our reconstruction method. Our theory provides a solid basis for understanding the recent
experiment [Phys. Rev. Lett. 121, 173005 (2018)], explaining when and why the dipole moment can be well
reconstructed solely from the absorption spectrum even without exact knowledge of the attosecond probe pulse.
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I. INTRODUCTION

During the past years, the attosecond transient absorption
spectroscopy (ATAS) has emerged as a powerful tool for real-
time observation of ultrafast dynamics, including strong-field
tunneling ionization [1], valence electron motion [2], subcycle
ac Stark shift [3,4], and buildup of the Fano resonance [5,6],
as well as conical intersection [7,8], to name only a few. In
general, this relies on a pump-probe scheme in which the
temporal information is mapped onto the delays between two
pulses [9–11]. Recently, it was demonstrated in Ref. [12] that
with the help of causality (or the Kramers-Kronig relations
between absorption and dispersion) [13–16] a single absorp-
tion spectrum at a certain time delay is sufficient to restore the
full temporal dipole response. This provides a direct access
to the quantum beats inside atoms and is beneficial to the
understanding of other associated ultrafast phenomena such
as the high-order harmonic generation [17]. In a broader per-
spective, the same method can be also applied to reconstruct
the intricate wave packet dynamics in molecules [18] and to
follow the attosecond state-resolved carrier motion in materi-
als [19]. One should note, however, the reconstruction theory
is accurate only for a δ(t ) pulse, while on the other hand
the shortest attosecond pulse currently reported is limited
above ∼40 as [20–22]. Therefore, it is natural to ask, for an
arbitrary attosecond probe pulse (APP) that is not infinitely
short, can the time-dependent dipole moment (TDM) still be
reconstructed, and, if yes, how accurate is the reconstruction?
These questions stimulate this work.

In this paper, we propose a general theory of TDM recon-
struction by ATAS. The key step is to first reconstruct the
impulse response function (IRF) that can be retrieved solely
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from the measurement of the absorption spectrum. Then, if
one is also able to accurately measure the APP waveform
[23–27], the TDM involved in an arbitrary combined extreme
ultraviolet (XUV) and infrared (IR) laser field can be re-
constructed straightforwardly by convolution of the IRF and
the APP field. Secondly, even when the APP information is
lacking, we prove that the TDM is a superposition of the IRF
together with a rapidly decaying perturbation that has a life-
time proportional to the APP duration. This explains why and
how an APP that has a duration of hundreds of attoseconds can
still be applied to robustly reconstruct the long-term behavior
of the TDM. We demonstrate our theory first with an example
of self-reconstruction of the XUV-atom interaction, in which
the atom is described by the Lorentz model and the system is
analytically solvable and thus facilitates a clear demonstration
of the advantages of our reconstruction method. To further
establish the generality of our theory, we then consider an
IR-dressed helium atom and a correlation coefficient is in-
troduced to quantify the fidelity of the reconstruction, which
indicates that our theory also works successfully in complex
systems.

The paper is organized as follows. In Sec. II, a general
theory of TDM reconstruction is presented. The main results,
including two examples to demonstrate our reconstruction
method and the reconstruction fidelity, are presented in
Sec. III. Finally, some concluding remarks are made in
Sec. IV. Atomic units are used throughout unless otherwise
indicated.

II. GENERAL THEORY OF RECONSTRUCTION

In this section, we will present a general theory for the
TDM reconstruction. Let us start with the linear response
theory that describes the relationship between the TDM and
the external laser fields, in the frequency domain

d̃ (ω) = χ̃IR(ω)ẼX (ω), (1)
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where ẼX (ω) is the frequency spectrum of the APP [28] and
χ̃IR(ω) represents the electric susceptibility of the system
which is modulated by the IR laser field [29,30]. Equiva-
lently, it can be written as a convolution of the impulse [at
EX (t ) = EX0δ(t )] response function of the IR-dressed system
χIR(t ) and the waveform of the APP EX (t ), i.e.,

d (t ) = 1√
2π

∫ ∞

0
χIR(τ )EX (t − τ )dτ. (2)

