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Adiabatic theory of strong-field ionization of molecules including nuclear motion: Rescattering
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We extend the adiabatic theory of strong-field ionization of molecules including nuclear motion developed in
our previous paper [J. Svensmark et al., Phys. Rev. A 101, 053422 (2020)] to describe rescattering processes.
The adiabatic regime in which the electronic timescale is much smaller than that of the nuclei and laser field
is considered. The asymptotics of rescattering parts of the solution to the time-dependent Schrödinger equation
(TDSE) and ionization amplitude are obtained, and thus vibrationally resolved photoelectron momentum dis-
tributions (PEMDs) in the whole range of the photoelectron momentum are found. The ionization dynamics is
described in terms of a nuclear wave packet in the molecular ion created as a result of ionization of the molecule,
its evolution until rescattering, and a nuclear wave packet after rescattering. This complements the three-step
model by accounting for what happens with the nuclear subsystem between ionization and rescattering events.
A uniform asymptotics defining the PEMDs near a backward rescattering caustic is obtained, which enables one
to extract the nuclear wave packet after rescattering from the PEMDs. The theory is illustrated by comparing its
predictions with accurate numerical results obtained by solving the TDSE for a one-dimensional molecule with
one electronic and one internuclear degree of freedom modeling H2.
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I. INTRODUCTION

While the theory of ionization of one-electron atoms and
molecules with frozen nuclei by intense laser pulses has
reached the stage of maturity, with many efficient analytical
[1–8] and computational [9–15] methods for studying strong-
field phenomena [16] developed, the present understanding
of how nuclear motion in molecules affects the ionization
dynamics and reveals itself in ionization observables is far less
complete. One reason for that is computational: Solving the
time-dependent Schrödinger equation (TDSE) numerically,
even for the simplest molecular system consisting of one
electron and two nuclei with the nuclear motion included,
is still not feasible in the three-dimensional case. In this
situation, it is natural to resort to the analysis of reduced
dimensionality models. Indeed, many calculations for models
with one-dimensional [17–25] or two-dimensional [26–34]
electron and one internuclear degree of freedom have been
reported. Such models often catch the main physics of the
process being considered and are helpful for interpreting ex-
periments [35–41]. However, there also exists a gap on the
analytical side: Nuclear motion has not been incorporated into
the three-step model [42,43], that is, we lack a simple picture
of the dynamics supported by an analytical theory which
would account for what happens with the nuclei between
ionization of a molecule and rescattering of a photoelectron
on the molecular ion. In this paper we present such a picture
resulting from the adiabatic theory.

In a previous paper [44] we generalized the adiabatic the-
ory of strong-field ionization of one-electron systems with
frozen nuclei [8] by including the internuclear motion. We

considered a model molecule with one electronic and one
internuclear degree of freedom. The adiabatic approximation
relies on the presence of different timescales in the system.
There are three timescales characterizing the electronic and
internuclear motions and the variation of the laser field. De-
pending on their ratios, two regimes were considered: In one,
the field timescale is much larger than that of the electron
and nuclei, and in the other, the electronic timescale is much
smaller than that of the nuclei and field. Accordingly, two
versions of the adiabatic theory were developed. In both
cases, the leading-order terms in the asymptotic expansions
of the solution to the TDSE and ionization amplitude in the
corresponding timescale ratio were obtained. Rescattering,
which appears in higher orders of the expansions, was not
considered.

Meanwhile, rescattering processes determine the high-
energy part of strong-field photoelectron momentum distribu-
tions (PEMDs) [45]; therefore, without describing them, the
theory initiated in Ref. [44] is not complete. In this paper we
extend the theory to include rescattering. This development
generalizes the treatment of rescattering in Ref. [8] to the
situation where the parent ion on which rescattering of a pho-
toelectron occurs has internal degrees of freedom. We restrict
our analysis to the adiabatic regime where the electron is the
fastest, which covers current strong-field experiments with
lasers operating in the near-infrared range. For real molecules
with heavy nuclei, the other regime considered in Ref. [44],
where the field is the slowest, belongs to the regime analyzed
here. The derivation and the expressions for the rescattering
parts of the solution to the TDSE and ionization amplitude ob-
tained involve objects and processes not present in the theory

2469-9926/2021/104(6)/063115(24) 063115-1 ©2021 American Physical Society

https://orcid.org/0000-0002-7089-6514
https://orcid.org/0000-0001-7603-2322
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.063115&domain=pdf&date_stamp=2021-12-16
https://doi.org/10.1103/PhysRevA.101.053422
https://doi.org/10.1103/PhysRevA.104.063115


SVENSMARK, TOLSTIKHIN, AND MORISHITA PHYSICAL REVIEW A 104, 063115 (2021)

for systems with fixed nuclei [8]: a nuclear wave packet in the
molecular ion created as a result of ionization of the molecule,
its evolution until a rescattering event, its transformation due
to rescattering, and the resulting nuclear wave packet after
rescattering has occurred. All this is described analytically,
which fills the gap mentioned above and shows what hap-
pens with the nuclear subsystem in strong-field ionization of
molecules.

Another aspect of rescattering which attracts much interest
in strong-field physics stems from the fact that rescattered
photoelectrons imprint information on the structure of the
parent ion into the PEMD [46]. Hence, this information can
be extracted from experimental PEMDs, which is the essence
of rescattering spectroscopy. To establish an extraction proce-
dure, a theory relating the PEMD to the structure information
is needed. For systems with frozen nuclei, there exists a
well-developed approach based on a factorization formula
proposed in Ref. [47]. This formula states that strong-field
PEMDs in a region dominated by backward rescattered photo-
electrons factorize into the differential cross section (DCS) for
elastic scattering of an electron on the potential created by the
parent ion and a returning photoelectron wave packet (RWP).
It enables one to extract DCSs from experimental PEMDs
[48–64]. The factorization formula was derived and an analyt-
ical expression for the RWP was obtained within the adiabatic
theory [8] in Ref. [65], which made the extraction proce-
dure quantitative [57,60,62,64]. Recently, this theory has been
generalized to vortex electrons [15]. In this paper, following
Ref. [65], we derive the analog of the factorization formula
for the present model including the internuclear motion. The
main difference compared to the case of fixed nuclei is that the
internuclear motion entangles the ionization and rescattering
processes. This essentially modifies the meaning of the factor
containing structure information in the factorization formula.
We show that it is the nuclear wave packet in the molecular
ion after rescattering which can be extracted from the PEMD.
Having this wave packet and using the theoretical expression
for the wave packet before rescattering, one can reconstruct
the scattering matrix, which is similar to the procedure pro-
posed in Ref. [47]. Alternatively, one can reconstruct the wave
packet before rescattering, assuming that the scattering matrix
is known, which opens a different avenue for rescattering
spectroscopy. Note that the latter wave packet and its evolu-
tion in time is what was observed in a pioneering paper [66]
and more recently in Refs. [53,63]. The goal of developing the
present theory is to describe the nuclear dynamics observed
in such experiments and show how a moving nuclear wave
packet can be reconstructed from the PEMD.

Since the Keldysh theory [1] and its versions known as
the strong-field approximation (SFA) [2,3] are widely used
for describing strong-field ionization of systems with fixed
nuclei [4–6] and were also applied to systems with moving
nuclei [22,31,67], it may be instructive to compare their scope
and applicability with that of the adiabatic theory developed in
Refs. [8,44] and the present paper. The SFA can be applied for
arbitrary frequencies, which is an advantage compared to the
adiabatic theory applicable only in the low-frequency case. At
the same time, the SFA does not become exact anywhere in the
space of parameters defining laser pulse and target properties
and, as a consequence, works only qualitatively at best. On

the other hand, the adiabatic theory becomes exact in the
low-frequency limit and under a certain condition [condition
(13) in Ref. [8]; condition (44) given below in the present
case] works quantitatively. It is a solid theory of strong-field
ionization capable of explaining existing experiments and pre-
dicting new strong-field effects; see, e.g., Refs. [15,64,68,69].
A more detailed comparison of the analytical structures of the
two approaches can be found in Ref. [8].

The paper is organized as follows. In Sec. II we introduce
our model and discuss its properties needed for developing
the adiabatic theory. Section III places the model in the
time-dependent context and defines ionization observables.
Section IV presents the main theoretical results of this
paper. In Sec. V the theory is illustrated by calculations for
one-cycle pulses. Section VI illustrates the application of
the factorization formula for realistic few-cycle pulses with
a well-defined carrier-envelope phase (CEP). Section VII
summarizes the paper.

II. MODEL

Following Refs. [44,70–73], we consider a model one-
dimensional molecule consisting of two identical nuclei with
masses m1 = m2 = M and charges q1 = q2 = 1

2 and one ac-
tive electron with mass m3 = 1 and charge q3 = −1 (atomic
units used throughout the paper). The molecule is treated in its
center-of-mass frame, so the nuclear x1 and x2 and electronic
x3 coordinates satisfy M(x1 + x2) + x3 = 0. Its Hamiltonian
is given by

H0 = − 1

2μ

∂2

∂R2
− 1

2m

∂2

∂x2
+ Uion(R) + V (x; R), (1)

where R = x2 − x1 and x = x3 − (x1 + x2)/2 = x3/m are Ja-
cobi coordinates and μ = M/2 and m = 2M/(2M + 1) are
the corresponding reduced masses. The potentials Uion(R) and
V (x; R) modeling the internuclear and electron-nuclear inter-
actions, respectively, are defined below. As in our previous
paper [44], we assume that the nuclei can neither pass through
each other nor move away from each other at an infinite
distance, and hence dissociation is not possible. The former
assumption reduces the configuration space to the region
0 � R < ∞ and −∞ < x < ∞. The latter is implemented by
using Uion(R) which grows infinitely at R → ∞. Accordingly,
all wave functions describing the motion in R involved in the
formulation are implied to satisfy zero boundary conditions
at R = 0 and R → ∞, and we indicate explicitly only the
asymptotic boundary conditions at |x| → ∞.

In Ref. [44] we considered models with light (M ∼ 1) and
heavy (M � 1) nuclei. In the present study, which aims to
model H2, we restrict our treatment to the heavy nuclei case.
In this case, the value of m is close to unity. To simplify
equations, we set m = 1 in the following. Furthermore, the
Born-Oppenheimer approximation (BOA) is expected to hold,
so we use it below.

A. Potentials

To define the potentials in Eq. (1), we need to formu-
late the BOA for the present model. Let us consider bound
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states of the molecule. The exact bound states are defined
by

(H0 − En)�n(x, R) = 0, (2a)

�n(x, R)||x|→∞ = 0, (2b)

where n = 0, 1, . . . enumerates the states in increasing order
of their energy En. In the BOA, the solutions to Eqs. (2) are
approximated by

�BO
n (x, R) = �n(R)φe(x; R) (3)

and the corresponding energies by EBO
n . Here the electronic

wave function is the ground-state solution to (we consider
only electronically ground molecular states)[

−1

2

d2

dx2
+ V (x; R) − Ee(R)

]
φe(x; R) = 0, (4a)

φe(x; R)||x|→∞ = 0, (4b)

where Ee(R) is the electronic energy. The nuclear wave func-
tion and the molecular energy EBO

n are then defined by[
− 1

2μ

d2

dR2
+ Umol(R) − EBO

n

]
�n(R) = 0, (5)

where

Umol(R) = Uion(R) + Ee(R). (6)

The functions �n(x, R), �n(R), and φe(x; R) are chosen to be
real and normalized to unity.

