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Based on the idea of reverse engineering, we design an optimal laser pulse to control strong-field multiphoton
atomic transitions. Starting from the time-dependent Schrödinger equation of the full system, we adiabatically
eliminate the nonessential states and apply the rotating-wave approximation to arrive at an effective two-state
representation that involves dynamic Stark shifts and multiphoton coupling. Solving this equation inversely for
the field, we obtain an analytical laser pulse shape that is expected to induce the full system’s evolution according
to user-defined quantum pathways. In our procedure, the amplitude and phase of the laser pulse are engineered
such that the dynamically shifted electronic states are resonantly coupled during the action of the pulse at each
moment of time. As a result, the driven system evolves from an arbitrary initial population distribution to any
desired final quantum state superposition at a predefined rate. The proposed scheme is demonstrated using the
example of the 3s → 4s two-photon transition of atomic sodium. By solving the time-dependent Schrödinger
equation of the single-active electron with two different methods, either propagating time-dependent coefficients
of many field-free states or directly propagating the three-dimensional electronic wave packet on a grid, we
demonstrate the robustness as well as the limitations of the presented reverse engineering scheme.
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I. INTRODUCTION

Selectively steering the time evolution of atomic and
molecular systems with pulsed laser fields has gained much
interest over the past four decades [1–6]. Different quantum
control strategies have been proposed to guide the system
under consideration from its initial state to a desired final state
with high efficiency. The rapid adiabatic passage and stim-
ulated Raman adiabatic passage techniques [3] were found
to be very robust for efficient population transfer when the
transitions are induced by a single photon. To increase the
speed of transition, shortcut to adiabaticity (STA) techniques
[7–13] have been introduced. Other methods, like optimal
control [14–16] and reverse engineering [17–31], have been
also widely applied with great success.

In the procedure of reverse engineering, one usually in-
troduces a control function in advance to define the desired
quantum pathway of the system under control. Knowing this
target function, one then solves the Schrödinger equation or
some density equations inversely to obtain the form of in-
teraction that leads to the prescribed time evolution. A great
advantage of reverse engineering is that one can design op-
timal laser pulses in an analytical form, although only for
few-level systems. The rotating-wave approximation (RWA)
is usually applied during the derivations, and hence the break-
down of the RWA is a serious restriction in such a case
[25,28,29]. Control methods have been proposed which do not
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make use of the RWA and hence allow for fast manipulation
of the system dynamics [21,30].

Analytically solvable driven two-level systems are invalu-
able in many fields of physics as they are extremely rare [32].
Two-level systems are crucial to understanding the essential
laser quantum control strategies of realistic multilevel systems
[33–38]. They play a fundamental role in reverse engineering
control (among others), where analytical pulse design is in
focus.

In realistic systems, the two-level description may become
inaccurate when the neighboring states lie energetically close
and get populated during the atom-field interaction. This
might become more severe in the strong-field regime where
multiphoton transitions occur and the energy levels are sub-
ject to dynamic Stark shifts and thus the underlying physics
is significantly modified [39,40]. Several experimental and
theoretical works have shown that despite the movement of
the atomic levels, efficient population transfer is possible
between two electronic states upon absorption of multiple
photons from the same pulse [41–58]. Most of these works
deal with two-photon transitions in alkali metals and a proper
modulation of the phase or shape of the laser pulse is applied
to compensate for the relative dynamic Stark shift (DSS) of
interest and transfer population efficiently.

Strong-field multiphoton transitions between two bound
states of an atom are often accompanied by ionization
upon absorption of further photon(s) from the same pulse.
Such resonance-enhanced multiphoton ionization (REMPI)
processes are very sensitive to the dynamic Stark shifts
of the involved resonant states and usually manifest in a
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structural change of the energy spectrum of emitted electrons
[59,60]. Selective excitation and subsequent ionization to dis-
tinct channels are often a central problem in the control of
REMPI processes. On the example of atomic targets, selective
suppression and enhancement of the ionization yield have
been demonstrated using chirped laser pulses [61,62] and also
unshaped ones [63–66]. Applying chirped strong-field ultra-
fast laser pulses, a competition between REMPI and internal
conversion has been demonstrated in a polyatomic molecule
[67]. In general, REMPI leads to the splitting and structur-
ing of the spectral peaks of emitted photoelectrons [68–71].
This kind of spectral behavior is further modulated by the
dynamic Stark shifts of the involved states, allowing for the
tracing of strong-field transitions via the spectrum of ionized
electrons [72].

In the present work we aim to control strong-field tran-
sitions in an atomic system using appropriately shaped
analytical laser pulses that are obtained from a reverse
engineering idea [25]. For our analysis, we will consider
atomic sodium, which has been intensively studied in recent
years both theoretically and experimentally [45–48,52,61,64–
66,73–75]. Starting from the Schrödinger equation of the full
system, we develop a two-state effective model for the 3s →
4s two-photon transition upon adiabatically eliminating (AE)
the nonessential states plus applying the two-photon RWA
(AER). The obtained model, which involves dynamic Stark
shifts and multiphoton coupling, is then used as a starting
point for the inverse engineering procedure, as a result of
which a single frequency-modulated laser pulse is derived.
Applying this laser pulse, the system is driven from an arbi-
trary initial superposition of the 3s and 4s states to any desired
final target population distribution. In our procedure, the rate
of transition is also controlled in contrast to many other works,
where only the final state is of interest, but not the quantum
path that is completed by the system. To test the validity of
the model and of the engineered laser pulse, we solve the
time-dependent Schrödinger equation (TDSE) of the single
active electron with two different methods: (i) propagating
time-dependent expansion coefficients of numerous field-free
states (the TDEC method) and (ii) directly propagating the
electron wave packet on a grid (the TDWP method). In our
analysis, we pay particular attention to the investigation of
multistate effects by revealing the conditions for the selective
excitation of the 4s state and subsequent ionization via the 7p
near-resonant state.