Here, the integration takes only from zero to ∞ due to the
causality of a physical response for any material. d (t ) is what
we would like to reconstruct in the following. In principle,
if one knows the electric susceptibility of the system χ̃IR(ω)
[or the IRF χIR(t )] as well as details of the APP [EX (t ) or
ẼX (ω)], then d (t ) can be readily determined. However, in
most experiments, only the real (Re[χ̃IR(ω)], corresponds to
dispersion) or imaginary (Im[χ̃IR(ω)], corresponds to absorp-
tion) part of the complex electric susceptibility is measured.
Even so, fortunately, the Kramers-Kronig relations allow one
to determine the dispersion with the absorption (or vice versa)
and thus to restore the full information of the complex χ̃IR(ω)
[13–16]. Below we show how and why the TDM d (t ) can
be accurately reconstructed with the absorption cross section
σ (ω)(ω > 0).

To this end, we make an even extension of the experi-
mentally measured absorption cross section into the negative
frequency domain, i.e.,

σ (ω) = σ (−ω) (ω < 0). (3)

Then one can prove that (see Appendix A for details), in the
framework of linear response theory, the absorption spectrum
measured at an arbitrary APP indeed always gives rise to the
IRF [31]

χIR(t ) = F−1

[
−i

σ (ω)

2παω

]
(t > 0), (4)

and the full TDM d (t ) should be reconstructed according to
Eq. (2), which requires the temporal information of the APP.

Taking the following XUV laser field, for example,

EX (t ) = EX0e−λ|t | cos(ωX t ), (5)

we can make some analytical discussions on the reconstruc-
tion theory [32]. Here ωX is the central frequency and τX =
2 ln 2/λ is the pulse duration, i.e., the full width at half max-
imum (FWHM). Transforming to the frequency domain, we
have

ẼX (ω) = EX0√
2π

[
λ

λ2 + (ω − ωX )2
+ λ

λ2 + (ω + ωX )2

]
. (6)

We then exploit the fact that in ATAS the pulse duration of
the APP (∼1/λ) is much shorter than the typical decoherence
time of the system (∼1/γ ), i.e., λ � γ ; therefore, the TDM
can be reconstructed by superposition of the IRF and its tem-
poral shifts (see Appendix B for details):

d (t ) ∝ χIR(t ) +
∞∑

n=1

e− nλ
ωX cos n

[
χIR

(
t + n

ωX

)

+χIR

(
t − n

ωX

)]
. (7)

It can be seen that the TDM is dominated by the first
term for a δ(t ) pulse (λ → ∞), while with the increase of
the APP duration (decrease of λ) the subsequent other high-
order corrections become important. The summation can be
truncated at a certain small n such that nλ/ωX ≈ 1 due to the
exponentially decaying coefficients.

An interesting feature implied in Eq. (7) is that the
long-term (t � τX ) behavior of the TDM is proportional
to and can be represented by the IRF, if the amplitude
of the dipole oscillation is slowly modulated within the
time scale of the APP duration. This can be verified
by separating the slow and fast variables of the IRF as
χIR(t ) = f (t ) sin(ω0t + φ), where f (t ) is a slowly varying
modulation function, i.e., df /dt 	 λ. Then, according to the
exponentially decaying coefficients we only need to take the
first few n into account, and in such case for every small n,
f (t ± n/ωX ) ≈ f (t ± 1/λ) ≈ f (t ), so that χIR(t + n/ωX ) +
χIR(t − n/ωX ) ≈ 2 f (t ) cos(nω0/ωX ) sin(ω0t + φ) ∝ χIR(t ),
indicating that d (t ) is also proportional to χIR(t ). As
will be discussed in more details in Sec. III, the above
approximations are satisfied in many typical cases of ATAS,
e.g., (i) for XUV-atom interaction, f (t ) ∼ e−γ t ; therefore,
df /dt 	 λ means γ 	 λ, which is the case in ATAS; (ii) for
an IR-dressed atom, f (t ) ∼ cos(�t ); therefore, df /dt 	 λ

requires � 	 λ, where � is the Rabi frequency [33].
Up to this point, we have developed a general procedure

for the TDM reconstruction: by measuring the absorption
spectrum, we can use Eq. (4) to calculate the IRF or IR-
dressed electric susceptibility; then if we are also able to
accurately measure the APP waveform, the TDM can be ob-
tained from Eq. (1) or Eq. (2). When the XUV laser field
is not exactly known, we can use Eq. (7) to make a rough
estimation of the TDM, which depends only on some key
laser parameters. Finally, even if the APP is totally unknown,
one can still use Eq. (4) to retrieve the long-term behavior
of the TDM.