We want the Hamiltonian (1) to model H2 in the single-
active-electron approximation. To this end, Uion(R) and
Umol(R) should model Born-Oppenheimer (BO) potentials in
the ground electronic states of the molecular ion H2

+ and
neutral molecule H2, respectively. The potential Uion(R) is
defined by

Uion(R) = A

R2
+ B + CR2, (7)

with the parameters A = 0.26, B = −0.732 635, and C =
0.016 25. The same internuclear potential was used in
Refs. [44,70,71]. The last term in Eq. (7) prevents the
molecule from dissociating. With this potential, the molecular
ion has a purely discrete spectrum of eigenstates defined by

(Hion − εv )χv (R) = 0, (8)

where

Hion = − 1

2μ

d2

dR2
+ Uion(R) (9)

and v = 0, 1, . . . is the vibrational quantum number. The
functions χv (R) are real and normalized to unity. The electron-
nuclear interaction is modeled by

V (x; R) = V
(

x + R

2

)
+ V

(
x − R

2

)
, (10)

where

V (x) = − a1

cosh2(b1x)
− a2

cosh2(b2x)
, (11)

with the parameters a1 = 0.8853, b1 = 3.008, a2 = 0.2284,
and b2 = 0.4606. The potential V (x) is similar to the one used

FIG. 1. Upper (blue) and lower (black) solid lines show the ionic
Uion(R) and molecular Umol(R) potentials in the present model, re-
spectively. The corresponding dashed lines show the BO potentials
for real H2

+ [74] and H2 [75]. The ground-state molecular energy E0

and molecular ion energies εv for a number of the lowest vibrational
states are shown by horizontal lines superimposed on the correspond-
ing potentials. The horizontal dotted line indicates the boundary of
the electronic continuum ε0

in Ref. [44]. We have added the second term in Eq. (11) to
make the potential well deeper and thus to increase rescat-
tering. In Fig. 1 the ionic Uion(R) and molecular Umol(R)
potentials defined above are compared with the BO potentials
for H2

+ [74] and H2 [75], respectively. The present model is
seen to reproduce the BO potentials for the real systems well
near and to the left of their minima at Rion = 2 and Rmol = 1.4.
In this model, for M = 1836 corresponding to H2, we obtain
the exact E0 = −1.164 361 and BO EBO

0 = −1.164 393 ener-
gies of the ground state. These energies differ only in the sixth
digit, which shows that the BOA for bound states works rather
well. The electronic continuum begins at ε0 = −0.597, so
the ionization potential of the molecule in the ground state is
Ip = ε0 − E0 = 0.568. The vertical ionization potential at the
molecular equilibrium is Uion(Rmol) − Umol(Rmol) = 0.606.

B. Scattering states and scattering matrix

Scattering states of the molecule are needed to define ion-
ization observables. In this section we recall the definition of
the exact scattering states and the associated scattering matrix
[44] and then discuss how to construct them in the BOA.

The exact in (+) and out (−) scattering states having an
incident wave with momentum k in the entrance vibrational
channel v satisfy [44]

[H0 − Ev (k)]�(±)
v (x, R; k) = 0, (12)

where

Ev (k) = k2

2
+ εv. (13)

We consider these states in the whole range of the inci-
dent momentum −∞ < k < ∞, with positive and negative k
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corresponding to electrons impinging on the molecular ion
from the negative and positive ends of the x axis, respectively.

The asymptotic boundary conditions for the in states are spec-
ified by

�(+)
v (x, R; k > 0) =

⎧⎨
⎩

∑
v′

√
k

kv′ eikv′ xχv′ (R)S+
v′v (k), x → +∞

eikxχv (R) − ∑
v′

√
k

kv′ e
−ikv′ xχv′ (R)S−

v′v (k), x → −∞
(14a)

and

�(+)
v (x, R; k < 0) =

⎧⎨
⎩

eikxχv (R) − ∑
v′

√
|k|
kv′ e

ikv′ xχv′ (R)S+
v′v (k), x → +∞∑

v′

√
|k|
kv′ e−ikv′ xχv′ (R)S−

v′v (k), x → −∞,
(14b)

where kv′ =
√

k2 + 2(εv − εv′ ) � 0, S±
v′v (k) is the scattering

matrix, its superscript indicates the direction of propagation of
the outgoing wave in the exit channel v′, and the summations
run over all open exit channels with εv′ < Ev (k). The out
states are given in terms of the in states by [76]

�(−)
v (x, R; k) = [�(+)

v (x, R; −k)]∗. (15)

We have set m = 1 in these equations as compared to
Ref. [44].

For the derivation of the rescattering part of the solution to
the TDSE in Sec. IV A, we need an integral representation for
the in states. Moving the term with V (x; R) to the right-hand
side of Eq. (12), this equation can be cast in the integral form

�(+)
v (x, R; k)

= eikxχv (R) +
∫ ∞

0
dR′

∫ ∞

−∞
dx′G(x, R, x′, R′; Ev (k))

×V (x′; R′)�(+)
v (x′, R′; k), (16)

where

G(x, R, x′, R′; E ) =
∑
v′

G(x − x′; E − εv′ )χv′ (R)χv′ (R′)

(17)
is the outgoing-wave Green’s function for the remaining left-
hand side of Eq. (12) and

G(x; E ) = e−3iπ/4
∫ ∞

0
exp

(
ix2

2t
+ iEt

)
dt√
2πt

(18)

is the Green’s function describing free motion in x.
The scattering matrix contains information on the structure

of the molecule. One of the goals of this paper is to demon-
strate how this information can be extracted from ionization
observables. To prepare this discussion, here we illustrate the
dependence of the scattering matrix on its arguments. For
the present homonuclear molecule, the potential (10) is an
even function of x. In this case, the scattering matrix satisfies
S−

v′v (−k) = S+
v′v (k), so it is sufficient to consider S+

v′v (k). For
k > 0 (k < 0), the value of |S+

v′v (k)|2 gives the probability
of transmission (reflection) in the scattering of an electron
by the molecular ion accompanied by a vibrational transition
v → v′ in the ion. The solid lines in Fig. 2 show such proba-
bilities as functions of k for the entrance channel v = 0 and
exit channels v′ = 0, 1, and 2. One can see that the trans-
mission probability for the vibrationally elastic exit channel
v′ = 0 approaches unity as k > 0 grows, while for inelastic

channels v′ > 0 it decays almost monotonically without any
pronounced structure. On the other hand, the reflection prob-
abilities for all exit channels demonstrate a regular oscillatory
behavior, which is caused by the two-center interference (dis-
cussed below), and the envelope of the oscillations decays as
−k > 0 grows. We found that the rate and functional form of
this decay depend strongly on the electron-nuclear potential
(10). The nearly exponential decay seen in the figure is char-
acteristic of smooth finite-range potentials V (x) of the type
used here. In this case, deepening the potential well makes the
decay slower.

To simplify the interpretation of the results of the adi-
abatic theory in the following sections, we need to obtain

FIG. 2. Transmission (k > 0) and reflection (k < 0) probabilities
for electron scattering by the molecular ion as functions of the inci-
dent momentum k for the entrance channel v = 0 and exit channels
v′ = 0, 1, and 2. Solid (black) lines are obtained using the exact
molecular scattering matrix defined by Eqs. (14). Dashed (orange)
lines are calculated in the BOA using the scattering matrix from
Eq. (22).
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a representation for the scattering states and the scattering
matrix in the BOA. There exists a well-known problem in
constructing molecular scattering states in the BOA. Indeed,
within the BOA, the solution to Eq. (12) should be sought in
the factorized form similar to Eq. (3), where the electronic
wave function is a continuum state in the potential (10) cre-
ated by fixed nuclei. However, while the electronic energy
in a discrete state is a uniquely defined function of R, such
as Ee(R) in Eqs. (4), in a continuum state it can arbitrarily
depend on R. Since this energy then defines the molecular BO
potential in Eq. (5), one can construct infinitely many different
BOA representations for the same molecular scattering state.
To eliminate this arbitrariness, we adopt an approach proposed
in Ref. [77]. In this approach, the electronic energy in a con-
tinuum state is assumed to be a constant independent of R. Let
us introduce the electronic in scattering states with incident
momentum −∞ < k < ∞ and energy k2/2 defined by[

−1

2

d2

dx2
+ V (x; R) − k2

2

]
φ(+)

e (x; R, k) = 0 (19)

subject to the boundary conditions

φ(+)
e (x; R, k > 0) =

{
eikxS+(k; R), x → +∞
eikx − e−ikxS−(k; R), x → −∞

(20a)

and

φ(+)
e (x; R, k < 0) =

{
eikx − e−ikxS+(k; R), x → +∞
eikxS−(k; R), x → −∞.

(20b)
Here S±(k; R) is the electronic scattering matrix which de-
pends on R as a parameter and its superscript again indicates
the direction of propagation of the scattered wave. Then the in
solutions to Eq. (12) in the BOA can be approximated by

�(+)BO
v (x, R; k) = χv (R)φ(+)

e (x; R, k). (21)

We mention that a similar approximation based on the ap-
proach introduced in Ref. [77] was used in Ref. [22] to
describe double continuum molecular scattering states in the
analysis of strong-field ionization happening simultaneously
with dissociation of the molecule. The scattering matrix can
be found by comparing Eqs. (20) and (21) with Eqs. (14).
Note that εv − εv′ = O(M−1/2), and hence within the BOA
one should substitute kv′ ≈ |k| into Eqs. (14). We thus obtain

S±,BO
v′v (k) =

∫ ∞

0
χv′ (R)S±(k; R)χv (R)dR, (22)

which is the BOA for S±
v′v (k).

Let us illustrate the quantitative performance of this ap-
proximation. We first discuss the electronic scattering matrix.
For the present model it satisfies S−(−k; R) = S+(k; R), so
it is sufficient to consider S+(k; R). The value of |S+(k; R)|2
gives the probability of reflection (k < 0) or transmission (k >

0) in the scattering of an electron by the potential V (x; R).
These probabilities as functions of k and R are shown in
Fig. 3. For any fixed R, the transmission probability quickly
approaches unity as k > 0 grows. The reflection probability
oscillates with a decaying envelope as −k > 0 grows, which is
similar to the behavior seen at k < 0 in Fig. 2. For the present
one-dimensional scattering, the minima of the oscillations in

FIG. 3. Transmission (k > 0) and reflection (k < 0) probabilities
for electron scattering by fixed nuclei as functions of the incident
momentum k and internuclear distance R. White lines indicate nodal
lines of the electronic scattering matrix S+(k; R). Dashed lines are
obtained from Eq. (23).

k indicate zeros of S+(k; R). The positions of the zeros depend
on R, which forms nodal lines seen as white lines at k < 0 in
Fig. 3. Dashed lines in Fig. 2 are obtained using the molecular
scattering matrix in the BOA from Eq. (22). The good agree-
ment with the exact results confirms the validity of the present
BOA for scattering states. Some difference between the results
can be seen near k = 0, which is expectable, since we have
neglected εv − εv′ compared to k2 in arriving at Eq. (22).

Having demonstrated that Eq. (22) works well, the behav-
ior of S+

v′v (k) can be understood in terms of that of the simpler
object S+(k; R). Let us return to the oscillatory structure at
k < 0 in Fig. 2. We have already stated that it is caused by
the two-center interference. Now we can quantify the state-
ment. We employ the simplest model in which an electron is
reflected either at x = −R/2 or at x = R/2. The requirement
that the two reflected waves interfere destructively reads

2|k|R = π (2n + 1), n = 0, 1, . . . . (23)

Thus, one can expect that the reflection probability turns to
zero when the condition (23) is fulfilled. This happens along
the dashed lines in Fig. 3. These lines indeed approximately
reproduce nodal lines of S+(k; R), and at larger |k| the approx-
imation works better. This means that S+(k; R) oscillates as a
function of R at a given k < 0, and the phase of these oscil-
lations depends on k. The product of the molecular ion states
in the integrand in Eq. (22) is localized near the minimum of
Uion(R) and serves as a window function. As k varies, the in-
tegral oscillates approximately as S+(k; Rion), which explains
the oscillations seen in Fig. 2. Note that there is some phase
shift between the oscillations for different v′, which is caused
by finiteness of the width of ionic states.

C. Electronic Siegert states

Within the adiabatic theory, ionization observables in a
strong laser field are expressed in terms of appropriate Siegert
states (SSs) in a static electric field [8,44]. In the presence
of an external static electric field F , the Hamiltonian of the
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molecule in the present model is H0 + Fx. The molecular
SSs are the eigenfunctions of this Hamiltonian satisfying
outgoing-wave boundary conditions [44,70–73]. The elec-
tronic SSs appear naturally when the molecular SSs are
described in the BOA [44]. For the present study, we need only
one electronic SS which originates from the ground electronic
state defined by Eq. (4) as the field is turned on. In this section
we recall its definition and illustrate its properties.

The electronic SSs are the solutions to [44][
−1

2

d2

dx2
+ V (x; R) + Fx − Ee(R, F )

]
φe(x; R, F ) = 0

(24)
subject to the outgoing-wave boundary conditions

φe(x; R, F ) =
{

f (R, F )e(x, E (R, F )), x → −s∞
0, x → +s∞,

(25)

where s = sgn(F ) and

e(x, E ) = 1

|2Fx|1/4
exp

[
i
21/2

|F |
(

2

3
|Fx|3/2 + E |Fx|1/2

)]
.

