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Criterion for the yield of micro-object ionization driven by few- and subcycle
radiation pulses with nonzero electric area
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The photoionization yield is analyzed for three-dimensional quantum systems with finite number of discrete
spectrum states driven by unipolar subcycle and few-cycle electromagnetic pulse with a duration much less
than “the Kepler period,” electron oscillation period in the ground state. The yield for such objects—symmetric
quantum dots and those described by the zero-radius potential—is compared with the yield for hydrogen atom.
In all these cases, the standard Keldysh ionization theory is inapplicable. It is shown that ionization probability
is determined by the ratio of the electric pulse area (integral of the electric field strength over time) and its
characteristic value inversely proportional to the size of the electron localization, and not by the pulse energy or
its maximum intensity.
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I. INTRODUCTION

An important trend in modern laser physics and technology
is the shortening of laser pulses, which makes it possible
to achieve extremely strong fields [1] and control extremely
fast processes [2,3]. Today, radiation pulses with a duration
of 42 as have been experimentally obtained [4,5], which is
significantly less than the time of an electron’s revolution in
the first Bohr orbit. Various methods of obtaining unipolar
radiation pulses are described in Ref. [6], and in Ref. [7]
a cascade scheme is proposed in which a sub-10-as pulse
duration is attainable. Transportation of subcycle and unipo-
lar pulses is possible in coaxial waveguides, for which there
is no cutoff frequency [8]. Half-cycle and unipolar pulses
were demonstrated experimentally and studied theoretically
in Refs. [9–13].

Subcycle and unipolar pulses with a significant content of
the zero-frequency component of the field serve as the limit
of pulse shortening. Many concepts of optics and interaction
of radiation with matter require revision for such pulses.

The first publication on unipolar radiation pulses, appar-
ently, belongs to Bessonov [14], who called them “strange
waves.” Further studies, reviewed in Refs. [6,15], revealed the
essential role of such a characteristic of extremely short pulses
as their electric area SE = ∫

E dt , where E is the electric field
strength and t is the time. In macroscopic electrodynamics,
this quantity has nontrivial conservation properties that are
valid for almost any media and are essential in the analysis
of a number of effects [6,15].

At the microlevel, it turns out it is the electrical area of the
pulses, and not their energy, that determines the effectiveness
of the action of extremely short pulses on both free [16]
and bound charges [6,17–24]. It is associated with the uni-
directionality of the action of unipolar pulses, as opposed to
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bipolar ones. The magnitude of their impact can be estimated
from the following considerations. For the short pulses under
consideration, their effect on an electron with a charge e is
reduced to imparting a momentum δp = eSE to it, while the
electron does not have time to move a significant distance
during the radiation pulse. The impact is significant if this
momentum is comparable to the characteristic momentum of
the micro-object p0.

From dimensional considerations, p0 = mc for a free elec-
tron, where m is the electron mass and c is the speed of light
in vacuum. Then we obtain the scale of the electric area for a
free electron Sf = mc/e, in accordance with Ref. [16].

The characteristic momentum of a bound electron localized
in a region with size a, according to the uncertainty relation,
is equal to p0 = h̄/a. Hence Sb = h̄/(ea), that is, the scale of
the pulse electric area is determined by the size of the electron
localization region. This conclusion is confirmed for atomic
systems [21,24]: After replacement of a by the radius of the
first Bohr orbit a0, Sb coincides with the atomic measure of
the pulse electric area Sat [24]. Below we will show that the
conclusion is also valid for a wider range of quantum systems.