II. THEORY

Let us start by introducing the theoretical framework of
the strong-field two-photon transition studied in this work. We
consider atomic sodium as a concrete example initially in the
superposition of the 3s ground state (|g〉) and the 4s excited
state (|e〉). Applying a coherent intense laser pulse (which is
to be designed by reverse engineering), the system is excited
by two photons to the desired final superposition of the 3s and
4s states along some user-defined control function (see Fig. 1).
The field-free atom is represented by the Hamiltonian H0 and
its corresponding eigenstates | j〉 and eigenenergies ω j (atomic
units are used), where the j index runs over all the states of
the atom. The interaction of the atom with the laser pulse is
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FIG. 1. Schematic representation of the strong-field two-photon
control scenario discussed in this work. The shaped laser pulse E (t ),
which is obtained by reverse engineering, interacts with the atomic
target and induces its time evolution according to a prescribed quan-
tum path. The amplitude and phase of E (t ) are engineered such that
the relative dynamic Stark shift of interest, 3s-4s in the case of Na,
is fully compensated and an efficient population transfer is achieved,
which leads to the desired final quantum state superposition of the
system. The bell-shaped dashed lines symbolize the dynamic Stark
shifts of the strongly coupled states.

treated in the dipole approximation, that is, V (t ) = −�μ · �E (t ),
where �μ is the transition dipole vector and �E (t ) is the linearly
polarized electric field. Throughout this work, the form of
the laser pulse with central angular frequency ω is considered
as

�E (t ) = 1
2ε(t )e−iωt �epol + 1

2ε∗(t )eiωt �epol, (1)

where �epol is the polarization vector pointing in the z direction
and the complex quantity ε(t ) and its complex conjugate ε∗(t )
include the electric field amplitude ε0, the envelope function
g(t ), and the phase of the field φ(t ),

ε(t ) = ε0g(t )eiφ(t )/2, (2a)

ε∗(t ) = ε0g(t )e−iφ(t )/2. (2b)

In the total time-dependent wave function of the system both
the essential and nonessential states are explicitly included
and it reads [76]

�(t ) = cg(t )|g〉e−iωgt + ce(t )|e〉e−iωet +
∫

m

∑
cm(t )|m〉e−iωmt .

(3)

In Eq. (3) the ground and excited states (3s and 4s in the
case of Na) are denoted by |g〉 and |e〉, respectively, while the
off-resonant nonessential states are labeled by |m〉. The |m〉
states are dipole coupled to |g〉 and |e〉 but as they are far from
resonance, their population is negligible during the atom-field
interaction. The impact of these states on the studied two-
photon transition is crucial as they give rise to the dynamic
Stark shifts of the 3s and 4s levels to be discussed below.
We note that the m-state manifold consists of p states (l = 1)
in the present case due to the selection rules for the angular
momentum.

After inserting Eq. (3) into the time-dependent Schrödinger
equation i�̇ = [H0 + V (t )]� we arrive at the full set of cou-
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pled differential equations for the c j (t ) complex amplitudes

iċ j (t ) =
∫

k

∑
ck (t )e−iωk j tVjk (t ), (4)

where ωk j = ωk − ω j ( j, k = g, e, m) and the light-matter in-
teraction term is written as Vjk (t ) = −E (t )μ jk , with μ jk =
〈 j|z|k〉 the transition dipole moment (TDM) matrix element
between the corresponding eigenstates of the atom. Equation
(4) can be greatly simplified by invoking that the μge and μmm′

TDMs are inherently zero. After applying these considera-
tions, Eq. (4) is written as

iċg(t ) =
∫

m

∑
cm(t )eiωgmtVgm(t ), (5a)

iċe(t ) =
∫

m

∑
cm(t )eiωemtVem(t ), (5b)

iċm(t ) = cg(t )e−iωgmtVmg(t ) + ce(t )e−iωemtVme(t ). (5c)

To reveal the overall impact of the nonessential m-state
manifold, we turn to Eq. (5c). As the off-resonant intermediate
states rapidly oscillate, the time evolution of the cm(t ) am-
plitudes can be obtained by adiabatic elimination [77]. After
integrating Eq. (5c) by parts and omitting small terms, we
arrive at an explicit expression for the cm(t ) amplitudes

cm(t ) = μmg

2
cg(t )

[
ε(t )e−i(ωgm+ω)t

ωmg − ω
+ ε(t )∗e−i(ωgm−ω)t

ωmg + ω

]

+ μme

2
ce(t )

[
ε(t )e−i(ωem+ω)t

ωme − ω
+ ε(t )∗e−i(ωem−ω)t

ωme + ω

]
,

(6)

which is valid as long as the detuning of the |m〉 states is large
compared to the pulse bandwidth, the two-photon detuning,
and the Stark shifts of interest. Inserting Eq. (6) into Eqs. (5a)
and (5b), the coupled equations

iċg(t ) = −
∑

m

{ |μmg|2
4

cg(t )

[
ε(t )2e−2iωt + |ε(t )|2

ωmg − ω
+ ε(t )∗2e2iωt + |ε(t )|2

ωmg + ω

]

+ μemμmg

4
ce(t )

[
ε(t )2e−i(4ω−�)t + |ε(t )|2e−i(2ω−�)t

ωme − ω
+ ε(t )∗2ei�t + |ε(t )|2e−i(2ω−�)t

ωme + ω

]}
, (7)

iċe(t ) = −
∑

m

{ |μme|2
4

ce(t )

[
ε(t )2e−2iωt + |ε(t )|2

ωme − ω
+ ε(t )∗2e2iωt + |ε(t )|2

ωme + ω

]

+ μemμmg

4
cg(t )

[
ε(t )2e−i�t + |ε(t )|2e−i(�−2ω)t

ωmg − ω
+ ε(t )∗2e−i(�−4ω)t + |ε(t )|2e−i(�−2ω)t

ωmg + ω

]}
(8)

are found, where � = 2ω − ωeg is the two-photon detuning.
Applying the two-photon RWA, that is, dropping terms that
oscillate faster than �, the two-state equation

i

(
ċg(t )
ċe(t )

)
=

(
Sg(t ) �(t )ei(�t−φ(t ))

�(t )e−i(�t−φ(t )) Se(t )

)(
cg(t )
ce(t )

)
(9)

is obtained, where �(t ) is the two-photon Rabi frequency
(assumed real)

�(t ) = −
∫

m

∑ μemμmg

4

ε2
0g(t )2

ωmg − ω
= �0ε

2
0g(t )2 (10)

and Sk (t ) is the dynamic Stark shift of the kth level (k = g, e)
originating from the nonessential m-state manifold

Sk (t ) = −
∫

m

∑ |μkm|2ε2
0g(t )2

2

ωmk

ω2
mk − ω2

= S0
k ε

2
0g(t )2. (11)

We note here that both �(t ) and Sk (t ) follow the ε2
0g(t )2

intensity profile of the pulse in accordance with previous
studies [46,51].