(26)

This is an eigenvalue problem, it has an infinite discrete set
of solutions which depend on R and F as parameters. We are
interested in the SS satisfying

Ee(R, F )||F |→0 = Ee(R), φe(x; R, F )||F |→0 = φe(x; R).
(27)

The SS eigenvalue is complex and can be presented in the
form

Ee(R, F ) = Ee(R, F ) − i

2
�e(R, F ), (28)

which defines the Stark-shifted energy Ee(R, F ) and ioniza-
tion rate �e(R, F ) of the electronic state. The dependence of
these functions on R and F in the present model is illustrated
in Fig. 4. The SS eigenfunction is also complex and normal-
ized by ∫ ∞

−∞
φ2

e (x; R, F )dx = 1 (29)

without complex conjugation. In the weak-field limit, the rate
is related to the ionization amplitude f (R, F ) appearing in
Eq. (25),

�e(R, F )|F |→0 = | f (R, F )|2. (30)

The functions Ee(R, F ) and f (R, F ) are needed for imple-
menting the adiabatic theory in the heavy nuclei case [44].

To close Sec. II introducing our model, let us summarize
and partially justify its main simplifications compared to real
molecules. First, we consider a system with only one elec-
tronic and one nuclear degree of freedom. The reason for
this is that to validate our theory we need accurate numer-
ical results obtained by solving the TDSE, but this is not
feasible in the three-dimensional case. Note that all previous
studies including the internuclear motion [17–41] also treated
reduced dimensionality models. We mention that there exists a
powerful method for calculating three-dimensional electronic
SSs developed in Refs. [78,79], so the theory initiated in

FIG. 4. Energy Ee(R, F ) and ionization rate �e(R, F ) for the
electronic SS originating from the ground electronic state as func-
tions of R at a fixed F . The thin (gray) lines show the results for F
from 0 to 0.25 in steps of 0.005. The results for F = 0.0, 0.1, and 0.2
are highlighted by thick (colored) lines.

Ref. [44] and extended below can be implemented for a three-
dimensional electron. Second, the electron-nuclear interaction
is modeled by a finite-range potential (11). Note that the
Keldysh theory [1] and the SFA [2,3] were originally formu-
lated also for finite-range potentials. Corrections caused by the
Coulomb tail of the interaction were included in these theories
later (see, e.g., Ref. [80]) and can be similarly included in
the adiabatic theory. Third, dissociation is not possible in the
present model. It was shown that the probability of dissoci-
ation at field strengths of interest in strong-field physics is
rather small [72,73]. Yet including the dissociation channel
along with vibrational excitation accounted for here is one of
the most interesting directions for future studies. Despite all
these simplifications, the present model reproduces the major
effect of the internuclear motion on the dynamics of tunneling
(or over-the-barrier) ionization, as discussed in Ref. [44], and
rescattering, as shown below, and this effect is worth studying.

III. TIME-DEPENDENT SCHRÖDINGER EQUATION
AND OBSERVABLES

The TDSE describing the molecule interacting with a laser
pulse in the dipole approximation and length gauge reads [44]

i
∂

∂t
	(x, R, t ) = [H0 + F (t )x]	(x, R, t ). (31)

Here F (t ) is the electric field of the pulse satisfying F (t →
±∞) = 0. We assume that the molecule is initially in its
ground state defined by Eq. (2) with n = 0. This leads to the
initial condition

	(x, R, t → −∞) = �0(x, R)e−iE0t . (32)

As a result of the interaction, the molecule can be ionized.
All ionization observables can be expressed in terms of the

063115-6



ADIABATIC THEORY OF STRONG-FIELD IONIZATION … PHYSICAL REVIEW A 104, 063115 (2021)

ionization amplitude

Iv (k) = eiEv (k)t
∫ ∞

0
dR

∫ ∞

−∞
dx �(−)∗

v (x, R; k)	(x, R, t )

∣∣∣∣
t→∞

.

(33)

Thus, the partial PEMD describing the ionization process
in which an electron flies away with asymptotic momentum
k while the molecular ion is left in vibrational state v is
given by

Pv (k) = |Iv (k)|2. (34)

This is the most detailed characteristic of ionization from
which other ionization observables can be obtained by sum-
ming over v and/or integrating over k [44].

To develop the adiabatic theory, it is convenient to rewrite
these equations in alternative forms. The TDSE (31) can be
presented in the integral form [44]

	(x, R, t ) = i
∫ t

−∞
dt ′

∫ ∞

0
dR′

∫ ∞

−∞
dx′Gx(x, t ; x′, t ′)

× GR(R, R′, t − t ′)V (x′; R′)	(x′, R′, t ′). (35)

Here the electronic Green’s function is given by [81]

Gx(x, t ; x′, t ′) = θ (t − t ′)
e−3iπ/4

√
2π (t − t ′)

eiS(x,t ;x′,t ′ ), (36)

where S (x, t ; x′, t ′) is the classical action accumulated along a
trajectory connecting the space-time points (x′, t ′) and (x, t ).
Let us introduce a reference trajectory with the velocity v(t )
and coordinate x(t ) defined by

v̇(t ) = −F (t ), ẋ(t ) = v(t ), (37a)

v(t → −∞) = x(t → −∞) = 0. (37b)

Then the action in Eq. (36) is given by [8]

S (x, t ; x′, t ′) = v(t )x − v(t ′)x′ + [x(t ) − x(t ′) − (x − x′)]2

2(t − t ′)

− 1

2

∫ t

t ′
v2(t ′′)dt ′′. (38)

The nuclear Green’s function in Eq. (35) can be expanded in
eigenstates of the molecular ion defined by Eq. (8),

GR(R, R′, t ) = −iθ (t )
∑

v

e−iεvtχv (R)χv (R′). (39)

The ionization amplitude (33) can be presented as [44]

Iv (k) =
∫ ∞

−∞
dt

∫ ∞

0
dR eiεvtχv (R)[ j(x → ∞, R, t )

− j(x → −∞, R, t )], (40)

where

j(x, R, t ) = − i

2

[
e−iS(x,t ;k) ∂

∂x
	(x, R, t )

−	(x, R, t )
∂

∂x
e−iS(x,t ;k)

]
(41)

is the ionization flux and S (x, t ; k) is the classical action for
a trajectory passing through the point (x, t ) and having the
asymptotic momentum k. This action is given by [8]

S (x, t ; k) = ui(t, k)x − S (t ; k), (42a)

S (t ; k) = k2t

2
− 1

2

∫ ∞

t
[u2

i (t ′, k) − k2]dt ′, (42b)

where ui(t, k) is the initial velocity of the trajectory at time t ,

ui(t, k) = k − v∞ + v(t ), (43)

and v∞ = v(t → ∞).

IV. ADIABATIC THEORY

Let Te, Tn, and Tf denote timescales characterizing the elec-
tronic and internuclear motions in the molecule and variation
of the laser field, respectively. In Ref. [44], two versions of
the adiabatic theory applicable in the different ranges of these
timescales were developed. In this paper we assume that the
electron is the fastest, that is,

Te 
 min(Tn, Tf ). (44)

This version of the theory is called the adiabatic approxima-
tion for slow nuclei and field (AAnf). For real molecules Te 

Tn, so the condition (44) amounts to Te 
 Tf . Note, impor-
tantly, that this condition implies no assumption regarding the
relation between Tn and Tf . The timescales can be estimated
as Te = 2π/Ip, Tn = 2π/�En, and Tf = 2π/ω, where Ip is the
ionization potential of the molecule, �En is the energy differ-
ence between its ground and first exited vibrational states, and
ω is the laser frequency. For H2 at a wavelength of 800 nm,
we obtain Te = 11, Tn = 331 [82], and Tf = 110. Thus, the
AAnf covers current experiments on strong-field ionization
of molecules with lasers operating in the near-infrared range
and remains applicable at all longer wavelengths. The other
version of the theory called the adiabatic approximation for
a slow field (AAf) applies when the field is the slowest,
that is, max(Te, Tn) 
 Tf . In contrast to the AAnf, it allows
one to treat models with light nuclei, when Te ∼ Tn. For real
molecules with heavy nuclei, it becomes applicable at much
longer wavelengths satisfying Tn 
 Tf . In this case, however,
the condition (44) is fulfilled, and hence the AAf reduces to
the AAnf [44].

Let us introduce timescale ratios εn = Te/Tn and ε f =
Te/Tf characterizing adiabaticity of the internuclear motion
and variation of the field, respectively. The applicability of the
AAnf is controlled by the parameter [44]

εn f = max(εn, ε f ). (45)

In the AAnf, the solution to the TDSE (31) and the ionization
amplitude (33) are sought as the asymptotic expansions in
εn f for εn f → 0. Note that this implies the limit M → ∞, so
we continue to use the BOA in the time-dependent context
below. The expansions consist of adiabatic and rescattering
parts which should be treated separately. The adiabatic parts
of the wave function and ionization amplitude were obtained
in Ref. [44]. In Secs. IV A and IV B we recall these results and
derive the corresponding rescattering parts. The asymptotics
presented in these sections are obtained in the leading order in
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εn f and are therefore called simple. In Sec. IV C we obtain a
uniform asymptotics describing backward rescattering near a
caustic. In Sec. IV D we simplify the results by expressing the
scattering state and scattering matrix defining the asymptotics
of rescattering parts in the BOA.

A. Wave function

In the limit ε f → 0, the solution to Eqs. (31) and (32) can
be presented as a sum of adiabatic and rescattering parts [8],

	(x, R, t ) = 	a(x, R, t ) + 	r (x, R, t ). (46)

The adiabatic part 	a(x, R, t ) describes a state in which the
electron remains quasibound, continuously adjusting to the
instantaneous value of the laser field F (t ). The leakage of
electrons in this state results in ionization of the molecule.
The rescattering part 	r (x, R, t ) describes recollision which
occurs when an electron liberated from the molecule returns
to the molecular ion. The two terms in Eq. (46) differ by their
amplitudes, which scale as O(ε0

f ) and O(ε1/2
f ), and phases,

which scale as O(ε−1
f ) and O(ε−3

f ), respectively. These esti-
mates involve only ε f and do not depend on εn because the
dynamics of an electron between its liberation and rescat-
tering is fully determined by the electron-field interaction.
Equation (46) holds within a quasistationary zone |x| 
 Xf ,
where Xf = F0T 2

f = O(ε−2
f ) and F0 is the characteristic value

of |F (t )| [8]. In this zone the electron-field interaction can
be treated as if the field were static. At the same time, the
BOA used below in the presence of a static electric field
F0 holds in the region |x| 
 Xn, where Xn = F0T 2

n = O(ε−2
n )

[70]. Thus, in this section we construct the wave function in
the form (46), restricting our treatment to the region |x| 

min(Xn, Xf ) = O(ε−2

n f ). This is sufficient for calculating the
ionization amplitude in the next section.

The leading-order term in the asymptotics of the adiabatic
part in Eq. (46) for εn f → 0 obtained in Ref. [44] is given by

	a(x, R, t ) = 	(R, t )φe(x; R, F (t )). (47)

Such a factorization into nuclear and electronic wave func-
tions, where the latter depends parametrically on the internu-
clear distance R, results from the BOA, as in Eqs. (3) and (21).
The electronic factor in Eq. (47) is the electronic SS defined
by Eqs. (24)–(27). It additionally depends parametrically on
the field strength F , which makes it a slow function of time
varying with timescale Tf . The nuclear factor is the solution
to the nuclear TDSE

i
∂

∂t
	(R, t ) =

[
− 1

2μ

∂2

∂R2
+ Umol(R, F (t ))

]
	(R, t ), (48a)

	(R, t → −∞) = �0(R)e−iEBO
0 t , (48b)

where

Umol(R, F ) = Uion(R) + Ee(R, F ). (49)

The potential in Eq. (48a) depends on t , which causes vi-
brational excitation of the molecule. Only a finite number of
excited states can be appreciably populated during the pulse.
This means that eiEBO

0 t	(R, t ) is a slow function of time vary-
ing with timescale Tn. The nuclear TDSE should be solved
without any further approximations since the ratio of Tf and

Tn can be arbitrary. Note that the evolution described by this
equation does not preserve the norm of 	(R, t ), because the
electronic energy in Eq. (49) is complex. Its imaginary part is
negative [see Eq. (28)], so the norm decays with time, which
accounts for depletion of the adiabatic part (47) caused by
ionization of the molecule.

We now derive the rescattering part in Eq. (46). The deriva-
tion follows that in Ref. [8]. We only outline its main steps,
omitting details thoroughly discussed in Ref. [8].

The derivation is based on Eq. (35). In the limit ε f → 0, the
integral over t ′ in this equation can be calculated using the sad-
dle point (SP) method. The corresponding SPs can be divided
into two groups: (i) a complex consisting of two adiabatic and
two tunneling SPs located near t ′ = t in the adiabatic zone
A defined by |t ′ − t | 
 Tf and (ii) isolated rescattering SPs
located at a large distance |t ′ − t | ∼ Tf = O(ε−1

f ) from t ′ = t
and each other. The two groups can be treated independently
and contribute additively to the integral, which explains the
two terms in Eq. (46). The adiabatic part (47) represents the
contribution from the complex of four SPs in zone A. The
rescattering part is a sum of contributions from rescattering
SPs. Its derivation proceeds in two stages.

