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Control of high-order harmonic emission in solids via the tailored intraband current
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Delocalized Bloch electrons in solids are usually regarded as a kind of representative quantum Fermi gas.
To unravel the real-space dynamics of Bloch electrons under a tailoring intraband current, we introduced a
quasiparticle picture of a wave packet via superposing the multiple Bloch states within a given crystal-momentum
region. We find that temporal characteristics and yield modulation in solid-state high-harmonic generation
(HHG) depend sensitively on the crystal-momentum region of generating electron-hole pair. Its mechanism
could be clarified by the gradual symmetrization of the time-dependent carrier distribution with the growing
tunneling-momentum range. Manipulation of tunneling-momentum range is experimentally feasible via photon-
carrier doping of appropriate preexcitation pulse. Finally, we elucidate the role of dephasing in the process of
HHG. The scheme of customizing intraband current provides an alternative way to regulate the high-harmonic
generation of solids.
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I. INTRODUCTION

High-harmonic generation (HHG) from atoms and
molecules is a well-known scheme for generating photon
sources from the extreme ultraviolet to the soft x-ray spectral
range [1–4]. High-harmonic spectroscopy has also achieved
great success in probing electronic structure and dynamics
in atomic and molecular systems. HHG is recently extended
to solid-state ZnO material by Ghimire et al., who inspires
the intensive study of high-harmonic generation from a solid
[5–10]. Theoretically, two types of HHG processes in solids
have been identified: intraband and interband [11,12]. For the
intraband process, the harmonic radiations are derived from
intraband transport or the laser-driven wave-packet oscilla-
tion within the nonlinear band dispersion. For the interband
process, the generated mechanism of HHG involves recom-
bination between the accelerated electron and hole wave
packets, similar to the picture of HHG from atomic and
molecular systems [12–17]. Discussions about the intraband
and interband processes are based on the field-free band
structure of system. Floquet-Bloch theory provides an av-
enue to assess the field-induced modification of energy bands
(Floquet-Bloch shifts) [18–20] and the its role in HHG from
solids [19–22].

In both intraband and interband processes, the first step
is the electronic multiphoton or tunneling excitation, which
generates the electron-hole pair. So far, in both cases, the
electron-hole pairs are created around the minimal band gap or
within the full region of the Brillouin zone (BZ), are adopted
as the choice of initial states in the theoretical simulations
of solid-state HHG [17,23–26]. One further sees that the
case within the full BZ region leads to an artificial spectro-
scopic dip in the below-gap range of HHG spectra, which was
never observed in experiments and totally neglected in these
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theoretical works as far as we know [24–29]. The crystal-
momentum range determines the spatial localization (i.e.,
wave-particle duality) of the superposed quasiparticle wave
packet and reflects the feature of intraband current within
the BZ. Thus, the intraband transport and the temporal char-
acteristic of interband emissions would be influenced by
the tunneling-momentum region of generating electron-hole
pairs. Actually, the tunneling-momentum region involved in
solid-state HHG can be controlled by photon-carrier dop-
ing experimentally [30,31]. The duality of the electronic
wave packet is rather pervasive in the understanding of the
strong-field process. The physical reality in strong-field exci-
tation had been described successfully with different levels of
wave-particle approximation [32,33]. Furthermore, the wave-
particle duality of the Bloch electronic gas in solids provides
an alternative insight to distinguish the HHG mechanisms of
open- and closed-trajectory models [23,29].

In this paper we theoretically study the role of various
tunneling-momentum regions in the HHG from solids and
discuss their temporal features of electron-hole recombination
dynamics. In addition, we clarify the emergence of the artifi-
cial spectroscopic dip within the below-gap harmonics and the
variation of HHG yields as a function of range of tunneling
momentum. This paper is organized as follows. In Sec. II,
we present the numerical method of our simulations and de-
scribe quasiclassical motion of the time-dependent quantum
wave packet. In Sec. III, we systematically investigate the
HHG spectra and their yield modulations under the different
tunneling-momentum regions and uncover their physical ori-
gin. We summarize our paper in Sec. IV. Atomic units are
used throughout this paper, unless specified otherwise.