One of the important phenomena of nonlinear optics is
laser-induced ionization of micro-objects. For multicycle laser
pulses, the character of ionization is determined by the
Keldysh parameter [25], which describes in a unified manner
the mechanisms of multiphoton ionization and electron tun-
neling through a potential barrier. For extremely short pulses,
for which the concept of a carrier frequency loses its meaning,
it is already inappropriate to speak of multiphoton processes,
and the meaning of the Keldysh parameter requires clarifi-
cation; another condition of the Keldysh theory applicability
is that the pulse duration should exceed the Kepler period,
electron oscillation period in the ground state. According to
a recent paper [26], the criterion for the minimum time of
photoionization is the Keldysh time, the ratio of the Keldysh
parameter to the carrier frequency; for extremely short pulses,
both the numerator and the denominator of the ratio are
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undefined. The importance of the carrier-envelope phase of
the pulse in the quantum tunneling processes is underlined,
e.g., in Ref. [27].

In this paper, we consider radiation pulses with duration
shorter than the Kepler period. Using examples of a 3D-
potential well, the zero-range potential model, and a hydrogen
atom, we show that the scale of the pulse electric area, deter-
mining the probability of ionization, is inversely proportional
to the size of the electron localization region. In the two
first cases, the analytical consideration is based on the ap-
proximation of sudden perturbations [28], while in the third
problem, the direct numerical solution of the time-dependent
Schrödinger equation is used.

II. 3D-POTENTIAL WELL

A model of a centrally symmetric potential well can
describe an isolated quantum dot [29]; for relatively long,
femtosecond pulses, quantum dots’ photoionization was con-
sidered in review (Ref. [30]) and references therein. In the
absence of the radiation pulse, the solution of the unperturbed
Schrödinger equation shows a finite number of discrete energy
levels, depending on the depth of the well width a and depth
(ionization potential) U0 [31]. The potential is written as

U (r) = −U0 (r < a), U (r) = 0 (r > a),

r = (x2 + y2 + z2)1/2. (1)

The radial part of the wave function of an electron with
angular momentum l = 0 for the ground state (with the lowest
energy Ew,0) inside (r < a) and outside (r > a) the well has
the form

ψ (r) = A0 sin(kr)/r (r < a),

ψ (r) = A∞ exp(−κr)/r (r > a),

k = (1/h̄)[2m(U0 + Ew,0)]1/2,

κ = (1/h̄)(−2mEw,0)1/2. (2)

Normalization and continuity conditions for the wave func-
tion and its derivative at r = a carry out to the relations

A∞ = A0exp(κa) sin(ka),

A−2
0 = 2πa

[
1 − sin(2ka)

2ka
+ 1

κa
sin2(ka)

]
. (3)

The transcendental equation, which determines the energy
levels, also follows from them. The minimum well depth at
which a discrete level appears is U0,min = π2h̄2/(8ma2) [31].
The discrete level will be the only one up to the well depth
U0,1 ≈ 10.1h̄2/(ma2).

The approximation of sudden perturbations [28] is valid
only if the duration of the perturbation (in the case under
consideration, a radiation pulse) is much shorter than the
characteristic period of variation of the unperturbed system
(here 2π h̄/Ew,0). If this condition is not met, the intrinsic
evolution of the unperturbed system during the time of the
perturbation is essential. Within the approximation of sudden
perturbation, an extremely short radiation pulse leads to an
instantaneous change in the electron momentum, so that the
wave functions before, ψ (−), and after, ψ (+), the pulse action
are related by the relation ψ (+) = ψ (−) exp(−ieSE z/h̄) (in the

FIG. 1. Dependence of probability of nonexcitation (dashed line)
and ionization (solid line) of a spherical wall on the pulse electric
area. Parameters: a = 1.25 × 10−7 cm, U0 = 3.95 × 10−13 erg, Sw =
h̄/(ea) = 1.76 × 10−11 ESU.

electric dipole approximation). Therefore, the amplitude of
the probability of conservation of the ground state with the
wave function ψ0 after the action of the pulse is

a00 =
∫∫∫

|ψ0(r)|2 exp (−iqz)r2 sin θdrdθdϕ

= 4π

∫ ∞

0
|ψ0(r)|2 sin (qr)

qr
r2dr

= 4π

qa
A2

0a

[
1

2
si(qa) − 1

4
si(qa − 2ka) − 1

4
si(qa + 2ka)