In the first stage, we substitute Eq. (47) for the wave func-
tion into the right-hand side of Eq. (35). The contribution to
the integral over t ′ from zone A should be excluded, since it is
already included in the adiabatic part on the left-hand side of
the equation. We thus obtain a function

	 (a)
r (x, R, t ) =

∑
v

	 (a)
r,v (x, t )χv (R), (50)

where

	 (a)
r,v (x, t ) = e−3iπ/4

√
2π

∫ t

−∞

[ ∫ ∞

0
dR′χv (R′)

×
∫ ∞

−∞
dx′eiS(x,t ;x′,t ′ )−iεv (t−t ′ )

×V (x′; R′)	(R′, t ′)φe(x′; R′, F (t ′))
]

× dt ′
√

t − t ′

∣∣∣∣
t ′ /∈A

. (51)

This expression can be essentially simplified. First, we sub-
stitute V (x; R)φe(x; R, F ) from Eq. (24) and integrate over
x′ by parts using Eq. (25). Then we calculate the integral
over t ′. The condition t ′ /∈ A in Eq. (51) means that only
contributions from rescattering SPs should be taken into ac-
count. Each such SP is associated with a closed rescattering
trajectory (CRT) [83]. A trajectory of an electron driven by
the field F (t ) is closed if it begins and ends at the same spatial
point. The initial and final velocities of a closed trajectory
which begins and ends at times t ′ and t , respectively, can
be expressed in terms of the reference trajectory defined by
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Eqs. (37),

ui(t, t ′) = v(t ′) − x(t ) − x(t ′)
t − t ′ , (52a)

u f (t, t ′) = v(t ) − x(t ) − x(t ′)
t − t ′ . (52b)

The action accumulated along a closed trajectory is S (t, t ′) =
S (0, t ; 0, t ′). For the time being, we define a CRT as a closed
trajectory for which

ui(t, t ′) = 0 → t ′ = ti(t ). (53)

For the following, we need the derivative

dti(t )

dt
= −u f (t )

(t − ti )F (ti )
, (54)

where

u f (t ) = u f (t, ti ) = v(t ) − v(ti ) (55)

is the final velocity of the CRT. The solutions to Eq. (53)
have the meaning of ionization times for electrons which
experience rescattering at a given time t . They constitute the
set of rescattering SPs contributing to the integral over t ′ in
Eq. (51). Calculating the integral by the SP method, we obtain

	 (a)
r,v (x, t ) =

∑
i

gv (ti )

|(t − ti )F (ti )|1/2
exp[iu f (t )x + iS (t, ti )

− iεv (t − ti )], (56)

where

gv (t ) =
∫ ∞

0
χv (R) f (R, F (t ))	(R, t )dR (57)

and the summation runs over the different solutions to
Eq. (53). The term S (t, ti ) in the exponent is the classical
action accumulated along the corresponding CRT. For rescat-
tering SPs |t − ti| = O(ε−1

f ); hence S (t, ti ) = O(ε−3
f ). This

action causes the fastest dependence in Eq. (56) on t .
The second stage of the derivation begins by noting the

following. The function 	 (a)
r (x, R, t ) constructed above gives

a contribution to the rescattering part 	r (x, R, t ) of the wave
function. There exist, however, other contributions with the
same fast dependence on t . Indeed, substituting Eqs. (50) and
(56) into the right-hand side of Eq. (35) and calculating the
contribution from the adiabatic zone A, one obtains a function
similar to 	 (a)

r (x, R, t ) given by a sum over i of terms with the
same actions S (t, ti ) but different amplitudes. This function
also contributes to 	r (x, R, t ). Substituting it into Eq. (35) and
again calculating the contribution from zone A, one obtains
yet another contribution to 	r (x, R, t ) with the same actions,
etc. This consideration suggests that 	r (x, R, t ) satisfies the
inhomogeneous integral equation

	r (x, R, t ) = 	 (a)
r (x, R, t ) + i

∫ t

−∞

×
[ ∫ ∞

0
dR′

∫ ∞

−∞
dx′Gx(x, t ; x′, t ′)

× GR(R, R′, t − t ′)V (x′; R′)	r (x′, R′, t ′)
]

dt ′
∣∣∣∣
t ′∈A

,

(58)

where 	 (a)
r (x, R, t ) acts as a source term. We seek its solution

in the form

	r (x, R, t ) =
∑

i

∑
v

gv (ti )

|(t − ti )F (ti )|1/2
ψv (x, R, t )

× exp[iS (t, ti ) − iεv (t − ti )], (59)

where the function ψv (x, R, t ) is to be found. Inserting
this into Eq. (58) and calculating the integral over t ′ using
Eqs. (17) and (18), we obtain

ψv (x, R, t ) = χv (R)eiu f (t )x +
∫ ∞

0
dR′

∫ ∞

−∞
dx′

× G
(
x, R, x′, R′; 1

2 u2
f (t ) + εv

)

×V (x′; R′)ψv (x′, R′, t ). (60)

Comparing this equation with Eq. (16), we find

ψv (x, R, t ) = �(+)
v (x, R; u f (t )). (61)

Summarizing, the leading-order term in the asymptotics of the
rescattering part of the wave function for εn f → 0 is given by

	r (x, R, t ) =
∑

i

∑
v

gv (ti )

|(t − ti )F (ti )|1/2
�(+)

v (x, R; u f (t ))

× exp[iS (t, ti ) − iεv (t − ti )], (62)

where ti = ti(t ) is defined by Eq. (53). This result has a
transparent interpretation [83]. The sum over i presents inde-
pendent contributions from the different rescattering SPs. The
following physical picture underlies each such contribution.
The molecule survives in the state (47) until time ti. Then
it is ionized, and the sum over v accounts for the different
ionization channels. The factor gv (ti) gives the amplitude of
ionization with the molecular ion left in state v. The exponen-
tial factor includes the classical action S (t, ti ) accumulated
by the liberated electron and the quantum action −εv (t − ti )
accumulated by the ion as the electron travels along the CRT.
At time t , the electron arrives for rescattering as a plane wave
with incident momentum u f (t ), while the ion remains in state
v. This intermediate state of the system is described by the
first term on the right-hand side of Eq. (60). The number of
electrons liberated into channel v during the interval dti is
|gv (ti )|2|dti|. These electrons undergo rescattering during an
interval dt related to dti by Eq. (54). Thus the flux in the
plane wave arriving for rescattering is |gv (ti )|2|dti/dt |. The
first factor in Eq. (62) is then seen to give the amplitude of
the plane wave. As a result of the electron-ion interaction,
the incident plane wave in channel v turns into the exact
molecular scattering state with the same incident momentum
u f (t ), which completes the rescattering process.

Equation (62) is obtained by substituting Eq. (47) for the
wave function into the right-hand side of Eq. (35). As is clear
from the picture discussed above, it accounts for only one
rescattering event. Substituting Eq. (62) for the wave function
into the right-hand side of Eq. (35) and repeating the deriva-
tion, we would obtain a contribution to the rescattering part in
Eq. (46) which accounts for two rescattering events, etc. We
restrict our treatment to one-rescattering processes. However,
it is instructive to outline the general structure of 	r (x, R, t )
which would be obtained by including multiple rescatterings.
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To this end, we need to extend the definition of the CRT [83].
A closed trajectory which begins and ends at x = 0 and does
not pass through this point in between is called a loop. Two
loops are said to be connected by a rescattering event if the
second loop begins when the first one ends and its initial
velocity is either equal (transmission) or opposite (reflection)
to the final velocity of the first loop. In the time-dependent
context, transmission and reflection are also referred to as for-
ward and backward rescattering, respectively. A general CRT
consists of several loops connected by rescattering events,
with the first loop having zero initial velocity. Closed rescat-
tering trajectories are characterized by the number of loops
L and signature �′ = σ1 . . . σL−1, where each symbol σl , l =
1, . . . , L − 1, is either plus or minus, depending on whether
the corresponding rescattering event results in transmission
or reflection, respectively. For one-loop CRTs the signature
�′ is empty. Closed rescattering trajectories whose signature
consists only of pluses are called transmission CRTs. A trans-
mission CRT is a finite piece of a single classical trajectory;
its initial and final times satisfy Eq. (53). Thus the CRTs
defined by Eq. (53) are particular members of the set of all
CRTs for a given t . The role of CRTs in the present discussion
stems from the fact that each of them produces a contribu-
tion to the asymptotics of 	r (x, R, t ) for ε f → 0. Equation
(62) correctly accounts only for contributions from one-loop
CRTs, it approximately accounts for contributions from mul-
tiloop (L > 1) transmission CRTs, treating correctly only one
rescattering event at the end of the CRT and neglecting the
electron-ion interaction in all intermediate transmissions, and
it does not account for contributions from CRTs containing
reflections. In the adiabatic regime, the incident velocity of an
electron arriving for rescattering is O(ε−1

f ), so reflection and
inelastic transmission processes are suppressed (see Fig. 2).
This justifies the approximation in treating contributions from
multiloop transmission CRTs and neglecting contributions
from CRTs containing reflections. Thus, Eq. (62) indeed gives
the leading-order term in the asymptotics of 	r (x, R, t ) for
ε f → 0. Higher-order contributions to the rescattering part of
the wave function from multiloop CRTs in the zero-range-
potential model were analyzed in Ref. [83].

B. Ionization amplitude

Let us turn to the calculation of the ionization amplitude
(33). It is linear in the wave function and hence can be also
presented as a sum of adiabatic and rescattering parts [8]

Iv (k) = Iv,a(k) + Iv,r (k), (63)

corresponding to the two terms in Eq. (46), respectively. The
calculation of Iv (k) is based on Eq. (40). Let a denote the
maximum range of the electron-nuclear potential V (x; R) in x
for the interval of internuclear distances R involved in the ion-
ization dynamics. Then one can replace x → ±∞ by x = ±a
in the first argument of the fluxes in Eq. (40) [44]. Thus to
calculate Iv (k) it is sufficient to know the wave function in the
region |x| � a = O(ε0

n f ), where the asymptotics obtained in
the preceding section hold.

Before proceeding, let us note the following. The separa-
tion of the ionization amplitude into adiabatic and rescattering
parts in Eq. (63) is a consequence of Eq. (46). The two terms

in Eq. (46) in turn are distinguished within the adiabatic theory
by the behavior of their amplitudes and phases as the adiabatic
parameter ε f tends to zero, as discussed below Eq. (46). In
fact, recognizing the difference between the adiabatic and
rescattering parts of the wave function in Eq. (46) is the
essence of the adiabatic theory developed in Refs. [8,44]
and the present paper. A somewhat similar separation of
the ionization amplitude into direct and rescattering parts is
discussed within the SFA (see, e.g., Refs. [80,84]). In this
case, however, the direct part originates from the unperturbed
initial bound state in which the interaction with the ionizing
laser field is neglected, while the adiabatic part of the wave
function in the present theory [Eq. (47)] fully incorporates
the interaction with the instantaneous field. Furthermore, the
rescattering part in the SFA accounts for the interaction with
the target potential only within the Born approximation, while
in the adiabatic theory the exact scattering state appears in the
rescattering part of the wave function [Eq. (62)]. Thus, the
similarity between the two theories is limited.

The adiabatic part in Eq. (63) is obtained by substituting
Eq. (47) into Eq. (41) and calculating the integral over t in
Eq. (40) by the SP method [44]. The corresponding SPs are
associated with ionizing rescattering trajectories (IRTs) [83].
In the general case, an IRT consists of a CRT connected
by a rescattering event with a semi-infinite trajectory which
never passes through x = 0. Ionizing rescattering trajectories
are characterized by the number of loops L in the CRT and
signature � = �′σL, where �′ is the signature of the CRT and
σL = ± specifies the result of the last rescattering event. For
zero-loop IRTs the signature � is empty. The SPs contributing
to Iv,a(k) are associated with transmission IRTs for which �

either is empty or contains only pluses. It is convenient to
introduce reduced signature �̄ which is obtained from � by
omitting all trailing pluses. For transmission IRTs �̄ is empty.
A transmission IRT is a semi-infinite piece of a single classical
trajectory. The initial velocity of a trajectory with asymptotic
momentum k is given by Eq. (43). Thus the ionization time of
a transmission IRT for a given k is defined by

ui(t, k) = 0 → t = ti(k). (64)

The SPs we need are the solutions to this equation. The
leading-order term in the asymptotics of Iv,a(k) for εn f → 0
obtained in Ref. [44] is given by

Iv,a(k) = eiπ/4(2π )1/2
∑

i

gv (ti )

|F (ti )|1/2
exp[iS (ti; k) + iεvti],

(65)
where ti = ti(k) and the summation runs over the different
solutions to Eq. (64).