II. THEORETICAL METHODS

A. Time-dependent Schrödinger equation

Following the single active electron approximation and
velocity-gauge treatment, the time-dependent Schrödinger
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equation can be written as

i
∂

∂t
|ψk0 (t )〉 =

{
[ p̂ + A(t )]2

2
+ V (x)

}
|ψk0 (t )〉. (1)

The periodic potential of the ZnO model along the specifically
polarized direction is adopted here, and its specified form
is V (x) = −V0[1 + cos( 2π

a0
x)] with V0 = 0.37 a.u. and lattice

constant a0 = 8 a.u. [34]. Under the dipole approximation,
A(t ) = − ∫ t

−∞ F (t ′)dt ′ is the vector potential, and F (t ) is the
electric field of laser pulses with a cos2 envelope. The wave-
length and duration of the mid-infrared (MIR) laser pulses
are 2.0 μm and six optical cycles, respectively. The time grid
adopts 0.27 a.u. (≈6.5 as). The amplitude of the laser vector
potential adopted in following simulations is 0.3π/a0.

The systematic eigenstate |ψn
k 〉 and eigenenergy εn(k) with

band index n can be obtained from the diagonalization of the
field-free Hamiltonian H0 = p̂2/2 + V (x) under the momen-
tum space. The maximal band index n is 51 in our simulations.
Electrons near the � point (k0 = 0) possess the maximal tun-
neling probability to be pumped into conduction band, and
the holes would be left in the valence band. When one the-
oretically chooses the initial wave packet constructed by the
Bloch states within the range of �k near the � point [35], the
initial wave packet approximatively holds a spatially coherent
width σ = 2π

�k .
Then we calculate the laser-induced current J (t ) as the

coherent sum of the currents for the different initial states,
which is written as

J (t ) = −
∫ �k/2

−(�k/2)
[〈ψk0 (t )| p̂|ψk0 (t )〉]dk0 + A(t ), (2)

where the time-dependent wave functions |ψk0 (t )〉 are ob-
tained by the Crank-Nicolson method. The HHG spectra could
be obtained as the modulus square of the Fourier transform of
the time-dependent current J (t ). Before the Fourier transform,
we multiply J (t ) by a Hanning window to increase the signal-
noise ratio.

B. Quasiparticle picture for multiple Bloch states

Keeping the assumed crystal-momentum range of super-
posing the initial wave packet in mind, we will reexamine the
role of �k in the process of solid-state HHG. When the laser
fields irradiate the wide-band-gap semiconductors, valence-
band electrons will be pumped into conduction bands. For the
direct band-gap semiconductor the energy gaps become larger
toward the boundary of the BZ. Here the frequency of laser
fields is lower enough than the minimal gap, the electronic ex-
citation obeys the Landau-Zener-type dependence [36]. Only
a small portion of electrons near the minimal band gap can
efficiently tunnel to conduction band via the direct interband
transition. The valence electrons away from this minimal band
gap oscillate back and forth under the drive of laser fields
and could further tunnel into the conduction band when they
arrive at the minimal band gap. To manipulate experimen-
tally the tunneling-momentum range of electrons, one will
beforehand irradiate an appropriate preexcitation pulse [30].
Here the preexcitation photon energy is greater than or equals
to the minimal gap. The power and frequency-domain width
of the preexcitation pulse could further delicately regulate

the tunneling-momentum range [30,31]. Note that the delayed
intense MIR pulse arrives much later than the dephasing time
of photon-doping electrons and alone drives coherent HHG.
In coordinate space the electronic wave packet (quasiparticle),
which is superposed by the involving Bloch states within the
crystal-momentum range of �k, is chosen as the initial wave
function in the time-dependent evolution. Taking into account
of this assumption, the time-dependent Bloch wave function
can be written as ψn

k (x, t ) = ei[kx−εn (k)t]un
k (x), where un

k (x)
is a periodic function. The periodic part un

k (x) of the ob-
tained Bloch wave function involves arbitrary phase, we have
performed the phase-correcting scheme [37]. We correct the
phase of Bloch wave function by multiplying the term e−iθi (n).
Here the term θi(n) is obtained from complex number zn,i =
|zn,i|eiθi (n) = ∫



un∗

ki+1
un

ki
d3x in which 
 is the volume of the

primitive unite cell. The quasiparticle wave-packet �n
k0

(x)
with a central momentum k0 = 0 in band n can be superposed
from the in-phase Bloch states within the crystal-momentum
region �k [38,39]. It can be denoted as