It is convenient to transform Eq. (9) into the interaction
picture for later purposes, according to the well-known for-
mulas H ′ = UHU † + ih̄U̇U † and � ′ = U�. Applying the
unitary transformation matrix (which leaves the populations

unchanged)

U =
(

exp[i
∫ t
−∞ Sg(t ′)dt ′] 0

0 exp[i
∫ t
−∞ Se(t ′)dt ′]

)
, (12)

we obtain the equation for the new coefficients

i

(
ȧg(t )
ȧe(t )

)
=

(
0 �(t )eiκ (t )

�(t )e−iκ (t ) 0

)(
ag(t )
ae(t )

)
, (13)

where the κ (t ) atom-field phase has been introduced using the
relative DSS δS(t ) = Se(t ) − Sg(t ) and its negative integral
γ (t ) = − ∫ t

−∞ δS(t ′)dt ′,

κ (t ) = −
∫ t

−∞
δS(t ′)dt ′ + �t − φ(t ). (14)

Modulating the φ(t ) field phase such that κ (t ) remains
constant during the atom-field interaction was found to be
a key technique to efficiently transfer population in strong
laser fields [47]. This phase-locking technique is equivalent to
maintaining the resonance condition at each moment of time
during the action of the frequency chirped laser pulse despite
the movement of the atomic levels.

In this work, based on the idea of reverse engineering pre-
sented by Golubev and Kuleff [25], we aim to derive optimal
pulse shapes that compensate for the relative dynamic Stark
shift and efficiently control the population dynamics between
two strongly coupled states. For that purpose, we will first
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predefine the desired evolution pathway of the system and
then solve the TDSE (13) inversely for the field. The obtained
analytical pulse will be then tested and applied to the Na atom
by solving its full TDSE accurately. The main steps of the
proposed reverse engineering procedure are detailed in the
next section.

III. PULSE REVERSE ENGINEERING

In what follows, we outline the main steps of the re-
verse engineering procedure applied in this work to obtain
an analytical pulse expression for control purposes. Our
starting point is the Schrödinger equation of the effective
two-level system presented at the end of the preceding section
[Eq. (13)]. Making use of Eqs. (2a), (2b), (10), and (14), we
can write Eq. (13) as

iȧg(t ) = �0ε
∗(t )2eiγ (t )ei�t ae(t ), (15a)

iȧe(t ) = �0ε(t )2e−iγ (t )e−i�t ag(t ). (15b)

These equations are usually solved for fixed parameter
values of the external electric field to obtain the time evolution
of the system. Our aim in this work is the opposite. After
predefining the desired quantum path of the system, we aim
to solve Eqs. (15a) and (15b) for the external laser pulse that
induces the prescribed time evolution. To do so, we express
ε∗(t ) from Eq. (15a) and ε(t ) from Eq. (15b) and then sub-
stitute them into the general form of the field presented in
Eq. (1),

E (t ) = 1

2

{√
i
ȧg(t )

ae(t )

1

�0
exp

[
i

(
ωeg

2
t − γ (t )

2

)]

+
√

i
ȧe(t )

ag(t )

1

�0
exp

[
−i

(
ωeg

2
t − γ (t )

2

)]}
. (16)

The ag(t ) and ae(t ) population amplitudes are complex func-
tions, so they can be written as

ak (t ) = ãk (t )eiϕk (t ) (k = g, e), (17)

where the ãk (t )’s are real non-negative functions. In the most
general case, the ϕk (t ) phases can be time dependent [28]. As
we will see below, this would lead to additional frequency
chirping of the pulse, allowing one to control not only the
populations but also the phases of the system. Inserting the
above ak (t )’s into Eq. (16), we have

E (t ) = 1

2

{√
i

�0

˙̃ag(t ) + iãg(t )ϕ̇g(t )

ãe(t )

× exp

[
i

(
ωeg

2
t − γ (t )

2
+ ϕ(t )

2

)]

+
√

i

�0

˙̃ae(t ) + iãe(t )ϕ̇e(t )

ãg(t )

× exp

[
−i

(
ωeg

2
t − γ (t )

2
+ ϕ(t )

2

)]}
, (18)

where the ϕ(t ) = ϕg(t ) − ϕe(t ) relative phase between ag(t )
and ae(t ) has been introduced. We want the ground-state

population to evolve according to a continuous function η(t ),
namely, |ãg(t )|2 = η(t ). In this case the excited-state popula-
tion is obtained by |ãe(t )|2 = 1 − η(t ). With this convention
the absolute values of the complex amplitudes are then given
by

ãg(t ) =
√

η(t ), (19a)

ãe(t ) =
√

1 − η(t ). (19b)

Substituting these ãk (t )’s into Eq. (18), we get

E (t ) = 1

2

⎧⎪⎨
⎪⎩

√√√√i
1
2 η̇(t )√

η(t )[1 − η(t )]

1

�0
− ϕ̇g(t )

√
η(t )

1 − η(t )

1

�0

× exp

[
i

(
ωeg

2
t − γ (t )

2
+ ϕ(t )

2

)]

+

√√√√i
− 1

2 η̇(t )√
η(t )[1 − η(t )]

1

�0
− ϕ̇e(t )

√
1 − η(t )

η(t )

1

�0

× exp

[
−i

(
ωeg

2
t − γ (t )

2
+ ϕ(t )

2

)]⎫⎪⎬
⎪⎭, (20)

which can be written in a more convenient form

E (t ) = 1

2

{
4

√
1
4 [η̇(t )]2

η(t )[1 − η(t )]

1

�2
0

+ [ϕ̇g(t )]2
η(t )

1 − η(t )

1

�2
0

× exp

[
i

(
ωeg

2
t − γ (t )

2
+ ϕ(t )

2
+ β(t )

2

)]

+ 4

√
1
4 [η̇(t )]2

η(t )[1 − η(t )]

1

�2
0

+ [ϕ̇e(t )]2
1 − η(t )

η(t )

1

�2
0

× exp

[
−i

(
ωeg

2
t − γ (t )

2
+ ϕ(t )

2
+ β(t )

2

)]}
, (21)

with the β(t ) function given as

β(t ) = arctan

( − 1
2 η̇(t )

η(t )ϕ̇g(t )

)
= arctan

( − 1
2 η̇(t )

[1 − η(t )]ϕ̇e(t )

)
.