As is clear from this discussion, the adiabatic part in
Eq. (63) accounts only for contributions from transmission
IRTs. Such IRTs containing one or more loops pass through
the origin, where electron-ion interaction takes place. How-
ever, Eq. (65) does not take this interaction into account.
The rescattering part in Eq. (63) corrects this drawback of
Eq. (65) and in addition accounts for contributions from IRTs
containing reflections.

We now derive the rescattering part, again following
Ref. [8] and omitting technical details. To do this, we sub-
stitute Eq. (62) into Eq. (41). The corresponding SPs for the
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integral over t in Eq. (40) are associated with IRTs having
asymptotic momentum k and such that all signs in their sig-
natures are pluses except one, which may be either plus or
minus. They are defined by

ui(t, k) = σu f (t ) → t = tσ
r (k), (66)

where σ = ± is the sign characterizing the selected rescat-
tering event. The solutions to Eq. (66) have the meaning of
time when this rescattering occurs. Note that u f (t ) defined
by Eq. (55) implicitly depends on the index i identifying
the particular solution to Eq. (53), and hence so does tσ

r (k),
while r enumerates the different solutions for given i and σ .
Calculating the contributions from these SPs and noting that
at |x| � a the scattering state in Eq. (62) can be substituted
by its asymptotics given by Eqs. (14), we obtain Iv,r (k) in the
form

Iv,r (k) = II
v,r (k) + IS

v,r (k), (67)

where the two terms correspond to the incident (I) and scat-
tered (S) waves in Eqs. (14). The second term is given by

IS
v,r (k) = (2π )1/2

∑
i,r,σ

σesgn(S′′
r )iπ/4 |u f (tr )|W σ

v,i(tr )

|(tr − ti )F (ti )S′′
r |1/2

exp [iS (tr ; k) + iS (tr, ti ) + iεvtr], (68)

where

W σ
v,i(t ) =

∑
v′

e−iεv′ [t−ti (t )]S
σ sgn[u f (t )]
vv′ [u f (t )]gv′ [ti(t )] (69)

and

S′′
r = F (tr )[u f (tr ) − ui(tr, k)] + u2

f (tr )

tr − ti
. (70)

In these equations tr = tσ
r (k), ti = ti[tσ

r (k)], and the summa-
tion in Eq. (68) runs over all triples (i, r, σ ) identifying the
different solutions to Eq. (66). The first term in Eq. (67)
is given by the same Eq. (68), but with S

σ sgn[u f (t )]
vv′ [u f (t )]

in Eq. (69) replaced by −δσ+δvv′ and therefore W σ
v,i(tr ) re-

placed by −δσ+e−iεv (tr−ti )gv (ti). Note that for a transmission
in Eq. (66) (σ = +), the first term in Eq. (70) vanishes and the
sum S (tr ; k) + S (tr, ti ) in the exponent in Eq. (68) coincides
with the action S (ti; k) in Eq. (65). Then it can be seen that

II
v,r (k) = −eiπ/4(2π )1/2

∑
L>0

L
∑

i∈L loop

gv (ti )

|F (ti )|1/2

× exp[iS (ti; k) + iεvti], (71)

where the two sums together run over the same set of trans-
mission IRTs as in Eq. (65), but the set is now divided into
subsets consisting of IRTs with the same number of loops L
and the sum over i runs over the subset of L-loop IRTs. The
factor L resulting from the sum over r in Eq. (68) accounts
for L rescattering events (transmissions) which occur on an
L-loop IRT, and because of this factor, the zero-loop IRTs
do not contribute. For σ = +, the sum of the two terms in
Eq. (67) with the same i and r introduces a correction to the
term with the same i in Eq. (65) which accounts for electron-
ion interaction in the transmission at time tr . For σ = −, the
first term in Eq. (67) does not contribute, while the second
term accounts for contributions from IRTs with one reflection.

The fact that these equations correctly account for only one
rescattering event results from neglecting the electron-ion in-
teraction in intermediate transmissions in contributions from
multiloop CRTs in Eq. (62). Higher-order contributions from
multiple rescatterings to the rescattering part of the ionization
amplitude in the zero-range-potential model were analyzed in
Ref. [83].

Equations (67), (68), and (71) give the leading-order term
in the asymptotics of the rescattering part in Eq. (63) for
εn f → 0. However, in the calculations below we resort to an
additional approximation to simplify the implementation of
these equations. If we would retain in Eq. (62) only contri-
butions from one-loop CRTs, then Eq. (66) would describe
only the first rescattering event on an IRT, the sum over i and
r in Eq. (68) would contain only terms for which ionization
and rescattering are connected by a one-loop CRT, and the
factor L in Eq. (71) would disappear. In this approximation,
II
v,r (k) cancels all contributions to Eq. (65) from IRTs with

L > 0, while the part of Eq. (68) with σ = + restores these
contributions, but with the first transmission treated correctly.
Note that this approximation cannot be justified by smallness
of εn f , because the neglected terms have the same order as the
retained ones. We adopt it for practical reasons to simplify the
calculations in Sec. VI.

C. Uniform asymptotics near a backward rescattering caustic

In Ref. [47] it was inferred on physical grounds from the
results obtained by solving the TDSE for one-electron atoms
that strong-field PEMDs in the region dominated by back-
ward rescattered photoelectrons factorize into a product of the
differential cross section for elastic scattering of an electron
on the atomic potential and a returning photoelectron wave
packet. In Ref. [65] the factorization formula was derived
within the adiabatic theory [8] and it was shown that it holds in
the vicinity of a backward rescattering caustic (BRC). In this
section we generalize the results of Ref. [65] to the present
model on the basis of the AAnf with the internuclear motion
included in the consideration.

Consider IRTs with one reflection associated with the so-
lutions to Eq. (66) for σ = −. In the general case, there can
exist several such IRTs contributing to Eq. (68) at a given
photoelectron momentum k. As k varies, the IRTs also vary
continuously and may coalesce pairwise. The points on the k
axis where such coalescences happen are BRCs in the present
one-dimensional model. Let us introduce a function which is
inverse to t−

r (k) defined by Eq. (66),

k(t−
r ) = v∞ − 2v(t−

r ) + v(ti(t−
r )). (72)

This equation gives the asymptotic momentum for an IRT
with one reflection as a function of the reflection time. The
BRCs can be found as local extrema of this function. Thus,
the reflection time for a pair of coalesced IRTs at a BRC is
defined by

dk(tr )

dtr
= 2F (tr ) + u f (tr )

tr − ti(tr )
= 0 → tr = trc. (73)

The ionization time for these IRTs is ti = ti(trc), the incident
velocity before the reflection is u f = u f (trc), and the asymp-
totic momentum giving the position of the BRC is kc = k(trc).
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To simplify equations, in the rest of this section we use the
shorthand notation tr , ti, and u f for quantities characterizing
the pair of coalesced IRTs at a particular BRC kc. If k is
close to kc, the integrand in Eq. (40) defining the rescattering
part in Eq. (63) has two closely located SPs associated with
the coalescing IRTs. These SPs cannot be treated separately,
which can be seen from the fact that the corresponding S′′

r
defined by Eq. (70) turns to zero as |k − kc|1/2, and hence their
contributions to Eq. (68) diverge as |k − kc|−1/4 at the BRC.
By treating these SPs as a complex, we obtain the uniform
asymptotics of the integral which holds at sufficiently small
|k − kc|. The derivation follows that in Ref. [65]; the result is

Iv,c(k) = Ai(α(k − kq))
2παW −

v,i(t̃r )

|(tr − ti )F (ti )|1/2

× exp[iS (t̃r ; k) + iS (t̃r, t̃i ) + iεv t̃r]. (74)

Here Ai(z) is the Airy function [85], its argument is defined
by

α = −sgn(S′′′
r )u f

(
2

|S′′′
r |

)1/3

, (75)

and

kq = kc − q, (76a)

q = ε0 − EBO
0

(tr − ti )F (ti )
, (76b)

and the time arguments marked with a tilde are

t̃r = tr + F (tr )(k − kc)

S′′′
r

(77)

and t̃i = ti(t̃r ), where

S′′′
r = u f

[
2Ḟ (tr ) + 3F (tr )

tr − ti
− 4F 2(tr )

(tr − ti )F (ti )

]
. (78)

The point kq, where the argument of the Airy function in
Eq. (74) turns to zero, is the quantum caustic [65]. It is
shifted with respect to the corresponding classical caustic
kc. The quantum shift q is obtained by taking into account
that εv − ε0 = O(ε1

n ) and eiEBO
0 t gv (t ) is a slow function of t ,

which also explains why it does not depend on v. Its magni-
tude scales as O(ε1

f ), so the shift disappears in the adiabatic
limit. We mention that the quantum shift of a BRC predicted
in Refs. [65,86] was recently observed experimentally [64].
The uniform asymptotics given by Eq. (74) replaces the sum
of individual contributions from the two coalescing IRTs in
Eq. (68). It holds in an interval |k − kc| = o(ε−1

f ) [65], which
includes both classical kc and quantum kq caustics.

The intervals of the k axis where the adiabatic and rescat-
tering parts in Eq. (63) contribute to the PEMD (34) depend
on the shape of the pulse F (t ). For monochromatic pulses,
the high-energy parts of the PEMD at both positive and neg-
ative k are dominated by backward rescattered photoelectrons
[45], and the same holds for typical few-cycle pulses. In this
case, there exist outermost BRCs in each direction of the k
axis. Near such a BRC kc, there are no other contributions to
Eq. (63) except for that from the two coalescing IRTs. The

PEMD in this region is given by

Pv,c(k) = |Iv,c(k)|2 = Ai2(α(k − kq))
4π2α2|W −

v,i(t̃r )|2
|(tr − ti )F (ti )| .

(79)
This is the analog of the factorization formula proposed in
Ref. [47] and derived in Ref. [65] for the present model. The
factor |W −

v,i(t̃r )|2 incorporates information on both ionization
and rescattering processes represented by the last factor and
the scattering matrix in Eq. (69), respectively. These processes
are entangled in Eq. (69), because of their multichannel char-
acter reflecting the existence of internal degrees of freedom in
the molecular ion. This feature indicates an essential differ-
ence between molecular systems with the internuclear motion
included and one-electron atoms or molecules with frozen
nuclei considered in Refs. [47,65]. The main virtue of the
factorization formula in the latter case is that it enables one
to extract the differential cross section from experimentally
observable PEMDs [48–64]. In this sense, the situation in the
former case is much more complicated. Yet Eq. (79) also can
be used for extracting some structure information from the
PEMD, in the spirit of Refs. [47,65], as we show below.

D. Born-Oppenheimer approximation for rescattering

The asymptotics of the rescattering parts of the wave func-
tion in Eq. (46) and ionization amplitude in Eq. (63) obtained
above are expressed in terms of the exact molecular scatter-
ing state and scattering matrix, respectively. In this section
we rewrite these asymptotics using the BOA, which makes
them simpler and suggests a transparent picture describing the
dynamics of the nuclear subsystem.

We begin with the wave function. Equation (57) gives the
amplitude of ionization from the state (47) into channel v.
Using the completeness of the set of ionic eigenstates χv (R),
we can change the representation from v to R and obtain the
corresponding amplitude of ionization at point R,

g(R, t ) =
∑

v

gv (t )χv (R) = f (R, F (t ))	(R, t ). (80)

Then substituting Eq. (21) for the molecular scattering state
into Eq. (62) gives

	r (x, R, t ) =
∑

i

wi(R, t )

|(t − ti )F (ti )|1/2
φ(+)

e (x; R, u f (t ))eiS(t,ti ),

(81)
where

wi(R, t ) = e−iHion (t−ti )g(R, ti ). (82)

The function g(R, ti ) has the meaning of the nuclear wave
packet in the molecular ion created as a result of ionization
at time ti. This wave packet is determined by the solution to
the nuclear TDSE (48) and the ionization amplitude in the
electronic SS defined by Eq. (25), both taken at the ionization
time ti. The function wi(R, t ) is the result of the evolution
of this wave packet driven by the Hamiltonian (9) until time
t , while the electron travels along a CRT. The first factor in
Eq. (81) gives the amplitude of the plane wave representing
the electron arriving for rescattering at time t at a given in-
ternuclear distance R [instead of in a given channel v, as in
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Eq. (62)], and the electronic scattering state is what the plane
wave turns into after rescattering.