�n
k0

(x, t ) = 1

�k

∫ �k/2

−(�k/2)
ψn

k (x, t )dk. (3)

Based on the Taylor expansion of eigenenergy εn(k) near k0

and the assumption that the amplitude modulation factor un
k (x)

remains unchanged with k, Eq. (3) can be rewritten as

�n
k0

(x, t ) ≈ un
k0

(x)

�k
ei[k0x−εn(k0 )t]

×
∫ �k/2

−(�k/2)
ei{δk[x−∇kεn(k)|k0 t]}d (δk). (4)

One finally comes to

�n
k0

(x, t ) = ψn
k0

(x, t )(x, t ). (5)

It implies that the time-dependent Bloch state ψn
k0

(x, t ) is
modulated by an envelope function (x, t ). The envelope
function (x, t ) is defined by [40]

(x, t ) =
∫ �k/2

−(�k/2)
ei{δk[x−∇kεn(k)|k0 t]}d (δk)

≈ sin �k
2 ζ

�k
2 ζ

, (6)

where ζ = x − ( ∂εn(k)
∂k )k0t . If �k adopts only the � point, the

initial wave function is a plane wave with the total delocal-
ization and maximally coherent width σ , i.e., the envelope
function |(x, t )| = 1. When the initial wave packet is driven
by the laser pulses, the momentum range included in the tun-
neling Bloch electrons determines the wave-particle duality
of the time-dependent wave function, which further implies
the momentum- or real-space views to understand the HHG
process under the picture of electron-hole recombination. The
amplitude of the envelope function has a maximum only when
the parameter ζ = 0. If we define the central position of the
time-dependent wave packet as the coordinate of the initial
wave packet, it can be written as

x =
(

∂εn(k)

∂k

)
k0

t . (7)
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FIG. 1. Effect of the tunneling-momentum range �k in the HHG spectra. (a)–(c) present the HHG spectra in which the tunneling-
momentum ranges �k are 0.4π/a0, 1.2π/a0, and 2π/a0, respectively. The color maps of (d)–(f), respectively, show the time-frequency
profiles in the HHG spectra (a)–(c). In (a)–(c), the vertical gray line marks the minimal energy gap εg, and the spectroscopic dip is specified by
the red dash-dot line. In (d)–(f), the black and white thick curves, respectively, denote the first and second recombination times obtained from
classical predictions. The symbols S and L, respectively denote the short and long trajectories in the first-recollision process.

The group velocity of the wave packet in the real space can be
written as

υg
n (k) = ẋ = ∂εn(k)

∂k

∣∣∣∣∣
k

. (8)

Under the drive of the laser fields, the electron and hole
wave packets propagate with their respective group veloci-
ties v

g
n(n = e, h). The high harmonics with band-gap energy

would be emitted when the excited electron and correspond-
ing hole recombine with each other in real space. Here, the
relative displacement between electron and hole is denoted as

�x = xe − xh =
∫ t

t ′
vg

e[k(τ )]dτ −
∫ t

t ′
v

g
h[k(τ )]dτ, (9)

where xe (xh) represents the displacement of electrons (holes)
from ionization moment t ′ to recombination moment t . The
condition of HHG emission satisfies the zero displacement
in the recombination step [32], i.e., the so-called closed-
trajectory model applied in Figs. 1(e) and 1(f). However, in the
open-trajectory model the relative displacement �x is nonzero
[23,41]. This nonzero overlap between electron and hole wave
packets is related to the coherent width σ and applies to
Fig. 1(d) with a coherent width 4a0.

III. RESULTS AND DISCUSSIONS

A. Temporal and spectral HHG characteristics

In Figs. 1(a)–1(c) we first make a comparison between
HHG spectra via choosing different tunneling-momentum

regions. The characteristic variations in the HHG spectra with
the increasing region of the initial momenta could be enumer-
ated as follows: (i) the extension of the cutoff frequency; (ii)
the spectroscopic dip appearing in the below-gap harmonics.