III. RESULTS AND DISCUSSIONS

A. Enlightening example: Self-reconstruction

As a demonstration of our reconstruction theory, we first
consider the simple case of a single resonance ω = ω0 without
the IR dressed field. The electric susceptibility is described by
the Lorentz model as known in textbooks [34],

χ̃0(ω) = ω2
p

ω2
0 − ω2 + iγω

, (8)

where ωp is the plasma frequency. The IRF can be evaluated
by contour integration [refer to Eq. (A4) of Appendix A],
which gives rise to

χ0(t ) =
√

2πω2
pe−γ t/2 sin ν0t

ν0
θ (t ), (9)

where ν0 =
√

ω2
0 − γ 2/4 and θ (t ) is the step function in-

dicating the causality. Substituting Eqs. (6) and (8) into
Eq. (1) and then performing the inverse Fourier transforma-
tion, we can calculate the full dipole response analytically.
Here, the Fourier transformation can be evaluated by contour
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integration. The integrand has six poles in the complex-ω
plane: two poles z± = ±ν0 + iγ /2 associated to the bare
atomic electric susceptibility [red full circles in Fig. 1(a),
closer to the real axis] and another four poles z1 = ωX +
iλ, z2 = −ωX + iλ, z3 = −ωX − iλ, and z4 = ωX − iλ intro-

duced due to the finite duration of the APP [black full circles
in Fig. 1(a), far away from the real axis]. The poles z1−4 will
disappear for a δ(t )-probe pulse. The contour is closed in the
upper (lower) half-plane for t > 0 (t < 0), respectively. Then,
according to Cauchy’s theorem, we get

d (t ) =
⎧⎨
⎩ω2

pEX0

[
λ e−γ t/2

(
α1

sin ν0t

ν0
+ β1

cos ν0t

ν0

)
+ e−λt (α2 cos ωX t − β2 sin ωX t )

]
, t > 0,

ω2
pEX0eλt [α3 cos ωX t − β3 sin ωX t], t < 0,

(10)

where α1 = a+
a2++b2+

+ a−
a2−+b2−

, β1 = −b+
a2++b2+

+ −b−
a2−+b2−

,

α2 = c+
c2++d2+

, β2 = −d+
c2++d2+

, α3 = c−
c2−+d2−

, and β3 = −d−
c2−+d2−

,

with a± = (ν0 ± ω0)2 + λ2 − γ 2/4, b± = γ (ν0 ± ω0),
c± = λ(λ ∓ γ ), and d± = ω0(γ ∓ 2λ). From these
expressions we see that, even for this rather simple case,
the TDM differs from the IRF in many aspects, including a
phase-shifted term [second term in the first line of Eq. (10)]
and another two decaying terms [last two terms in the first
line of Eq. (10)], as well as the t < 0 component. However,
all these differences disappear if λ � γ , for which e−λt

decays much faster than e−γ t/2 and α1 � β1; therefore, d (t )
is roughly proportional to χ0(t ) besides a rapidly decaying
perturbation that fades away as t → ∞ [see Fig. 1(b)].
This provides an enlightening example to explain why even
an APP that is not infinitely short is capable of robustly
reconstructing the long-term behavior of the TDM.

Figure 1(c) shows a typical run of the dipole-moment
reconstruction, comparing the original TDM (open circles)
with those reconstructed based on Eq. (2) (blue solid curve)
and Eq. (7) (full squares). It can be seen that our theory is
able to accurately reconstruct the TDM, including the t < 0
component, even when the APP is relatively long, e.g., of the
order of hundreds of attoseconds.