(22)

Equation (21) gives us a real-valued sinusoid function only if
the relation

ϕ̇g(t ) = 1 − η(t )

η(t )
ϕ̇e(t ) (23)

is satisfied by the ϕg(t ) and ϕe(t ) phases or, equivalently,
the time evolution of the excited state phase is given by the
indefinite integral up to addition by a constant

ϕe(t ) =
∫

η(t )

1 − η(t )
ϕ̇g(t )dt . (24)
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Inserting the phase relations (22)–(24) into Eq. (21), we finally
obtain the general expression for the laser pulse

E (t ) = 4

√
1
4 [η̇(t )]2

η(t )[1 − η(t )]

1

�2
0

+ [ϕ̇g(t )]2
η(t )

1 − η(t )

1

�2
0

× cos

{
ωeg

2
t + 1

2

∫ t

−∞
δS(t ′)dt ′ + 1

2
ϕg(t )

− 1

2

∫ t

−∞

η(t ′)
1 − η(t ′)

ϕ̇g(t ′)dt ′

+1

2
arctan

( − 1
2 η̇(t )

η(t )ϕ̇g(t )

)}
. (25)

The frequency-modulated laser pulse in Eq. (25) drives the
strongly coupled dynamically shifted system along a pre-
scribed quantum pathway defined by the η(t ) and ϕg(t )
ground-state control functions. Meanwhile, the excited-state
population and phase evolutions are dictated by Eqs. (19b) and
(24), respectively. The laser pulse in Eq. (25) is very similar to
that found recently for one-photon transitions [28] and can be
considered a natural extension to strong-field two-photon tran-
sitions where dynamic atomic level shifts become relevant.
It is important to note here that the relative dynamic Stark
shift δS(t ′) in the argument of the cosine function follows
the temporal intensity profile of the pulse [see Eq. (11)] and
therefore depends on the η(t ) and ϕg(t ) control functions.

To proceed further let us specify the actual form of the
control functions. Since we are interested in the control of
the state populations, let us concentrate on the solution for
time-independent phases [25]. In this case, the very general
form of the laser pulse in Eq. (25) is greatly simplified. Upon
setting ϕ̇k (t ) = 0, only the first term survives in the amplitude
function; furthermore, in the argument of the cosine function
ϕ(t ) → ϕ = ϕg − ϕe and β(t ) → ±π

2 , depending of the sign
of η̇(t ). As a result, the frequency modulation is merely caused
by the δS(t ′) relative DSS term and the only function to be
specified is η(t ). Let us choose the form of η(t ) such that an
arbitrary initial ground-state population pi = |ag(t = −∞)|2
is smoothly connected with a given final ground-state popula-
tion pf = |ag(t = ∞)|2,

η(t ) = pie−αt + pf

1 + e−αt
, (26)

where the parameter α > 0 dictates the rate of change in
the populations around t = 0. An important boundary con-
dition for the control functions in the presently developed
scheme is the disappearance of the time derivative at the
beginning and at the end of the control process. The popu-
lation control function presented above fulfills this condition,
namely, limt→±∞ η̇(t ) = 0. Inserting the above function η(t )
into Eq. (25), we arrive at the final form of the engineered
laser pulse, which can be considered the main result of this
work,

E (t ) =
√

1
2αeαt |pf − pi|(eαt + 1)−1

|�0|
√

[pi + pf eαt ][(1 − pi ) + (1 − pf )eαt ]
cos

{
ωeg

2
t −

1
4 |pf − pi|(S0

e − S0
g

)
|�0|(pf − pi )

[
− arctan

(
1 − 2pi

2
√

pi(1 − pi )

)

+ arctan

(
(1 − 2pi ) + (1 − 2pf )eαt

2
√

[pi + pf eαt ][(1 − pi ) + (1 − pf )eαt ]

)]
+ 1

2
ϕ ± π

4

}
. (27)

En route to Eq. (27), the integration of the relative DSS term
in the argument of the cosine function has been carried out
according to

∫ t
−∞ δS(t ′)dt ′ = ∫ t

−∞(S0
e − S0

g )|ε(t ′)|2dt ′, mak-
ing use of the engineered temporal intensity profile |ε(t )|2
[the term under the big square root in the amplitude function
in Eq. (27)]. In the argument of Eq. (27), +π

4 applies when
�0 and η̇(t ) have the same sign, while −π

4 corresponds to
the opposite case. Throughout the paper, ϕ = 0 is applied.
The instantaneous time-dependent angular frequency of the
engineered laser pulse in Eq. (27) is obtained as the time
derivative of the argument of the cosine function

ω(t ) = ωeg

2
+

1
4αeαt

(
S0

e − S0
g

)|pf − pi|(eαt + 1)−1

|�0|
√

[pi + pf eαt ][(1 − pi ) + (1 − pf )eαt ]
.

(28)

Equation (27) represents a frequency-modulated laser
pulse that couples resonantly the dynamically shifted atomic
levels at each moment of time. As a result, population is
efficiently transferred between the atomic states and the sys-
tem is driven from an arbitrary initial superposition (pi : 1 −
pi) to a desired final population distribution (pf : 1 − pf ),
while the rate of transition is controlled by the parameter α.

Compensating for the dynamic Stark shift has been found to
be a key technique in controlling strong-field transitions and
in this sense our phase-modulated electric field [Eq. (27)] is in
agreement with previous results in the field [17,46,51].

IV. TIME PROPAGATION METHODS

To test the validity of the above-presented reverse engineer-
ing technique, in the next section we will numerically solve
the TDSE in the single-active-electron picture, which has
been successfully applied in several strong-field simulations
[78–82]. Two completely different methods will be utilized
and compared to each other, which are detailed below.

A. Expansion coefficient propagation (TDEC)

The first method is based on the expansion of the total
time-dependent wave packet of the active electron in the ba-
sis of field-free atomic states [see Eq. (3)]. In this case the
TDSE is written as a set of first-order coupled differential
equations for the ck (t ) expansion coefficients [Eq. (4)], the
solution of which is carried out with the eighth-order Runge-
Kutta method in the space of 67 relevant field-free bound
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electronic states with n < 17 and l < 5 principal and angular
momentum quantum numbers, respectively. To solve Eq. (4),
besides the eigenenergies, the eigenfunctions of Na are re-
quired for the determination of the transition dipole moments.
These quantities are obtained by the direct diagonalization of
the single-active-electron Hamiltonian of Na [65], discretized
on a finite-element discrete-variable representation grid. We
note that excellent agreement is found with the previously
published energy, TDM, and dipole polarizability values for
Na [83–85]. The time-dependent populations of the different
electronic states are calculated as pk (t ) = |ck (t )|2 and a proper
convergence of the numerical calculations is ensured.

B. Direct wave-packet propagation (TDWP)

The second approach is the ab initio solution of the
Schrödinger equation. For this purpose we have developed a
general framework able to propagate TDSE-like initial-value
problems. The code is written in PYTHON and relies heavily
on the PETSc program package [86,87] for the representation
of the data structures (operator matrices and wave functions)
and for the numerically intensive operations on them. SLEPc
[87,88] is used to obtain the desired eigenvalues and eigen-
vectors of operators. For multidimensional problems both the
wave functions and the operators are constructed as tensor
products of one-dimensional factors.