We now turn to simple (68) and uniform (74) asymptotics
of the ionization amplitude. They contain the molecular scat-
tering matrix through the function (69). Substituting Eq. (22)
for the scattering matrix into this function and changing the
representation, as in Eq. (80), we present it in the form

W σ
v,i(t ) =

∫ ∞

0
χv (R)W σ

i (R, t )dR, (83)

where

W σ
i (R, t ) =

∑
v

W σ
v,i(t )χv (R) = Sσ sgn[u f (t )](u f (t ); R)wi(R, t ).

(84)
Thus Eqs. (68) and (74) can be expressed in terms of
W σ

i (R, t ). This function has the meaning of the nuclear wave
packet in the molecular ion after the rescattering at time t has
occurred. It factorizes into a product of the electronic scat-
tering matrix and the nuclear wave packet before rescattering
wi(R, t ). Thus, as a result of rescattering, the nuclear wave
packet is multiplied by the electronic scattering matrix. We
will see below that it is the wave packet (84) after rescattering
which can be reconstructed from the PEMD using Eq. (79).

Substituting Eq. (83) into Eq. (79), we obtain the total
PEMD near a BRC,

Pc(k) =
∑

v

Pv,c(k) = Ai2(α(k − kq))
4π2α2N

|(tr − ti )F (ti)| , (85)

where

N =
∑

v

|W −
v,i(t̃r )|2 =

∫ ∞

0
|W −

i (R, t̃r )|2dR (86)

is the norm of the nuclear wave packet (84) after reflection of
the electron.

V. ILLUSTRATIVE CALCULATIONS

In this section we show the quantitative performance of the
adiabatic theory through illustrative calculations. We validate
the theory by comparing PEMDs obtained using the AAnf
with accurate direct reference solutions of the TDSE and show
the convergence of the AAnf results to the TDSE results in
the adiabatic limit. We then explore specific features of the
PEMDs, before showing how target information such as the
scattering matrix or the ionic nuclear wave packet can be
reconstructed from the TDSE results.

We consider one-cycle pulses with the Gaussian envelope
of the form

F (t ) = −F0

√
2eτ exp(−τ 2), τ = 2t

T
, (87)

where F0 is the maximal field strength and T is the pulse du-
ration. This pulse has only one zero at t = 0 and rescattering
can only occur after the field passes through this zero, and thus
it is most suitable for testing the theory [83]. We now discuss
the kinematics of the IRTs associated with the one-cycle pulse
[Eq. (87)]. In Figs. 5(a) and 5(b) we show ionization times
ti as a function of asymptotic momentum k for several of the
simplest IRTs together with the shape of the pulse. In Fig. 5(c)
we also plot the momentum that an electron has right before

(a)

(c)

(b)

FIG. 5. Time of ionization ti and velocity before rescattering uf

of IRTs for the one-cycle pulse (87). (b) shows the shape of the pulse.
On the horizontal axis in (a) and (c) is the final momentum of the
electron at the end of the pulse k, scaled by v0. The vertical axis in
(a) and (b) shows the time of ionization ti. Shown on the vertical axis
in (c) is uf (t1, ti ), the incoming velocity at the first rescattering event.
The thick solid gray lines show transmission IRTs that contribute to
Iv,a(k) [Eq. (65)]. These have an empty reduced signature �̄. For
ti > 0 these have an empty signature �, while for ti < 0 they have
� = +. Medium thick blue lines show all one-loop IRTs and a two-
loop IRT that contribute to Iv,r (k) at the leading order. The dashed
blue lines show � = +, which is also shown by part of the gray line.
The solid blue lines show �̄ = −. For k < 0 they have � = − and
for k > 0 they have � = −+. Thin solid orange lines show IRTs
with �̄ = −−. Note that this figure is the same for any value of F0

and T .

scattering u f , for the same IRTs as in Figs. 5(a) and 5(b),
except for the zero-loop transmission IRT for which u f is
not defined. In the figure k is scaled by its maximal value
of v0 =

√
2e
4 F0T for the present pulse shape (see Ref. [83]).

The gray lines designated as transmission are for a zero-loop
IRT with empty � for ti > 0 and a one-loop IRT with � = +
for ti < 0. They are obtained by the solutions to Eq. (64) and
contribute to the adiabatic part of the ionization amplitude,
Iv,a(k) in Eq. (65). The dashed blue lines indicated by � = +
are for a one-loop IRT, given by the solutions to Eq. (66)
with σ = +, contributing to the rescattering part, Iv,r (k) in
Eq. (67). The solid blue lines designated as �̄ = − are for
one-loop IRTs with � = − in the interval −0.516 < k/v0 <

0 and a two-loop IRT with � = −+ for 0 < k/v0 < 1. They
are obtained from the same equation as the dashed blue line,
but with σ = −, and also contribute to Iv,r (k). For � = −+
we only consider the interaction in the first rescattering event.
These are the IRTs that contribute to the leading-order terms
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of Iv,a(k) and Iv,r (k) and are taken into account in our AAnf
calculations.

We note that it is not possible to have any additional
rescattering events after a transmission for the pulse,1 so all
IRTs that contribute to the leading-order terms of Iv,a(k) and
Iv,r (k) in the asymptotics of the ionization amplitude (63)
are considered in our calculations without the approximation
mentioned at the end of Sec. IV B. As also mentioned at the
end of Sec. IV B, II

v,r (k) from the one-loop transmission IRT
with � = + cancels Iv,a(k) from the same IRT at each SP,
leaving only the IS

v,r (k) term in Eq. (67). This is indicated
by the overlap of the dashed blue line and part of the gray
line in Fig. 5. In addition to the zero and one-loop IRTs
mentioned above, there exist multiloop IRTs that contribute
to higher-order terms. Although they are not included in the
calculations, the orange line in Fig. 5 shows an example of
a two-loop IRT with �̄ = −− in the interval of −0.151 <

k/v0 < 1 to be discussed in the following sections.
For the calculations in this section we use the hydrogenic

nuclear mass of M = 1836 except where otherwise stated. We
use the same numerical methods for solving the TDSE and
finding the exact molecular scattering states as in Ref. [44]
(see the Appendix therein for details).

A. General structure of vibrationally resolved photoelectron
momentum distributions

In Figs. 6 and 7 we compare the partial PEMDs Pv (k) for
v = 0, 1, 2 from the TDSE [Eq. (34)] and simple AAnf [using
Eq. (63) with Eqs. (65) and (67), with the exact scattering
matrix]. The critical field that indicates the boundary between
tunneling and over-the-barrier regimes of ionization in the
present case is estimated as Fc = 0.156, using the criterion
in Ref. [44]. The F0 = 0.1 for Fig. 6 and F0 = 0.2 for Fig. 7
belong to the tunneling and over-the-barrier regimes, respec-
tively. As in Refs. [44,70], the critical field below which the
BOA breaks down when describing tunneling ionization is
FBO ≈ 0.05. The BOA thus holds for describing ionization at
the field values considered. We present the partial PEMDs for
T = 50 and 150 at each F0 in Figs. 6 and 7. The timescale
of the field Tf is estimated to be T/2 for the one-cycle pulse.
The Tf = 25 for the shorter pulses is slightly longer than the
electronic timescale of Te = 11, corresponding to near the on-
set of the adiabatic regime [44], while Tf = 75 for the longer
pulses is beyond the onset. The computational requirements
of solving the TDSE limits the largest T we can consider, but
the present values are sufficient for testing the theory. There
are no such computational limitations in AAnf calculations.

The main goal of this section is to demonstrate the con-
vergence of the AAnf to the TDSE in the adiabatic limit

1The one-cycle pulse (87) is antisymmetric and has F (t ) > 0 for
t < 0 and F (t ) < 0 for t > 0. Since the pulse’s only sign change is
at t = 0, rescattering events can only happen at t > 0 with ionization
times at ti < 0. Before the first rescattering event, all trajectories will
have uf (t1, ti ) > 0. If the electron is transmitted, its velocity just after
rescattering and the field-induced acceleration will both be positive.
A transmitted electron will thus only be able to move in the positive
direction and will therefore never return to the origin.

FIG. 6. Partial PEMDs Pv (k), generated by one-cycle pulses for
a tunneling field strength F0 = 0.1 with durations T indicated in the
figure. The TDSE results (black lines) are obtained using Eq. (34)
and simple AAnf results (blue lines) using Eq. (63) with Eqs. (65)
and (67) (using exact scattering matrix). The final electron momen-
tum k has been scaled by v0.

εn f → 0. The agreement between the TDSE and AAnf re-
sults for the partial PEMDs is seen to generally be quite
good for both tunneling and over-the-barrier regimes, and the
agreement improves as T is increased for fixed F0, show-
ing the convergence of the AAnf in the large-T limit. It is
also seen that better agreement is achieved for the stronger
pulses, when comparing to the same value of T . We expect
that the agreement is further improved for longer pulses.
However, there still remain regions with slow convergence
for k near zero and on the left and right edges of the
PEMDs. For 0 < k/v0 < 1 contributions from transmission
IRTs dominate since reflection elements of the scattering ma-
trix are small for the relevant values of u f , except near k = 0,
where the contributions from transmission IRTs drop to zero.2

2This can be explained by looking at Fig. 5. There it can be seen
that k → 0 corresponds to |ti| → ∞ for the transmission IRTs (gray
lines). In the |ti| → ∞ limits, the field goes to zero and the gv (ti )
coefficients become exponentially small.
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FIG. 7. Same as Fig. 6 for F0 = 0.2 in the over-the-barrier regime.

Higher-order terms from multiloop IRTs, such as the �̄ = −−
IRT indicated by the orange lines in Fig. 5, only contribute
for the interval of −0.151 < k/v0 < 1. The discrepancy be-
tween the TDSE and AAnf results in the interval −0.151 <

k/v0 � 0.1 is caused by those higher-order terms. At the left
cutoff near k/v0 = −0.516 where the reflection IRTs has a
caustic, the simple AAnf diverges, while the TDSE drops off
gradually. This can be remedied using the uniform AAnf, and
in Sec. V C we take a closer look at this using the uniform
expansion around the caustic developed in Sec. IV C. Near
the right cutoff where k/v0 ∼ 1 we see that the AAnf results
fall off faster than the TDSE results.3 The same feature was
seen in Ref. [44]. This disagreement can be remedied by using
the uniform adiabatic theory as in Ref. [8], but this is beyond
the scope of the present work. We note that even though
convergence is slow near k = 0 and the edges of the PEMD,
the AAnf results with the leading-order terms will eventually
converge to the TDSE results for sufficiently large T .

3The AAnf PEMDs going to zero as k/v0 → 1 can be understood
by inspecting Fig. 5. There it can be seen that for k/v0 → 1, ti

approaches 0 for all IRTs. The field F (ti ) has a zero there, which
causes g(ti ) and thereby the PEMD to also go to zero.

Let us next discuss the oscillatory structures that appear
in the PEMDs. The structures can be explained by an inter-
ference between contributions to Iv (k) from different IRTs
for each k (see Fig. 5). For 0 < k/v0 < 1, there are three
IRTs contributing to the leading-order terms of Iv,a(k) and
Iv,r (k). Considering the cancellation among the contributions
discussed above, three ionization amplitude terms are left,
namely, Iv,a(k) from the zero-loop transmission IRT, IS

v,r (k)
from the one-loop IRT with � = +, and IS

v,r (k) from the
two-loop IRT with � = −+. Let us call them Ia, I+ and
I−, respectively, for brevity. For k/v0 � 0.1, the PEMDs are
dominated by the contributions from the two terms Ia and I+.
The contrast of the oscillation is determined by the relative
amplitudes of the two terms at each k. In some places the
contrast is seen to vary significantly with k. For instance, for
F0 = 0.2, T = 150, and v = 0 in Fig. 7, a high contrast can
be observed at k/v0 = 0.7, where the amplitudes of the two
terms are interchanged. The AAnf result perfectly reproduces
this feature. Near k = 0, the contributions from Ia and I+
drops to zero and become comparable to that from I− at
k/v0 ∼ 0.1. This causes a modulation of the oscillation, but
such a structure is hardly seen on the scale of Figs. 6 and 7.
We will discuss this in more detail in the next section.