B. Application to IR dressed system

To further demonstrate the validity of our reconstruction
theory, we now consider the ATAS of an IR-dressed he-
lium atom [35,36]. We focus on the singly excited states
and exploit the single-active-electron (SAE) approximation
[37–43]; for two-electron full-dimensional treatment, see,
e.g., Refs. [44–47]. In specific, the system under study is
described with a three-level model composed of the 1s2 (|g〉),
1s2p (|a〉), and 1s2s (| f 〉) states of He, whose dynamics is
governed by the following discrete Schrödinger equations:

i
d

dt

⎛
⎝Cg

Ca

Cf

⎞
⎠ =

⎛
⎝ 0 Hga 0

Hag 0 Ha f

0 Hf a 0

⎞
⎠

⎛
⎝Cg

Ca

Cf

⎞
⎠, (11)

where Cg, Ca, and Cf are the probability amplitudes of the
corresponding states; Hga, Hag, Ha f , and Hf a are the transi-
tion matrix elements, taking the form Hga = μgaEX(t )e−i�gat ,
Ha f = μa f EIR(t, τ )e−i�a f t , Hag = H∗

ga, and Hf a = H∗
a f . The

energy levels and dipole transition matrix elements can
be determined from first principles [48,49], i.e., �ga =
Ea − Eg = 21.057 eV, �a f = E f − Ea = −0.82 eV, μga =
〈g|z|a〉 = 0.34 a.u., and μa f = 〈a|z| f 〉 = 2.72 a.u. The APP

is described by Eq. (5), while the IR field takes the
form EIR(t, τ ) = E0A (t − τ ) cos[ωIR(t − τ )], where A (t −
τ ) = cos2[ωIR(t − τ )/2N](|t − τ | � Nπ/ωIR) is the pulse
envelope with N the total number of optical cycles. The
Schrödinger equations for the three-level system are solved
numerically by employing the standard forth- and fifth-order
Runge-Kutta algorithm, which gives the original TDM to be
reconstructed. We then calculated the absorption spectrum
with [50]

σ (ω) = −4παω Im

[
d̃ (ω)

ẼX (ω)

]
(ω > 0) (12)

to mimic the experimentally measured one and demonstrate
the subsequent reconstruction procedure.

FIG. 1. (a) Illustration of the poles’ location and the path of
contour integration in calculating the TDM. (b) The full TDM is
decomposed into slow and fast decaying terms, owing to the bare
atomic electric susceptibility (red dashed curve) and induced by the
finite range of the APP duration (black solid curve), respectively.
(c) Comparison between the original TDM (open circles) and the re-
constructed ones based on Eq. (2) (blue solid curve) and Eq. (7) (full
squares), respectively. The laser parameters are IX = 1010 W/cm2,
τX = 300 as, and ωX = 21 eV. For clear visualization, we assume
the decoherence time to be 1/γ = 1 fs. In practice, the decoherence
time can be much longer and the reconstruction is even better.
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FIG. 2. (a) Typical attosecond transient absorption spectrum.
The APP field is the same as that in Fig. 1, while the IR laser
parameters are IIR = 5 TW/cm2, ωIR = 0.82 eV, and N = 10. The
decoherence time is assumed to be 1/γ = 50 fs. Comparison of
the IRF (red dashed curve) and the reconstructed TDM (blue solid
curve) with the original dipole moment (scatters) are demonstrated
in (b) and (c), respectively

A typical calculated ATAS is shown in Fig. 2(a), where the
time delay is positive (negative) if the IR pulse arrives after
(before) the XUV pulse. Without loss of generality, we choose
the absorption spectrum at the delay of five optical cycles
to reconstruct the TDM. As can be seen from Fig. 2(b) the
IRF χIR(t ) has some fine structures different from the original
TDM, while the reconstruction based on Eq. (2) is overall
excellent [Fig. 2(c)].