In the present investigation, we solve the TDSE of the
single active electron of Na in spherical coordinates within
the dipole approximation

i�̇(�r, t ) = [−�/2 + Vcore(r) + E (t )z]�(�r, t ) (29)

with a Hellmann pseudopotential [89]

Vcore(r) = −1

r
+ A

r
e−ar, (30)

which provides the correct ionization potential (A = 21 and
a = 2.549 20 [65]). The discretization of the problem is
achieved with the time-dependent close-coupling method
[90]. Considering the axial symmetry of the problem when

dealing with linearly polarized pulses, the wave function
is written as a partial wave expansion in terms of spheri-
cal harmonics with m = 0, i.e., the Legendre polynomials
[Y m=0

l (θ, ϕ) = Pl (θ )] as

�(�r, t ) =
lmax∑
l=0

Rl (r, t )

r
Pl (θ ). (31)

Substituting this wave function into the time-dependent
Schrödinger equation (29), we obtain a set of coupled differ-
ential equations for the radial functions Rl ,

i
∂Rl (r, t )

∂t
=

(
− ∂2

2∂r2
+ l (l + 1)

2r2
+ Vcore(r)

)
Rl (r, t )

+ E (t )r

[√
(l + 1)2

(2l + 1)(2l + 3)
Rl+1(r, t )

+
√

l2

(2l − 1)(2l + 1)
Rl−1(r, t )

]
. (32)

The radial coordinate is treated in our implementation with the
finite-element (FE) discrete-variable representation (DVR)
method [91]. In this approach, functions are expanded in terms
of linearly independent local basis functions f (i)

m (r) ( f (i)
m (r) =

0 for r /∈ [r (i), r (i+1)], i = 1, . . . , N , and m = 1, . . . , n) de-
fined on variable-length finite elements defined by a set of
nodes r (i) 0 � r (1) < r (2) < · · · < r (N ). Our DVR basis con-
sists of Lagrange interpolating polynomials

f (i)
m (r) =

∏
l �=m

r − r (i)
l

r (i)
m − r (i)

l

, r (i)
1 � r � r (i)

n (33)

defined on a Gauss-Lobatto quadrature grid r (i)
m with weights

w(i)
m . In this quadrature the first and last grid points are chosen

to coincide with the interval boundaries, which is crucial to
ensure the continuity of the wave function. This is achieved
by combining the two basis functions f (i)

N and f (i+1)
1 into a

single bridge function to finally arrive at the orthonormalized
basis

χ (i)
m (r) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
f (i−1)
n (r) + f (i)

1 (r)
]/√

w
(i−1)
n + w

(i)
1 , m = 1

f (i)
m (r)/

√
w

(i)
m , m = 2, . . . , n − 1[

f (i)
n (r) + f (i+1)

1 (r)
]/√

w
(i)
n + w

(i+1)
1 , m = n.

(34)

The advantage of the FE-DVR method is that any local op-
erator has a diagonal form, and due to the local nature of
the basis functions, the derivative and kinetic energy op-
erators have a sparse block-diagonal form, which makes
the numerical solution of Eq. (29) fast. In the present cal-
culations the radial grid ranges from 0 to 1100 a.u. over
550 equal length finite elements, with 11 DVR points on
each. Given the properties of the dynamics, i.e., the domi-
nance of the 3s and 4s states and negligible ionization, the
Legendre polynomial basis is kept fairly small with lmax =
10. Convergence according to all numerical parameters is
ensured.

The solution of Eq. (29) entails the consecutive application
of the short-time propagator

�(t + �t ) = U (t, t + �t )�(t ), (35)

where the evolution operator is

U (t, t + �t ) = e−iH (t )�t . (36)

As the above matrix exponent has to be recomputed at each
time step, the straightforward application of this evolution op-
erator is impractical. The core idea of the Lanczos algorithm
[92] is to perform the time stepping in a Krylov subspace
constructed by the repeated application of the Hamiltonian
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on the wave function. The matrix representation of Hermi-
tian operators (Lanczos algorithm) in the Krylov subspace is
tridiagonal, while that of non-Hermitian operators (Arnoldi
algorithm) is upper Hessenberg. In either case, the Krylov
space Hamiltonian is a small (typically smaller than 20 × 20)
matrix, so its diagonalization is inexpensive. Most of the nu-
merical effort is required for the construction of the Krylov
subspace.

Although the Lanczos propagator is unconditionally sta-
ble, it is plagued by the stiffness problem as any other time
stepping algorithm. This means that excessively small time
steps are needed to reach convergence when high energies
are present in the spectrum of the Hamiltonian. The maximal
eigenvalue increases rapidly with the increase of angular mo-
menta, which are necessary when dealing with high-intensity
long-wavelength radiations. We choose to employ the split-
Lanczos [93] algorithm to overcome this difficulty. Its strategy
is to factor out the Vc = l (l + 1)/2r2 centrifugal potential
from the Hamiltonian of Eq. (32),

H (t ) = Hr (t ) + Vc, (37)

which is the source of the increased stiffness, and rewrite the
evolution operator as

U (t, t + �t ) = e−iVc�t/2

{
Ns (t )∏
i=1

e−iHr (t+�t ′
i−1 )�t ′

i

}

× e−iVc�t/2 + O(�t3), (38)

where
Ns (t )∑
i=1

�t ′
i = �t, �t ′

0 = 0. (39)

Since Vc is diagonal, the exponential term containing it can
be easily applied to the wave function, while the propagation
with Hr is performed with the ordinary Lanczos algorithm
with adaptive time step �t ′

i . The splitting of the Hamil-
tonian introduces an error proportional to �t3 due to the
noncommutativity of Hr and Vc. This is however negligible
in our calculations, where the overall time step is set to �t ∼
0.01 a.u. The size of our Krylov subspace is 8, which means
that the number of Lanczos steps within �t is Ns(t ) � 3
throughout the whole propagation.

The population of the different electronic states is obtained
upon projecting the propagated wave packet on the given
eigenfunction pk (t ) = |〈ψk|�(t )〉|2. The ionization yield is
calculated as pion = 1 − ∑

k pk (∞), where k runs over the
bound states.