In the range of −0.516 < k/v0 < −0.151, Pv (k) has con-
tributions from only two terms associated with the � = −
IRTs. This one-cycle pulse is thus suitable for testing the adi-
abatic theory, since we can cleanly assign one-loop reflection
IRTs to observations in this momentum range. We can observe
a complicated nonuniform interference structure that strongly
depends on v in this region. The structure can be explained by
the AAnf as follows. In the AAnf, the PEMDs are obtained
from summations of the leading-order terms over all SPs and
intermediate channels v′. The structures seen in the PEMD
depend on all of these terms and on the detailed phases of each
term. In the fixed nuclear case, similar structures appear, and
in that case those structures exactly reflect the structure of the
scattering matrix which is related to two-center interference.
The interference structures here are also related to the struc-
ture of the scattering matrix, but due to the summation over
v′ there is no easy way to relate these structures to specific
scattering matrix contributions. As can be seen in Fig. 2,
for reflected electrons at moderate negative values of k, the
scattering matrix has comparable magnitudes across different
v. For the heavy nuclear masses considered here, the gv′ (t )
coefficients will change slowly with v′, meaning that they will
also have comparable magnitudes across neighborhoods of v′.
This means that many channels will contribute at an equal
level in Eq. (69). It is thus essential to include all these chan-
nels in order to reproduce the structures seen in this region.
We wish to emphasize that the present theory reproduces the
TDSE results really well, while the fixed nuclei approximation
is completely unable to explain these structures.

For −0.516 < k/v0 < −0.151, the contrast of the fast os-
cillation in the PEMDs in Figs. 6 and 7 for a number of pulse
parameters is seen to be very small, to the extent that the
oscillation cannot be seen. This is, for instance, very clear for
F = 0.1, T = 150, and v = 2 in Fig. 6 or at any v for F = 0.2
and T = 150 in Fig. 7. We can explain this by considering
u f in Fig. 5(c). There we see that the values of u f for the
two � = − IRTs at the same value of k for k < 0 are quite
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(a)

(b)

FIG. 8. (a) Close-up of the TDSE and AAnf partial PEMDs in
Fig. 6 for v = 0, T = 150, and F0 = 0.1. (b) The AAnf result has
been replaced by the orange line showing |Ia + I+|2, which is the
AAnf result with the reflection contribution left out.

different. From Fig. 2 we also see that the reflection part of the
scattering matrix decays exponentially in |u f |. This indicates
that the contribution from the IRT with the smaller value of u f

will be much larger than the contribution from the other IRT,
and the contrast between these two contributions is thus very
small. This becomes more pronounced in the adiabatic limit
since |u f | ∝ T F0.

Summarizing, we see that the AAnf results including IRTs
that contribute up to the leading order in Iv,a(k) and Iv,r (k)
reproduce TDSE results well in the adiabatic regime and the
agreement improves as T is increased.

B. Rescattering-induced modulation at k > 0

As mentioned in the preceding section, the three terms
from zero-, one-, and two-loop IRTs are almost comparable
at k/v0 ∼ 0.1 and this induces modulation in the oscillation
of Pv (k). This modulation is clearly visible in the expanded
view of the PEMD in Fig. 8 for F0 = 0.1 with T = 150 and
v = 0. For k/v0 � 0.1, on top of a very rapid oscillation, there
is a slower modulating oscillation, which is most prominent
around k/v0 = 0.2 and becomes weaker as k increases. This
modulation structure is similar in amplitude and frequency in
the TDSE and AAnf results, but is shifted in phase between
the two, likely due to contributions from higher-order terms
from multiloop IRTs. Still, the overall modulation structure
appears to be similar between the TDSE and AAnf, so we
proceed to analyze it within the AAnf with the leading-order
terms.

Using the same Ia, I+, and I− symbols for the three terms as
in the preceding section, the PEMD at each k can be expressed
as

|Ia + I+ + I−|2 = |Ia|2 + |I2
+ + |I−|2 + 2|IaI+| cos(φa − φ+)

+ 2|IaI−| cos(φ− − φa)

+ 2|I−I+| cos(φ− − φ+), (88)

FIG. 9. Partial PEMDs near the BRC on a linear scale. The
TDSE and AAnf results are calculated the same way as in Fig. 6.
The uniform AAnf results shown by the orange area with a dashed
edge are calculated using Eq. (74). The vertical solid gray line on the
right shows the classical caustic kc. The vertical dashed gray line on
the left shows the quantum caustic kq.

where φi = argIi. For most values of k, except near k = 0, |Ia|
and |I+| are of similar magnitude, while |I−| is smaller than the
other two. This can be inferred from the information in Fig. 5.
Here we see that for k near 0, u f for the � = −+ IRT is quite
large. From Fig. 2 we know that the scattering matrix is small
for reflection with large u f , which makes the contribution to
the ionization amplitude (68) here small. As k approaches v0,
Fig. 5 shows that u f approaches zero, but so does ti. At ti = 0
the field is zero, meaning that the gv (ti ) coefficients are small
around here. So in either case the contribution to the ionization
amplitude from the � = −+ IRT is small due to either small-
ness of the scattering matrix or smallness of gv (ti ). In the case
where |I−| = 0, there is only one cosine term in Eq. (88) and
thus no modulation of the PEMD. We illustrate this in Fig. 8,
where the orange line in Fig. 8(b) shows |Ia + I+|2, which is
the result of only including the Ia and I+ contributions, i.e.,
leaving out the reflection IRT I− contribution. We indeed see
that only the fast oscillation remains and the slow modulation
has disappeared. The modulation is thus seen to be a signature
of the reflection contribution. By comparing Figs. 8(a) and
8(b) we also see how the reflection contribution dominates
near k = 0, when the transmission IRT contributions have
died out.

C. Backward rescattering caustic

Here we illustrate the uniform AAnf near a BRC developed
in Sec. IV C. In Fig. 5 it can be seen that the reflection
� = − IRTs have a BRC at k/v0 = −0.516. Figure 9 shows a
close-up of partial PEMDs near this BRC for field parameters
F0 = 0.1 and T = 120, which is in the adiabatic regime. In
Sec. IV C it was shown that the simple AAnf result diverges
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FIG. 10. The PEMD Pv (kc ) evaluated at the classical caustic kc

for M = 1836. The AAnf results are for the uniform AAnf (74). The
AAnf BO result additionally uses the BOA for the scattering matrix
(83).

at the BRC as |k − kc|−1/4, and in the figure we clearly see
this divergence. For k/v0 < −0.516 the simple AAnf result
is not defined, while for k/v0 > −0.516 simple AAnf results
are seen to agree well the TDSE results, except at the BRC.
On the other hand, the uniform AAnf results are defined on
both sides of the BRC and they are seen to agree quite well
with the TDSE results on both sides of and at the BRC. We
note that the uniform AAnf is based on an expansion in k
around kc, so it only works well in a neighborhood around kc.
We also perform calculations for the uniform AAnf using the
BOA for the scattering matrix as described in Sec. IV D. On
the scale of the figure these results are indistinguishable from
the full uniform AAnf results, so we only include the latter
in the figure. Figure 9 also illustrates the quantum caustic kq.
The argument of the Airy function in the uniform AAnf (74)
is zero at k = kq. Around this point the Airy function changes
from being exponential to being oscillatory in nature, as can
also be seen in the figure.

In the next two sections we will use Pv (kc), i.e., the PEMD
evaluated at the classical caustic kc, to reconstruct the scat-
tering matrix and the ionic nuclear wave packet. A necessary
prerequisite for this reconstruction is good agreement between
the TDSE and AAnf for this quantity. We therefore exam-
ine the v dependence of Pv (kc) in Fig. 10 for F = 0.1 and
T = 100, which is in the adiabatic regime. Since the AAnf
result diverges at kc, we are here only considering the uniform
AAnf. In the figure we see that Pv (kc) has a small local
minimum around v = 2, but otherwise decays monotonically
as v increases. The figure shows that the uniform AAnf (74)
reproduces the TDSE results quite well. It can also be seen
that using the BOA for the scattering matrix in the AAnf (83)
agrees very well with the results using the exact scattering
matrix. This is expected since we see good agreement between
the exact and BO scattering matrices in Fig. 2.

D. Reconstructing scattering matrix

Suppose we did an experiment and measured Pv,c(kc).
Would it be possible to reconstruct the electronic scattering
matrix or the ionic nuclear wave packet? Equation (74) sug-
gests an affirmative answer to this question, and we outline
the extraction procedure below. We do not have experimental

results available for this work, so in the following we use the
TDSE results as a substitute. In Eq. (74) the only dependence
on v enters through W −

v,i(t̃rc). For k = kc we have t̃rc = trc.
For fixed k, expressing the factors other than W −

v,i(trc) on the
right-hand side of Eq. (74) as a constant A, we can reconstruct
W −

v,i(trc) as

W −
v,i(trc) = 1

A
eiarg[Iv,c (kc )]

√
Pv,c(kc), (89)

where A = Ai(−αq) 2πα
|(trc−ti )F (ti )|1/2 is independent of v and

ti = ti(trc). Here we omitted some constant action phase fac-
tors that are not essential for the reconstruction. In Eq. (89)
we split the ionization amplitude Iv,c(kc) into its magnitude
[
√

Pv,c(kc)] and phase (arg[Iv,c(kc)]) parts. Since in an ex-
periment we would only be able to measure the phaseless
quantity Pv,c(kc), we use phases from the AAnf, but magni-
tudes from experiment, here replaced by the TDSE. The χv (R)
functions form a complete basis set, so by using Eq. (84) we
can reconstruct the nuclear wave packet just after rescattering
W −

i (R, trc). When we assume that either the nuclear wave
packet or the electronic scattering matrix is known, the other
can be reconstructed. In the rest of this section we present the
reconstruction procedure of the scattering matrix, assuming
the nuclear wave packet is known. In the next section we
discuss the other case.

Assuming that the AAnf wave packet wi(R, trc) is known,
we can then reconstruct the scattering matrix by dividing
through with the wave packet in Eq. (84) to get

S−sgn[u f (trc )](u f (trc); R) = W −
i (R, trc)

wi(R, trc)
. (90)

Such a reconstruction is shown in Fig. 11(a). We see that the
reconstruction works quite well for R between 1.5 and 3.2,
but outside this range the reconstructed wave packet diverges.
This problem is caused by the nuclear wave packet being
localized in a small range of R, so for R outside this range,
the nuclear wave packet is very small, which leads to the poor
quality of this reconstruction. We can thus only get a reliable
scattering matrix reconstruction in a small patch of R values
with this method.

This can be partly remedied by combining reconstruction
procedures for different values of T , where the nuclear wave
packet due to its motion is localized around different R. When
we keep the product T F0 constant in these calculations, kc

and u f (trc), which are related by kc/u f (trc) = −1.05, do not
change and we can reconstruct the same scattering matrix at
different values of R. The mapping between k and u f (tr ) can
be seen in Fig. 5(c). Combining different sets of such results
allows us to reconstruct the scattering matrix in the region of
R where the nuclear wave packet has some weight at some
time during its motion. Additional patches of reconstructed
scattering matrix are illustrated in Fig. 11(b). In Fig. 11(a)
vertical dashed lines show the boundaries of the classically
allowed region for the nuclear motion. We expect to obtain
a decent reconstruction result inside these boundaries. The
reconstruction may extend a bit beyond this region due to the
extent of the wave packet, but not by much.

To reconstruct the scattering matrix outside this range we
need to make some additional assumptions. As can be seen
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(a)

(b)

(c)

FIG. 11. Reconstruction of the electronic scattering matrix from
TDSE results at the uf (trc ) that corresponds to kc for M = 1836.
Gray areas in all panels show the known exact electronic scattering
matrix. Black lines in (a) and (b) show the result after dividing
the reconstructed nuclear wave packet after scattering W −

i (R, trc )
with the known AAnf nuclear wave packet wi(R, trc ) [Eq. (90)] for
T = 100. Blue and orange lines in (b) show the same for T = 60 and
140, respectively. The green line in (c) shows a fit to the reconstructed
nuclear wave packet just after rescattering at T = 100 using Eq. (91).
The product T F0 = 10 is fixed throughout the figure, corresponding
to kc = −3.32 and uf (trc ) = 3.16. Vertical dashed lines in (a) show
the classical turning points for the nuclear wave packet Rt defined
by Uion(Rt ) = 〈wi|Hion|wi〉R/〈wi|wi〉R, found using the AAnf nuclear
wave packet.

in Fig. 11, it appears that the scattering matrix would be
well described by a sinusoidal function in R. This can be
explained as resulting from two-center interference, which
suggests the sinusoidal function should have wave number
u f (trc) in its argument. We then fit the absolute value of an
expression of the following form to the absolute value4 of the
reconstructed nuclear wave packet just after rescattering at the
caustic |W −

i (R, trc)|:
W −

i (R, trc) = S0 cos[−u f (trc)R + δ]wi(R, trc). (91)

4For simplicity of the analysis, we ignore phases and look only at
the shape in this fitting reconstruction.