Considering the fact that the valence electrons away from
the minimal gap can tunnel directly into the lowest conduction
band and more easily be pumped into the high-lying con-
duction band via the help of a minimum band gap between
two conduction bands at the edge of the BZ; the extension of
the cutoff frequency with the growing tunneling-momentum
region has been clarified. Thus, the broader region of �k leads
to the emergence of the second HHG plateau in Fig. 1(b)
and can further merge the two HHG plateaus in Fig. 1(c).
To distinguish the temporal characteristic of the harmonic
emissions in Figs. 1(a)–1(c) and make an assessment on
the wave-particle duality of the time-dependent Bloch wave
packet, we show their time-frequency profiles in Figs. 1(d)–
1(f), respectively [42]. In addition, we also extract the the first-
and secondary-recollision times based on the quasiclassical
trajectory predictions in Eq. (9) as depicted by black and white
curves, respectively, in Figs. 1(d)–1(f). One could observe
that their emission times in the quantum simulations reach
a great agreement with the first- and secondary-recollision
times obtained from the open- or closed-trajectory models.
However, the temporal characteristic of the first-recollision
times in Fig. 1(d) is different from that in Figs. 1(e) and 1(f) as
shown by the black curves. In Fig. 1(d) the temporal durations
for the short and long trajectories are equal and about 0.25
optical cycle. However, this situation changes for the short-
and long-trajectory durations in Figs. 1(e) and 1(f) in which
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the short- and long-trajectory durations are about 0.4 and
0.25 optical cycles, respectively. Note that the short-trajectory
duration gradually increases with the growing region of �k.
In retrospect, in atomic and molecular HHGs the duration of
the short trajectory is longer than that of the long trajectory
(i.e., the closed-trajectory characteristic) due to the fact that
their localized electronic wave packets can be regarded as a
classical particle. Figures 1(e) and 1(f) showing the closed-
trajectory characteristic imply that the time-dependent wave
packet depicted by Eq. (3) with a broader range of �k is
spatially localized and similar to the situation in atomic and
molecular systems. In contrast, in Fig. 1(d) its time-dependent
wave packet involves a narrower �k in Eq. (3) and, thus,
shows the spatial delocalization (or larger coherent width
σ ) in which the high-harmonic emissions follow the open-
trajectory temporal characteristic. Comparing with Fig. 1(d),
in addition, one can further confirm a secondary-recollision
process via excluding the contribution from the interband
transitions between high-lying conduction bands (continued
states) reported previously [14] as shown by the white curves
in Figs. 1(e) and 1(f). The secondary-recollision trajectories
of the electronic wave packet further reflect its quality of the
particle.

B. Modulation of HHG yields

Before we explain the spectroscopic dip within the below-
gap harmonics shown in Fig. 1(c), we first illustrate the HHG
yields with the increasing �k. The HHG yield for below-gap
harmonics (Ybelow) is calculated by integrating the range of
photon energy from 0 to 4.2 eV, whereas the yields for plateau
zone (Yplateau) is integrated within the spectroscopic range of
4.2–12 eV. In Fig. 2(a), one can see that Ybelow (violet dash-dot
line) increases slightly, reaches its maximum at about �k =
0.13π/a0 and rapidly decays with the further growing of �k.
For Yplateau shown by the violet solid line in Fig. 2(a), some
delicate modulations appear in the mainly decreased tendency.
To reveal the tendencies in Ybelow and Yplateau, we present the
electronic population (ρc) of pumping into conduction bands
at the end of laser fields as denoted by green solid dots in
Fig. 2(a). The electronic population ρc increases first, reaches
the maximal value near �k = 0.5π/a0, and decreases soon
with the increase in �k. Thus, the slight increase in Ybelow at
small �k and some subtle modulations in Ybelow and Yplateau

can be qualitatively comprehended by the variation in the
electronic population ρc. Note that the differences between
electronic population ρc and HHG yields imply the role of
intraband transport in solid-state HHG and will be discussed
later.