+ exp(2κa)sin2(ka)ImE1(2κa − iqa)

]
. (4)

Here θ and ϕ are the polar and azimuthal angles, q =
eSE/h̄, and si and E1 are integral sine and exponential in-
tegrals [32]. The probability of maintaining the ground state
w0 = |a00|2. The probability of ionization in the above range
of well depths, in which the discrete level remains the only
one, wion = 1 − w0 = 1 − |a00|2. For large values of the pa-
rameter qa = SE/Sw (qa � 1, qa � ka, qa � κa), the form
of Eq. (4) is simplified:

a00 ≈ 4πA2
0a[kasin(2ka) + 2sin2(ka)(1 + κa)]

× sin(SE/Sw)

(SE/Sw)3 , Sw = h̄/(ea). (5)

The dependence of the probability of excitation and ion-
ization on the pulse electrical area is shown in Fig. 1. The
characteristic scale of the change in the electrical area is the
value Sw, in accordance with the estimation. It can be seen that
with increase in the electrical area, the excitation probability
increases and rapidly tends to 1. Note that this conclusion
is also valid for a greater depth of the well, when there are
several discrete levels in it, due to fast oscillations of the
factor exp(−iqz) in integrals of type (4) at large qa. Equation
(5) and Fig. 1 show also the presence of oscillations in the
given dependences, and the population zeros correspond to
the complete depletion of the ground state and full ionization.
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FIG. 2. Nonexcitation and ionization probabilities for ground
(w0, wion) and excited (2p, w0,excited, wion,excited) states of atom H
after the interaction with a radiation pulse with (a) fixed energy
density W = 12 a.u. (atomic units) and (b) fixed electric area SE =
0.25 Sat . Pulse duration τ = 7.4 as (0.3055 a.u.), its “frequency”
ω = 18.225 a.u.

III. ZERO-RADIUS POTENTIAL MODEL

The zero-radius potential model, which consists of replac-
ing the electron-confining potential with a delta function of
coordinates, was initially used in nuclear physics [33], and
then in a wide range of problems in atomic physics [34]. In
this case, there is only one level of the discrete spectrum with
the wave function

ψ0 = (α/2π )1/2 exp(−αr)/r. (6)

The parameter α can be expressed in terms of the electron
affinity. The probabilities of nonexcitation and ionization by a
subcycle radiation pulse [35] can be written in the following
form:

w0 = a2
00, wion = 1 − w0,

a00 = (S0/SE ) arctan(SE/S0). (7)

In atomic units, the characteristic value of the electric area
S0 = 2α. Since the size of the electron localization region is
inversely proportional to the parameter α, this confirms the
above conclusion about the scale of electric area of subcycle
pulses.
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FIG. 3. The same as in Fig. 2 for the initial 1s state, pulse
duration τ = 50 as (2.067 a.u.), and ω = 0.09 a.u. (a) W = 4 a.u.;
(b) SE = 0.3 Sat; w0,sp is the nonexcitation probability according to
Eq. (10).

IV. ATOM H

Let us present next the results of a direct numerical solution
of the time-dependent Schrödinger equation (without using
the approximation of sudden disturbances) for a pulse with
an electric strength profile

E (t ) = E0 exp(−t2/τ 2) sin(ωt + ϕ0). (8)

The corresponding electric area SE and the quantity W =∫
E2(t ) dt proportional to the pulse energy density have the

form

SE = √
πE0τ exp[−(ωτ )2/4] sin ϕ0,

W =
√

π/8E2
0 τ {1 − exp[−(ωτ )2/4] cos(2ϕ0)}. (9)