Here the known numerical values of wi(R, trc) are used in
the fitting procedure and S0 and δ are parameters to be
fit. The reconstructed scattering matrix is then given by
S0 cos[−u f (trc)R + δ], which can be calculated after the fit-
ting is done. In Fig. 11(c) the results of this fitting procedure
can be seen. Good agreement is seen across a large range of
R, except for R � 1, where the assumption of a sinusoidal
scattering matrix breaks down, due to the two atomic po-
tential centers overlapping and eventually merging into one.
Note that we are here using a finite range electron-nuclear
interaction potential, where the overlap between the wells
quickly disappears as R grows. For a potential with a Coulomb
tail this would happen more slowly as R increases, and the
scattering matrix would therefore perhaps depart more from
the sinusoidal form than it is seen here for the finite range
potential.

It is also possible to reconstruct the scattering matrix at
different values of u f (trc) by varying the product T F0, since
the former is proportional to the latter. Such a reconstruction
result is shown in Fig. 12. By comparing this to the known
exact electronic scattering matrix in Fig. 3 we see that the
reconstruction works fairly well.

Finally, by using Eq. (22) we can reconstruct the ex-
act two-dimensional scattering matrix from the reconstructed
electronic scattering matrix. In Fig. 13 we compare such a
reconstruction based on fitting with the known exact scattering
matrix, which is also shown in Fig. 2. We see that for the range
of k where we could do the reconstruction, the agreement is
quite good.

E. Reconstructing the moving nuclear wave packet

In this section we present the reconstruction procedure for
the nuclear wave packet, assuming the electronic scattering
matrix to be known. As in the preceding section we take
PEMD amplitudes from the TDSE results and phases from
the AAnf results to reconstruct the nuclear wave packet just
after rescattering W −

i (R, trc) from Eq. (84). From this we
could divide by the known electronic scattering matrix to
obtain the nuclear wave packet. However, due to numerical
imperfections in our reconstruction, the zeros of our recon-
structed W −

i (R, trc) would not exactly coincide with the zeros
of the scattering matrix. This means that such a division would
result in divergences appearing near zeros of the scattering
matrix. Instead, we use a fitting procedure similar to Eq. (92),
using the known scattering matrix. The nuclear wave packet
is described by a Gaussian form of

W −
i (R, trc) = S−sgn[u f (trc )](u f (trc); R)A exp

[
−

(R − R0

�R

)2]
,

(92)

where A, R0, and �R are parameters to be fit. After fitting, the
wave packet can then be calculated as A exp[−( R−R0

�R )2]. In
the following calculations for reconstructing the nuclear wave
packet in Figs. 14 and 15, we keep F0 fixed while varying T ,
unlike above where we kept the product T F0 fixed.

We explore the nuclear mass M dependence of the nuclear
wave packets in Fig. 14. Here we use a tunneling field strength
of F0 = 0.1 for which the nuclear wave function 	(R, t ) does
not decay much. For instance, for M = 1836 we have 5.5%

063115-18



ADIABATIC THEORY OF STRONG-FIELD IONIZATION … PHYSICAL REVIEW A 104, 063115 (2021)

(a)

(b)

(c)

FIG. 12. Reconstruction of electronic scattering matrix from the
TDSE at different values of k = −uf (trc ) that corresponds to kc for
M = 1836. Compare with the exact electronic scattering matrix in
Fig. 3. The three panels follow the same structure as in Fig. 11, but
for different values of k. (a) Result after dividing the reconstructed
nuclear wave packet just after rescattering W −

i (R, trc ) with the known
AAnf nuclear wave packet wi(R, trc ) [Eq. (90)] at T = 100. (b) A
number of these combined from T = 60, 100 and 140. (c) Scattering
matrix obtained from a fit to the reconstructed nuclear wave packet
just after rescattering at T = 100 using Eq. (91).

decay through the entire pulse at T = 100 and 10.1% at
T = 200. At time ti, the amount of decay is 0.93% and 1.96%
for T = 100 and 200, respectively. The figure shows how the
wave packet moves back and forth as T increases. The initial

FIG. 13. Reconstruction of scattering matrix from TDSE results
using Eq. (22) at different values of k = −uf (trc ) that corresponds to
kc for M = 1836. Compare with the exact scattering matrix in Fig. 2.
The results are based on the fitting results in Fig. 12(c).

wave packet is defined by the product f (R, F (ti ))	(R, ti ) at
time ti [see Eqs. (80) and (82)]. It then moves until the time
of rescattering at the caustic trc. The wave packet seems to
start around the inner turning point, then spreads out, and
becomes wider as it moves towards the outer turning point.
When it moves back to the inner turning point, it once again
becomes narrow. The time interval trc − ti(trc) is proportional
to T . Note that 	(R, ti ) depends on T , so the initial nuclear
wave packet is not exactly the same across different values
of T , although it does not change much. In the figure we
see that the width and speed of motion of the wave packet
depend on nuclear mass. As expected, for smaller masses the
wave packet is wider, while it is narrower for larger masses.
We also see that the wave packet moves faster for smaller
masses, almost finishing one period in the range of T shown
for M = 918, while only finishing around half a period for
M = 3672. This suggests that the speed of the wave packet
scales as 1/

√
M, as we expect for nuclear motion in the same

potential. We observe larger differences between the TDSE
and AAnf results for T < 100 at around the onset of the adi-
abatic regime. The agreement between the TDSE and AAnf
results improves as T increases. We also observe that the norm
of the reconstructed wave packet differs from the wave packet
of the AAnf for T > 150. The difference may be due to a
breakdown of the BOA, but we are not aware of the exact
cause. Figure 15 illustrates the decay of the norm of the wave
packet as T increases for an over-the-barrier field strength of
F0 = 0.25. For T = 100, 99.97% of the nuclear wave function
	(R, ti ) decays across the whole pulse and 81.6% until time
ti. This decay can be seen by the norm of the nuclear wave
packet decreasing as T increases. This happens since when T
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FIG. 14. Reconstruction of wave packet from TDSE results, compared to the AAnf wave packet for F0 = 0.1 for different nuclear masses
M. Vertical gray lines show the classical turning points of the nuclear wave packet defined as in Fig. 11 by Uion(Rt ) = 〈wi|Hion|wi〉R/〈wi|wi〉R.
Note that since the molecular nuclear wave function 	(R, ti ) depends on T , these turning points also depend weakly on T .

increases, the electron has more time to escape before the time
of ionization ti(trc).

Let us recall that one of the goals of Sec. V was to demon-
strate the quantitative performance of the adiabatic theory

FIG. 15. Reconstruction of wave packet from the TDSE, com-
pared to the AAnf wave packet for M = 1836 and F0 = 0.25, plotted
in the same style as in Fig. 14.

by comparing its predictions with accurate numerical results
obtained by solving the TDSE (31). We close this section by
emphasizing that to achieve the level of agreement demon-
strated in Figs. 6–15 the accurate description of molecular
scattering states and the electronic SS needed to implement
the theory is crucial.

VI. MOLECULAR IMAGING USING FEW-CYCLE
CEP-CONTROLLED PULSES

In this section we illustrate our procedure for recon-
struction of the electronic scattering matrix using a realistic
few-cycle pulse by varying the CEP. This procedure is in-
spired by the existing experiments for reconstruction of
atomic differential cross sections in Refs. [57,64]. We con-
sider few-cycle pulses of the form

F (t ) = F0 exp(−τ 2) cos(ωt − φ), τ = 2t

T
, (93)

where φ is the CEP and ω = 2πnoc/T , with noc the number
of optical cycles. The kinematics of this few-cycle pulse are
somewhat more complicated than for the one-cycle pulse con-
sidered above. There are now many BRCs. The position of kc

and the corresponding u f for all BRCs change continuously as
the CEP changes. We focus on one particular BRC in a range
of CEPs to reconstruct the scattering matrix in a range of u f .

We perform TDSE and AAnf calculations for T = 330.7
and noc = 2, where ω = 0.0380 corresponding to a wave-
length of 1200 nm. We estimate Tf = T/noc = 165, which
is well in the adiabatic regime. In the AAnf calculations, we
only consider the rescattering IRTs for which ionization and
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FIG. 16. The PEMD for a few-cycle pulse (93) with T = 330.7,
noc = 2, and F0 = 0.1 for v = 0. The vertical gray lines show the
momentum at the caustic kc.

rescattering are connected by a one-loop CRT, as mentioned at
the end of Sec. IV B. Figure 16 shows examples of the PEMDs
obtained for three representative values of φ. Adiabatic contri-
butions dominate for |k| � 2.6. The PEMD for |k| � 2.6 thus
results essentially from the rescattering terms. We see that the
agreement between the TDSE and AAnf results is pretty good
in the regions leading up to the maximal |k| at the outermost
caustics. For some smaller |k|, the agreement is not so good,
likely due to contributions from higher-order terms that we do
not consider in the AAnf calculations.

We have chosen a specific caustic to track for the present
reconstruction of the scattering matrix. In Fig. 16 we indicate
this caustic with a vertical gray line and plot the uniform AAnf
result around it. It is the most prominent caustic at positive k
in the range of 0 � φ � 5π/4. Note the symmetry of Pv (k)
with respect to φ, namely, Pv (k) for φ, is the same as Pv (−k)
for φ + π . For the reconstruction in Fig. 17 we considered
the PEMDs in a range of 0 � φ � 5π/4. For φ > 5π/4, the
caustic disappears, embedded into a region dominated by the
adiabatic terms, and its yield is completely drowned out. For
φ < 0, u f (trc) returns to the same values that it has already
covered, which makes those values redundant for reconstruct-
ing the scattering matrix. The result of reconstructing the
scattering matrix at this caustic using the fitting method from
Sec. V D is depicted in Fig. 17. Good agreement is seen
between the reconstruction and the known exact scattering
matrix in Fig. 17(a) for φ = 0, similar to the agreement in
Fig. 11. In Fig. 17(b) the scattering matrix is extracted for a
wide range of k and R values. The reconstruction agrees well
with the exact electronic scattering matrix in Fig. 3 and the
reconstructed electronic scattering matrix for the one-cycle
pulse in Fig. 12.

(a)

(b)

FIG. 17. Reconstructed scattering matrix from the few-cycle
pulse (93) at F0 = 0.1, based on fitting. The plotting style is the same
as in Figs. 11(c) and 12(c). (a) Results for φ = 0. The values of φ

used in (b) are equidistantly sampled, meaning that the values of
k = uf (trc ) are not equidistantly spaced.

VII. CONCLUSION

In this paper we have completed the development of the
adiabatic theory of strong-field ionization of molecules in-
cluding nuclear motion initiated in Ref. [44] by extending
it to rescattering processes. The main results incorporating
rescattering into the theory are the asymptotics of the rescat-
tering parts of the solution to the TDSE given by Eq. (62)
and the ionization amplitude given by Eqs. (67), (71), and
(68), which complement the corresponding asymptotics of the
adiabatic parts [Eqs. (47) and (65)] obtained in Ref. [44]. The
resulting formulas define vibrationally resolved PEMDs in the
whole range of the photoelectron momentum. Using the BOA
for molecular scattering states and scattering matrix, we have
shown that the ionization dynamics of the nuclear subsystem
can be described in terms of a nuclear wave packet in the
molecular ion created as a result of ionization of the molecule
[Eq. (80)], its evolution until rescattering [Eq. (82)], and a
nuclear wave packet after rescattering [Eq. (84)]. Further-
more, we have obtained a uniform asymptotics defining the
PEMD near a backward rescattering caustic [Eq. (79)], which
generalizes the factorization formula proposed in Ref. [47]
and derived for systems with fixed nuclei in Ref. [65] to
the situation where rescattering occurs on a parent ion hav-
ing internal degrees of freedom. This result enables one to
extract the nuclear wave packet after rescattering from the
PEMD, from which either the scattering matrix or the nuclear
wave packet before rescattering can be found. The quantitative
performance of the simple and uniform asymptotics of the
PEMD is illustrated by comparison with accurate calculations
for a one-dimensional molecule modeling H2. We have also
demonstrated how structural and dynamic information can
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be extracted from experimentally observable PEMDs using
Eq. (79).

Let us mention two directions of possible further exten-
sions of the present theory. The main process which remains
not accounted for is dissociation of the molecule. However,
to include dissociation one needs a wave function describ-
ing double continuum molecular states, whose construction
is a problem in itself. The results of Ref. [22] suggest that
such a wave function can be satisfactorily approximated us-
ing the BOA. Then dissociation can be included following
Refs. [72,73]. The other direction in which the theory can

be extended is to increase dimensionality of the electron.
This should be possible using the method of calculating
three-dimensional SSs in molecular potentials developed in
Refs. [78,79].
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