In the above, we discuss the overall trend of HHG yields.
According to the separation of intra- and interband contribu-
tions under the picture of the Houston basis [35], in Fig. 2(b)
we then show the ratio between intra- and interband harmonic
yields as a function of �k. As reported in previous works,
the below-gap and plateau-zone harmonics were dominated
by the intra- and interband emissions, respectively [6,11,13].
For a given range �k, the yield ratio between the intra- and in-
terband contributions is denoted as ηs = Y intra

s /Y inter
s in which

s ≡ below. The yield ratios within the below-gap region are
denoted as ηbelow. In Fig. 2(b) one can clearly see that ηbelow

FIG. 2. (a) The below-gap (Ybelow) and plateau-zone (Yplateau)
yields as a function of �k. ρc is the electronic population of pumping
into conduction bands at the end of laser pulses. (b) Yield ration
(η) between intra- and interband emissions as a function of �k. The
black solid curve denotes the results for the below-gap zone.

decreases gradually with the increasing �k. Similarly, there is
some subtle modulations in the ratios. When �k is greater
than 1.7π/a0, the ratio ηbelow will be less than 1.0, which
reflects that the interband current dominates the below-gap
HHG emissions, and is contrary to previous reports [11,13].
The yields of below-gap harmonics dominated by the inter-
band process will decay with an extreme rate when the order is
increasing, which leads to the emergence of spectroscopic dip
shown in Fig. 1(c). Actually, for the photocarrier-doping ZnO
crystal driven by midinfrared laser fields, the phenomenon
that the below-gap emission is dominated by the interband
current had been observed experimentally under the situation
of suppressing extremely the intraband current [30]. Its mech-
anism was not carefully discussed.

Hereafter, we highlight the role of carrier distribution,
resulting with the intraband transport, in solid-state HHG.
To unravel the impact of intraband transport, the intraband
current under the Houston basis can be written as [35]

Jintra (t ) =
∑

n=e,h

∫ �k/2

−(�k/2)
〈ψnk0(t )| p̂|ψnk0(t )|〉dk0

=
∑

n=e,h

∫ �k/z/2

−(�k/2)
vg

n[k0(t )]|ψnk0(t )|2dk0. (10)

Here k0(t ) ≡ k0 − A(t ) and |ψnk0(t )|2 denote the time-
dependent electron or hole populations possessing the k
resolution within the energy band. In the BZ, the electron
and hole group velocities satisfy the odd symmetry v

g
n(−k) =

−v
g
n(k).
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FIG. 3. Schematic of the starting intraband transport of carrier
within energy bands. (a) The electrons pumped into the conduction
band and the remaining holes in the valence band start to transport in
their respective energy bands under the drive of laser fields. The two
double-headed-arrow curves in (a) denote the subsequent drive of
laser pulses on the electrons and holes. (b) The density of states and
the initial carrier (electron and hole) distributions in the valence and
conduction bands. In (b), the vertically single-headed-arrow curve
represents the electronic pump induced by the irradiation of the
preexcitation pulse.

In Fig. 3(a), we show the schematic describing the ini-
tial distributions of the preexcited electrons and holes within
their respective energy bands. Here the situation of car-
rier distribution could be controlled experimentally via the
photon-carrier doping as mentioned above. Taking the case of
the tunneling-momentum region �k = 0.4π/a0 as example,
the electrons are pumped into the conduction band and their
counterpart holes remain in the valence band. One sees that
the k-resolution distributions for the electron and hole are
symmetrical around the � point. Considering the initial distri-
butions of the carrier and their energy-dependent DOS shown
in Fig. 3(b), their symmetrical distribution in the BZ could be
destroyed naturally by the subsequent drive of the MIR laser
pulses, which results in the intraband current. Keeping the odd
symmetry of the group velocity of Eq. (10) in mind, the fully
occupied valence band or the totally unoccupied conduction
band will not contribute to the intra- and interband currents.
Thus, the degree of breaking the symmetrical distribution will
vary with the initially occupied range of carriers in the BZ.

To assess the time-dependent symmetrical distribution of
carrier within the respective energy bands, in Fig. 4 we take
the electron as an example and show the time-dependent elec-
tronic populations within the conduction band under the two
cases of tunneling-momentum region �k. For the case with
a narrow tunneling-momentum region, the time-dependent
electronic distribution shown in Fig. 4(a) almost follows the
oscillation of the laser vector potential and displays the ex-
tremely asymmetrical distribution regarding to the center �

point, which gives rise to the maximal current. However, in
Fig. 4(b) with a broadest tunneling-momentum region, the
time-dependent electronic distribution in the BZ becomes
relatively symmetrical regarding the � point and, thus, con-

FIG. 4. The time-dependent conduction-band population for the
cases with the initial tunneling-momentum regions 0.4π/a0 in
(a) and 2π/a0 in (b). The oscillating curves in (a) and (b) are the
vector potentials of the laser fields. The vertical dashed lines mark
the � point in the BZ.

tributes to a weaker current. In fact, the distribution of carrier
gradually gets symmetrical with the growing tunneling-
momentum region, which leads to the fact that the total current
in solids induced by the drive of MIR laser fields will become
weaker. Thus, the general damping tendency of HHG yield
and electronic population shown in Fig. 2(a) have been re-
vealed successfully.