The generalized pseudospectral method [36,37] was used
for the solution. Figure 2 shows the dependence of the prob-
abilities of maintaining the ground state 1s and ionization for
the ground and excited state 2p on the electric area SE and
energy density W for extremely short pulses for two scenarios.
In the first scenario [Fig. 2(a)], the energy density is constant,
and in the second one [Fig. 2(b)] the pulse electric area SE

is constant, which was achieved by simultaneous variation of
the peak electric strength E0 and the initial phase ϕ0. The
pulse duration τ was fixed in both cases: τ = 7.4 as; the
maximum peak field amplitude corresponds to intensity about
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19

W/cm
2
. The figures indicate that it is the scaled electric

area of extremely short pulses SE/Sat that determines the prob-
ability of their ionization. Note also that the dependence of
w0(SE ) in Fig. 2(a) found numerically in the case of ionization
from the ground state coincides with graphic accuracy with
that given by the formula [21]

w0,sp = [1 + (SE/Sat )
2]−4. (10)

This confirms the applicability of the sudden perturbation
approximation; see also Ref. [20]. The probability of ioniza-
tion complements the probabilities of excitation of all levels
of the discrete spectrum to unity.

In Fig. 3 we present similar results for pulses, the duration
of which, τ = 50 as, is still shorter, but already comparable
to the time of an electron’s revolution in the Bohr orbit.
Figure 3(a) shows that in this case also the approximation of
sudden perturbation turns out to be quite accurate: the dis-
crepancy between the analytical and numerical results when
determining the probability of atom nonexcitation is less
than 10%. However, in this case, a weak dependence of the
probabilities of excitation and ionization on the pulse energy
appears; see Fig. 3(b).

The above examples confirm the decisive role of the sub-
cycle pulse electric area with the scale determined by the size
of electron localization region in the photoionization yield of
quantum objects. The Keldysh parameter of theory of ioniza-
tion γK = ω

√
2mI0/(eE0) [25], where ω is the frequency of

an electromagnetic wave with amplitude E0, and I0 is the ion-
ization potential, is not applicable for purely unipolar pulses
with the central frequency ω = 0. In Ref. [26], the value of the
Keldysh time τK = γK/ω is introduced. For a hydrogen atom

I0 = me4/(2h̄2) and for a pulse with duration τK , we obtain
SE = Sat. Thus, the efficiency of not only excitation, but also
ionization of atoms by extremely short pulses is determined
by the ratio SE/Sat.

V. CONCLUSION

Thus, we have studied ionization of very different types of
three-dimensional quantum objects with number of discrete
spectrum states from one to infinity, driven by few- and sub-
cycle pulses with duration smaller than quantum wave-packet
oscillation period of the object. We show that ionization yield
is determined mainly by ratio of the pulse electric pulse
area SE to its characteristic value Squant = h̄/(ea) inversely
proportional to the size of electron localization region a. In
most previous studies, interaction of pulses with duration
of hundreds of attoseconds or longer was studied; see, e.g.,
Refs. [2,3,9,11,38]. Their duration is longer than the Kepler
period of an electron in ground state (150 as for hydrogen
atom). Since methods of generation of attosecond and unipo-
lar half-cycle pulses with much shorter duration have been
proposed recently [4–7], the results presented above can es-
tablish theoretical background for the study of interaction of
such pulses with various quantum objects.
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(2009).

[36] G. Yao and S.-I. Chu, Chem. Phys. Lett. 204, 381 (1993).
[37] D. A. Telnov and Shih-I. Chu, Phys. Rev. A 59, 2864 (1999).
[38] J. T. Karpel and D. D. Yavuz, Opt. Lett. 43, 2583 (2018).

063101-5

https://doi.org/10.1021/cr00005a016
http://arxiv.org/abs/arXiv:2109.02367
https://doi.org/10.1103/PhysRevA.79.013413
https://doi.org/10.1016/0009-2614(93)90025-V
https://doi.org/10.1103/PhysRevA.59.2864
https://doi.org/10.1364/OL.43.002583