Inspecting more closely, we zoom in on the TDMs around
the time zero (beginning of the dipole oscillation), as well
as at the vicinity of 12 fs (long-term oscillation). The results
are shown in Fig. 3 at four different τX . It can be seen that,
when the XUV pulse is a δ-kick [τX = 0, Fig. 3(a)], the recon-
structed TDM as well as χIR(t ) fully reproduces the original
TDM over the whole time domain, as one might expect. For

FIG. 3. Reconstructed TDMs as compared with the original ones
when the APP has a duration of 0 (a), 100 (b), 300 (c), and 500 as (d),
respectively. Other laser parameters are the same as those in Fig. 2.

FIG. 4. Fidelity of the TDM reconstruction as a function of the
XUV pulse duration at different IR laser intensities IIR = 1 TW/cm2

(a) and 5 TW/cm2 (b). Other laser parameters are the same as those
in Fig. 2.

an APP with finite pulse duration [Figs. 3(b)–3(d)], the dipole
oscillation starts slightly before the time zero. Therefore, the
IRF χIR(t ) does not well reproduce the original TDM within
the first few hundreds of attoseconds. It even fails to predict
the long-term behavior of the TDM when the APP duration
increases up to 500 as [Fig. 3(d)]. In all cases, by comparison,
the reconstruction method based on Eq. (2) (blue curves)
always works successfully.

C. Fidelity of the reconstruction

To quantify the fidelity of the reconstruction, we introduce
the following correlation coefficient between two variables
[51]:

R(X,Y ) = Cov(X,Y )√
Var[X ] Var[Y ]

, (13)

where Var[X ] = (X − X )2 describes the variance of X and
Cov(X,Y ) = (X − X )(Y − Y ) represents the covariance be-
tween X and Y . In our calculations, X and Y denote the
reconstructed TDM and the original one, respectively. There-
fore, R = 1 indicates that the TDM is 100% reconstructed.

As one can see from Fig. 4, although both χIR(t ) and d (t )
reconstructed with Eq. (4) and Eq. (2) can faithfully repro-
duce the original TDM, the latter is a better choice, almost
reaching 100% fidelity. In general, a shorter XUV pulse can
be applied to reconstruct the TDM with higher reliability as
one can expect. Meanwhile, with the increase of the IR laser
intensity, strong-field and multiphoton effects might come
into play; therefore, the TDM becomes more difficult to be
reconstructed. For those cases with lower reconstruction fi-
delity, the deviation is mainly caused during the first hundreds
of attoseconds and at the positions that the amplitude of the
dipole oscillation is modulated close to zero due to Rabi
flopping.

IV. CONCLUSION

In summary, we have provided a general recipe for the
time-dependent dipole moment reconstruction by attosec-
ond transient absorption spectrum, either with or without
additional measurement of the attosecond probe pulse wave-
form or frequency spectrum. We have demonstrated that the
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reconstruction method can reach almost 100% fidelity as
far as the APP duration is sufficiently short and the linear
response theory is valid. The underlying mechanisms have
been revealed by perturbation theory in the time domain and
complemented by complex analysis in the frequency domain,
both indicating that the difference between the original dipole
response and the reconstructed one is significantly reduced
with the shrink of the APP duration. The reconstruction theory
does not necessary rely on detailed information of the physical
system that is under investigation or even not on the probe
field. It is thus rather general and could be extended to other
types of transient absorption spectroscopy.
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APPENDIX A: DERIVATION OF EQ. (4)

In this section, we make a detailed derivation of Eq. (4)
in the main text, which is valid under the linear response
assumption of Eq. (1); thus

F−1

[
−i

σ (ω)

2παω

]
= F−1{2i Im[χ̃IR(ω)]}

= F−1[χ̃IR(ω) − χ̃∗
IR(ω)]. (A1)

Here, χ̃IR(ω) only has poles in the upper half of the complex
ω plane as restricted by the principle of causality. We mark
the poles of first order as Z1, Z2, . . . , Zn and define

f (ω) = 1

χ̃IR(ω)
= g(ω)(ω − Z1)(ω − Z2) . . . (ω − Zn).