V. RESULTS AND DISCUSSION

Before we apply the engineered laser pulse [Eq. (27)] to
steer the 3s → 4s two-photon transition of Na, let us ana-
lyze the control parameter dependence of E (t ). As seen in
Fig. 2(a), the envelope function of the electric field strength
profile [ε0g(t )] is Gaussian-like with a slight asymmetry
around the center of transition (t = 0). The transition rate
parameter α, which controls the speed of transition, basically
determines the FWHM pulse duration and the ε0 electric field
strength [see Fig. 2(b)]. Slow transitions (small α) require

FIG. 2. Control parameter dependence of the engineered laser
pulse E (t ) [Eq. (27)] applied to atomic Na. (a) The temporal en-
velope profile ε0g(t ) is presented for two different values of the
final target population pf . The larger the desired population change,
the stronger and longer the required laser pulse. This is further
illustrated in (b), where the FWHM pulse duration and the peak
electric field strength ε0 are shown as a function of transition rate.
Fast transitions require strong and short pulses which might lead to
the breakdown of E (t ) due to the application of AER (see the text
for details). (c) Relative dynamic Stark shift that is responsible for
the frequency chirping of E (t ) is presented for two transition rate
values and population variations. (d) Pulse area of E (t ) calculated
according to Eq. (40). The stars correspond to two-photon π pulses
that induce a total population inversion between the 3s and 4s states.

long pulses of moderate intensity, while for inducing fast tran-
sitions (large α), short and intense pulses are needed. Very fast
transitions, as will be detailed below, restrict the application of
E (t ), as the applied approximations (AE plus RWA) can get
violated in such an extreme situation.

The frequency modulation of E (t ) in Eq. (27) is dictated
by the relative DSS of the involved strongly coupled states
(3s and 4s). As the Stark shift of 3s is negative, while that
of the 4s state is positive (see Table I), the relative DSS for
the 3s → 4s transition is positive. The 3s and 4s states are
thus shifted apart from each other, and in that case a positive
chirping can maintain resonance at each moment [Fig. 2(c)].
The area of the pulse, calculated as the integral of the two-
photon Rabi frequency, making use of the ε2

0g(t )2 engineered
temporal intensity profile of E (t ),

� =
∫ ∞

−∞
|�(t ′)|dt ′, (40)

is independent of the value of α, but strongly depends on the
population variations [see Fig. 2(d)]. In the special case of
total population inversion, the pulse area is π/2, as expected
for two-photon π pulses [see the stars in Fig. 2(d)].

In order to apply the control pulse in Eq. (27), sev-
eral system parameters, such as the bare resonance angular
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TABLE I. Peak values of the 3s and 4s state dynamic Stark
shifts [Eq. (11)] and the corresponding two-photon Rabi frequency
[Eq. (10)] of Na applied in the present work. The contribution of
the different p states is presented up to n = 16. The laser frequency
is set to exact two-photon resonance for the 3s → 4s transition
(ωres = 1.588 600 194 4 eV). Atomic units are applied.

State S0
3s (a.u.) S0

4s (a.u.) �0 (a.u.)

3p −98.9440612 −69.9490101 86.4315444
4p −0.1989778 120.7626457 −3.9353948
5p −0.0199985 5.8107205 −0.1206079
6p −0.0051263 3.0668374 −0.0229614
7p −0.0020004 −13.5777867 −0.0079140
8p −0.0009846 −0.6559644 −0.0036537
9p −0.0005595 −0.2269416 −0.0020006
10p −0.0003504 −0.1108723 −0.0012234
11p −0.0002350 −0.0640182 −0.0008075
12p −0.0001659 −0.0409204 −0.0005638
13p −0.0001218 −0.0280076 −0.0004105
14p −0.0000924 −0.0201555 −0.0003092
15p −0.0000718 −0.0150563 −0.0002391
16p −0.0000570 −0.0115908 −0.0001891
total −99.1728026 44.9398798 82.3352695

frequency ω4s3s, the peak Stark shifts S0
3s and S0

4s [Eq. (11)],
and the peak Rabi frequency �0 [Eq. (10)], have to be eval-
uated with the help of the eigenenergies and TDMs of Na.
These strong-field parameters are shown in Fig. 3 as a function
of the central angular frequency of the laser in the vicinity of
the bare two-photon (TP) resonance (ωres = ω4s3s/2). While
�0 and S0

3s behave rather smoothly, the excited-state Stark
shift S0

4s exhibits abrupt jumps, which are attributed to higher-
lying p states nearly one-photon resonant with 4s. This is
clearly seen in Fig. 3(a) by comparing the blue dashed line and
the red solid line: Owing to the 7p state, the 4s Stark shift is
substantially modified in the vicinity of the bare TP resonance
energy ωres. The impact of the 7p state on the other quantities
in Fig. 3 is negligible.

The individual contributions of the different p states to the
Stark shifts and Rabi frequency are listed in Table I. Clearly,
the nearby 3p and 4p states give the dominant contributions,
while the higher states become less and less important with
increasing n. The only exception is the 4s Stark shift, which
has a notable contribution from the one-photon resonant 7p
state.

After having all the system parameters necessary for the
construction of our control pulse, we are now ready to
apply E (t ) to drive the 3s → 4s transition along some user-
defined quantum path [specified by the control function η(t )
in Eq. (26)]. As a concrete example, let us choose pi = 1.0
and pf = 0.5 to drive the system from the initially populated
3s state to an equal population distribution of the 3s and
4s states. The obtained results are shown in Fig. 4 for both
large- and small-α values to simulate fast and slow transi-
tions, respectively. Here two completely different methods
are applied to solve the Schrödinger equation of the active
electron of Na in the presence of the engineered E (t ) laser
pulse. Importantly, the TDEC results, which are obtained by
the propagation of expansion coefficients, are fully supported
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FIG. 3. Strong-field parameters of the 3s → 4s two-photon tran-
sition of atomic sodium. Peak values of the (a) 3s and 4s state
dynamic Stark shifts are calculated according to Eq. (11), while
the (b) two-photon Rabi frequency between the 3s and 4s states
is obtained from Eq. (10). The solid lines correspond to full re-
sults, which are calculated in the space of 67 electronic states (n <

17, l < 5). Quantities denoted by dashed lines are calculated upon
exclusion of the one-photon resonant 7p state from the description.
Owing to the resonant 7p state, the 4s Stark shift becomes sensi-
tive to small variations of the laser frequency near the two-photon
resonance. The vertical dashed line indicates the bare two-photon
resonance energy between the strongly coupled 3s and 4s states
(ωres = 1.588 600 194 4 eV).

by the TDWP results, which rely on the direct propagation of
the three-dimensional wave packet on a grid (for details, see
Sec. IV). The agreement of the two methods is best when the
transition is slow. The very slight deviation of the populations
in the case of fast transitions is attributed to the small amount
of ionization, which is not described by the TDEC method.
This is demonstrated in Fig. 4(c) by the ionization yields
obtained from the TDWP method for different α’s. For slow
transitions, the pulse duration is in the picosecond regime
and owing to the narrow bandwidth, the system dynamics is
confined to the 3s and 4s states and there is no ionization.
However, by increasing α, the intensity and bandwidth of the
pulse grow, which can lead to resonance-enhanced ionization
first mediated by 7p and then involving other bound states as
well when α is large.
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FIG. 4. Comparison of the time-dependent 3s and 4s state popu-
lations calculated with the TDEC and TDWP methods (see Sec. IV).
For both (a) fast and (b) slow transitions, the two completely different
methods give perfect agreement; furthermore, the simulated popula-
tion curves follow the analytical target functions (dotted lines with
open circles and open squares). (c) The slight increase in the ioniza-
tion probability around α = 0.001 a.u. correlates with the maximum
in the final 7p populations, indicating that a Stark shifted transient
resonance between 4s and 7p opens up a resonance-enhanced ion-
ization channel.