In addition, the suppressed electronic populations around
the peaks of the electric field (zeros of the laser vector poten-
tial) and the fine fingerprints of electronic population can be
observed in Fig. 4(b) comparing with Fig. 4(a). These features
of electronic population in Fig. 4(b) manifest the quantum
interference between different initial k0 electrons. Let us make
an estimation of the interference-free range of momentum as
shown in Fig. 4(a). Within the tunneling-momentum region
�k, the interference condition is governed by

�φ =
∫ �k/F0

0
{εe[k0(t ′)] − εh[k0(t ′)]}dt ′, (11)

where �k/F0 is the propagating time delay between the
electrons within this �k, and F0 is the amplitude of the
electric field. For the small region 0.13π/a0 marked by the
vertical dashed lines in Fig. 2(a), the maximal dynamical
phase difference is approximately equal to 0.3π , which leads
to the increase in electronic population ρc within this small
momentum region as shown by green solid dots in Fig. 2(a).
Considering the growing tunneling-momentum region
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FIG. 5. Role of dephasing time in HHG with the increasing
tunneling-momentum region. The dephasing time adopted here is a
quarter of optical cycle. The caption of curves is same as Fig. 2.

resulting in a longer propagating time delay, the subtle
modulations in Ybelow and Yplateau as shown in Fig. 2(a),
can partly attribute to the complex intra- and intercycle
interference between electrons excited around various peaks
of the laser pulse. These schemes of quantum interference
had been discussed carefully in Refs. [43–45].

C. Role of dephasing in HHG spectra

Finally, we discuss the role of dephasing time in HHG with
the increasing tunneling-momentum region. As reported in
Ref. [23], a shorter dephasing time will highlight the parti-
cle nature of the time-dependent wave packet. Furthermore,
the dephasing process gradually destroys the intra- and in-
tercycle interference but survives the interference between
the electrons within their tunneling-momentum regions �k.
As shown in Fig. 5(a), the regularly modulated HHG yields
and the monotonously decayed ρc verify our claims. One can

further observe that the crystal-momentum interval between
two adjacent minima in the oscillated HHG yields is approx-
imate to 0.2π/a0. Because of the linearly growing band gap
toward the edge of the BZ and the growing propagating time
delay, this crystal-momentum interval nicely corresponds to
the increase indynamical phase difference �φ = 2π obtained
from Eq. (11). In addition, the situation that the interband
contribution dominates the below-gap harmonic disappears in
Fig. 5(b) when the dephasing is switched on. At the same time,
the spectroscopic dip vanishes from the below-gap harmonics.
Thus, one can understand the failure to observe the spectro-
scopic dip in experiments.

IV. CONCLUSION

To conclude, we study the temporal characteristic of
the high-harmonic emissions when the involving crystal-
momentum region is increasing. To unravel the electron
and hole dynamics in solids driven by the external field, a
quasiparticle picture of the Bloch wave-packet motion has
been introduced in which the quasiparticle is obtained from
the superposition of the Bloch states within the involving
crystal-momentum region. The crystal-momentum region of
generating the electron-hole pair determines the spatially lo-
calized feature of the electron-hole wave packet, and the
coherent overlap between electron and hole wave pack-
ets dominates the temporal characteristics of high-harmonic
emissions. Finally, we unravel the physical origin in the atten-
uation of HHG yield with the growing tunneling-momentum
region, which is attributed to the gradual symmetry of
time-dependent carrier population regarding the � point. Ex-
perimentally, the photon-carrier doping is a feasible scheme
by manipulating the preexcitation pulse. Our results provide
a way to regulate the temporal emission of HHG and the
photon-induced current in solids.
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