(A2)
The first part in Eq. (A1) is nothing but χIR(t ),

χIR(t ) = F−1[χ̃IR(ω)] = 1√
2π

∫ ∞

−∞

1

f (ω)
eiωt dω, (A3)

which can be evaluated by the contour integration. For t > 0,
the contour is closed in the upper half ω plane and the integral
is given by 2π i times the residues at the poles; hence we have

χIR(t ) =
√

2π i
n∑

k=1

eiZkt

g(Zk )
∏
j �=k

(Zk − Zj )
(t > 0). (A4)

Similarly, F−1[χ̃∗
IR(ω)] can also be calculated by the con-

tour integration as follows:

F−1[χ̃∗
IR(ω)] = 1√

2π

∫ ∞

−∞

1

f ∗(ω)
eiωt dω

= 1√
2π

[∫ ∞

−∞

1

f (ω)
e−iωt dω

]∗
. (A5)

The difference is that, for t > 0, the contour should now be
closed in the lower half ω plane due to the minus sign in the
exponent, whereas all the poles are in the upper half ω plane.

It is thus clear that F−1[χ̃∗
IR(ω)] = 0 when t > 0. Substituting

it back into Eq. (A1), one finally arrives at Eq. (4).

APPENDIX B: DERIVATION OF EQ. (7)

According to Eq. (1), the TDM is determined by the fol-
lowing inverse Fourier transformation:

d (t ) = 1√
2π

∫ ∞

−∞
χ̃IR(ω)ẼX (ω)eiωt dω. (B1)

For a long-lived state, χ̃IR(ω) is much narrower than ẼX (ω)
since γ 	 λ; therefore, we only need to care about a fairly
narrow range (−ω0, ω0). In this case, we make a periodic ex-
tension of ẼX (ω) and cast Eq. (6) into a series of trigonometric
functions

ẼX (ω) ≈ a0

2
+

∞∑
n=1

[
an cos

(nω

ωX

)
+bn sin

(nω

ωX

)]
, (B2)

where the coefficients are determined by

a0 = 1

πωX

∫ ∞

−∞
ẼX (ω)dω,

an = 1

πωX

∫ ∞

−∞
ẼX (ω) cos

(nω

ωX

)
dω,

bn = 1

πωX

∫ ∞

−∞
ẼX (ω) sin

(nω

ωX

)
dω. (B3)

FIG. 5. Illustration of the imaginary (a) and real (b) parts of
the susceptibility together with the frequency spectrum of the APP.
The solid and dashed curves in (c) represent the original spectrum
[Eq. (6)] and its periodic extension [Eq. (B6)], respectively. The
dashed-dotted lines show the boundaries of ±πωX , within which the
two spectra in (c) are almost identical; therefore, the approximation
of Eq. (7) is valid.
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For the APP [Eq. (6)] adopted in this paper, the above inte-
grations can be calculated analytically according to Cauchy’s
theorem, for example,

an = EX0

(2π )3/2ωX

∫ ∞

−∞
(�++ + �+− + �−+ + �−−)dω

= iEX0√
2πωX

[Res�++|ω=iλ−ωX − Res�+−|ω=−iλ−ωX

+ Res�−+|ω=iλ+ωX − Res�−−|ω=−iλ+ωX ]

= 2EX0√
2πωX

e− nλ
ωX cos n, (B4)

where

�++ = λ

λ2 + (ω + ωX )2
e

inω
ωX ,

�+− = λ

λ2 + (ω + ωX )2
e− inω

ωX ,

�−+ = λ

λ2 + (ω − ωX )2
e

inω
ωX ,

�−− = λ

λ2 + (ω − ωX )2
e− inω

ωX . (B5)

Similarly, we have a0 = 2EX0/
√

2πωX and bn = 0; therefore,

ẼX (ω) ≈ EX0√
2πωX

[
1 + 2

∞∑
n=1

e− nλ
ωX cos n cos

(nω

ωX

)]
. (B6)

As can be seen from Fig. 5, this approximated expansion is
in general very good within the interval of [−πωX , πωX ].
Consequently, when calculating the TDM with inverse Fourier
transform, we can replace Eq. (6) with Eq. (B6). Substituting
Eq. (B6) back into Eq. (B1), we can finally obtain Eq. (7).
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