Another important feature in Fig. 4 is that the population
functions obtained from the numerical solution of the TDSE
follow the prescribed control functions. Here the agreement
is again best when the transition is slow. As described above,
for faster transitions the two-level description becomes less
accurate since the neighboring states start to get populated.
Furthermore, in the case of large α the approximations applied
in Sec. II (AE plus RWA) are not perfectly satisfied and the

pulse can only approximately drive the system along the user-
defined target function.

Based on the general nice agreement of the two different
time propagation techniques, in the following we will apply
the much faster TDEC method for the exploration of the va-
lidity of E (t ). In Fig. 5 a detailed survey of our control pulse is
presented. Four different population variations are considered
corresponding to the four rows of panels. In Figs. 5(a)–5(c)
a total population inversion is demonstrated and the popu-
lation change decreases from the top to the bottom panels.
In Figs. 5(a), 5(d), 5(g), and 5(j) the state populations, ob-
tained after the pulse has expired, are presented for different
transition rates. For small-α values (α < 0.0003 a.u.) the
laser pulse is of moderate intensity and rather long (includ-
ing many optical cycles). Owing to the narrow bandwidth,
the neighboring off-resonant states are avoided and the user-
defined population control functions are perfectly reached by
the driven system [see the horizontal dotted lines with open
circles and squares in Figs. 5(a), 5(d), 5(g), and 5(j)]. On the
other extremum, when α is large (α > 0.01 a.u.) the laser
pulse becomes rather strong and short (including only a few
cycles). In such a case the AER is violated, the neighboring
states become populated, and as a result the system only
approximately follows the prescribed control functions. It is
important to note here that from the populated neighboring p
states a single photon can transfer population not only back
to the s states but further to the d manifold too. The popu-
lation of the g series is however still negligible even for the
largest α considered in this work. In the intermediate region
(0.0003 a.u.< α < 0.01 a.u.), the 7p state gets populated by
the control pulse (green dotted lines), which prevents the
system from perfectly following the desired quantum path. To
clarify the role of the 7p state, we have solved the TDSE by
excluding the 7p state from the description. According to the
obtained population functions (dashed lines in Fig. 5), much
better control is achieved if there is no resonant state present
in the vicinity of the controlled states.

To explicitly demonstrate the time evolution of the driven
system, we choose two specific α values. In the case of α =
0.01 a.u., the transitions occur in the order of 20 fs [Figs. 5(b),
5(e), 5(h), and 5(k)], while for α = 0.0001 a.u. in approx-
imately 2 ps. Requiring fast transitions, the system cannot
follow the target function exactly as the AER is only partially
satisfied. The larger the prescribed population variation, the
larger the deviation between the numerically obtained and
analytical population functions. However, when the desired
transition is sufficiently slow, the system is perfectly driven
along the control pathways by E (t ) irrespective of the actual
values of the population change.

The non-negligible final population of the 7p state in the in-
termediate transition rate region (green dotted lines in Fig. 5)
is the result of Stark shifted transient resonance between the
4s and 7p states. To better illustrate this resonance condition,
we calculate the Stark shifted 7p state energy and the Stark
shifted 4s energy dressed by the ω(t ) chirped photon energy
as

ω4s(t ) = ω4s + S4s(t ) + ω(t ), (41a)

ω7p(t ) = ω7p + S7p(t ). (41b)
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FIG. 5. Application of the engineered laser pulse E (t ) [Eq. (27)] to control the population dynamics of the 3s → 4s two-photon transition
in atomic sodium. A wide range of the transition parameter α is considered (left column) to achieve complete control over the rate of transition
and the final target 3s and 4s populations (dotted lines with open circles and squares). The different rows of panels correspond to increasing
population modulations from bottom to top. (a)–(c) demonstrate a complete population inversion between the 3s and 4s states, while (d)–(f)
depict an equal final population distribution of these states. Upon fast transitions we only approximately reach the target superpositions (middle
column), while applying sufficiently slow transitions, any desired population dynamics is achieved with E (t ) (right column) (see the perfect
matching of the control functions and the numerically obtained 3s and 4s populations). The full results are calculated in the space of 67
electronic states (n < 17, l < 5) with the TDEC method. Quantities denoted by dashed lines are calculated upon exclusion of the one-photon
resonant 7p state from the description. Results are obtained by solving Eq. (4) with E (t ) in Eq. (27). The vertical dashed lines indicate the
specific α values that are applied in the middle and right columns.

In Eqs. (41a) and (41b) the peak Stark shift of the 7p state,
which is caused by the s (l = 0) and d (l = 2) state mani-
folds, is found to be S0

7p = 68.602 787 a.u. Furthermore, the
frequency-modulated angular frequency is given in Eq. (28).
The energies of the one-photon coupled 4s and 7p states,
calculated at the maximum tmax of the pulse, are shown in
Fig. 6 for different transition rate values. In the case of small
α, the laser intensity is low; therefore, the individual Stark

shifts, as well as the frequency modulation of the field, is
rather small. The energetic ordering of the 4s and 7p states is
the same as in the field-free case. By increasing α, the laser
gets more and more intense, which leads to the growth of
both the Stark shifts and the frequency modulation of E (t ).
As a result, the energy of the dressed 4s state is increasing
more rapidly than that of the 7p state, leading to the crossing
of the two energy curves. As seen in Fig. 6, this crossing of
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FIG. 6. Energies of the one-photon nearly resonant 4s and 7p
states of Na under the action of the engineered laser pulse given in
Eq. (27). The Stark shifted 7p state energy (red dashed line) and the
Stark shifted 4s state energy, dressed by the chirped photon energy
ω(tmax) (black solid line) are calculated according to Eqs. (41a) and
(41b) for different transition rate values (peak energies are consid-
ered at the maximum tmax of the pulse). Upon increasing α (and
hence increasing field strength and frequency modulation), these
Stark shifted one-photon coupled states form an energy crossing that
gives rise to an efficient population transfer from the 4s to the 7p
state [see the shaded region and the final 7p populations shown by
the green dotted line from Fig. 5(a)].

the 4s and 7p energy curves occurs right in the intermediate
transition rate region (shaded area), allowing for an efficient
population transfer to 7p, seen already in Fig. 5.

Finally, let us inspect how sensitive the laser pulse E (t )
is to the imperfections of its parameters. In particular we
focus on the system specific parameters, like the peak Rabi
frequency �0, the resonance angular frequency ωres = 1

2ω4s3s,
and the relative DSS δS(t ) that is responsible for the frequency
modulation of E (t ) in Eq. (27). The imperfections of these
quantities are defined by the relations

�′
0 = (1 + δ�)�0, (42a)

ω′
res = (1 + δω )ωres, (42b)

δS′(t ) = (1 + δS )δS(t ). (42c)

Upon varying δ�, δω, and δS , one can simulate possible
preparation errors occurring, e.g., in an experimental realiza-
tion of E (t ). The obtained results are presented in Fig. 7 for
the specific case of pi = 0.7 and pf = 0.4 simulating slow
transitions (α = 0.0001 a.u.). As can be seen in Figs. 7(a) and
7(b), the final target population value of the 4s excited state
(0.6) is reached by E (t ) in a wide interval of the imperfection
parameters. Deviation of the Rabi frequency from its optimal
value (δ� = 0) can be compensated by a proper positive or
negative chirping of the control pulse [see the dashed line
in Fig. 7(a)]. The same holds when the resonance frequency
deviates from its optimal value (δω = 0), but in this case the
chirping of the pulse allows for compensation in a somewhat
narrower parameter range [see the dashed line in Fig. 7(b)].
Interestingly, transform-limited (TL) pulses, when there is no
frequency modulation at all, can still drive the Stark shifted
system close to the desired final state. This is demonstrated
by the horizontal dash-dotted lines in Fig. 7; for example,
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FIG. 7. Final 4s state populations of Na as a function of the
laser parameter imperfections defined in Eqs. (42a)–(42c). Devia-
tions from the optimal values of (a) the Rabi frequency and (b) the
resonance laser frequency lead to a deterioration of the final 4s state
population from its target value of 0.6. A proper modification of
the frequency chirping of the laser pulse can however still maintain
the target 4s population (see the dashed lines in both panels). The
horizontal dash-dotted lines indicate transform-limited (unchirped)
pulses, which can still drive the system close to the desired final
target state in some cases. The vertical dotted line in (b) indicates
the peak relative DSS per photon 1

2 δS(tmax). The remaining fixed
values of the applied laser pulses are α = 0.0001 a.u., pi = 0.7, and
pf = 0.4. The presented results are obtained by the TDEC method
solving Eq. (4) in the space of 67 electronic states, with E (t ) in
Eq. (27).

an appropriately positively detuned TL pulse can steer the
4s population close to 0.6 in spite of the fact that the dy-
namic resonance condition is not satisfied. In such a case, the
blue-detuned TL pulse, the detuning of which approximately
equals 70% of the peak relative DSS per photon [vertical
dotted line in Fig. 7(b)], can maintain resonance in a time-
averaged sense, which still proves to be efficient. This issue
might deserve further investigation in a different paper.

In summary, the reverse engineering scheme presented in
this paper allows for the design of analytical laser pulses
to drive strong-field transitions along desired pathways.
Although exemplified by two-photon transitions, the gener-
alization of the scheme to N-photon transitions is possible
[41]. Owing to the applied approximations in the underlying
two-state model (the RWA and AE approximation), there ex-
ists a lower bound for the operation time of the laser pulse.
For the RWA to remain valid, the pulse has to possess at
least a few oscillation periods. On the other hand, the AE
approximation typically requires a stricter condition: In the
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case where there is a nearly single-photon resonant state close
to the target states, for a proper operation, the pulse bandwidth
has to be smaller than the related single-photon detuning.
Handling of the above negative effects, namely, the inhibi-
tion of unwanted transitions [9], the avoidance of the RWA
[10,21], or even the increase of robustness against different
errors [7], has been addressed before in the STA framework.
These can provide possible directions for the extension of
the presently developed control scheme. The efficiency of our
control pulse was demonstrated by the exact solution of the
TDSE, and the accurate numerical results obtained for Na are
in line with available data in the literature. Our extensive study
presented here clearly confirms that dynamic Stark shifts play
a fundamental role in strong-field transitions and have to
be considered in the frequency modulation of the laser for
efficient control.

VI. CONCLUSION

In this paper we have developed a reverse engineering
scheme to control the dynamics of strong-field atomic tran-
sitions. Considering the 3s → 4s two-photon transition of
atomic sodium as a concrete example, we have designed an
analytical laser pulse by solving the TDSE of a two-level
effective model in an inverse manner [Eq. (27)]. The envelope
function and phase of the engineered laser pulse have been
tailored such that the dynamically Stark shifted system is
resonantly driven from an arbitrary initial population distri-
bution to a desired final superposition. In contrast to many
other works, not only the final target populations, but also the
quantum path completed by the system is controlled by the
obtained laser pulse.

Solving the TDSE of the single active electron of Na
with two completely different methods, i.e., either propa-
gating time-dependent coefficients or propagating the three-

dimensional wave packet on a grid, we have verified the
validity of the engineered laser pulse (Fig. 4). Upon varying
the desired speed of transition (controlled by the parameter
α), different regimes have been identified (Fig. 5). For slow
transitions (α < 0.0003 a.u.), the engineered pulse works the
best. In such a case the applied approximations (AER) are
well satisfied and the user-defined population control func-
tions are perfectly followed by the driven system. On the
other hand, for very fast transitions (α > 0.01 a.u.) the field
becomes rather intense and short (including a few cycles
only). In this case the AER starts to fail and as a result the
pulse can only approximately drive the system along the target
pathway.

The impact of a single-photon resonant state on the studied
two-photon transition, often encountered in alkali metals, has
been investigated too. In the intermediate transition rate region
(0.0003 a.u.< α < 0.01 a.u.) a transient resonance between
the Stark shifted 4s and 7p states has been demonstrated,
which opens a resonance-enhanced multiphoton ionization
channel and thus leads to a failure of the two-level description.
Within the scope of the applied approximations, the engi-
neered laser pulse was found to be surprisingly robust against
imperfections of the different system parameters appearing in
the expression of the laser pulse, such as the relative Stark
shift, the Rabi frequency, and the bare resonance frequency
(Fig. 7).
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