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Weak correlation and strong relativistic effects on the hyperfine interaction in fluorine
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In previous work devoted to ab initio calculations of hyperfine-structure constants in nitrogen and fluorine
atoms, we observed sizable relativistic effects, a priori unexpected for such light systems, that can even largely
dominate over electron correlation. We observed that the atomic wave functions calculated in the Breit-Pauli
approximation describe adequately the relevant atomic levels and hyperfine structures, even in cases for which
a small relativistic LS-term mixing becomes crucial. In the present work we identify levels belonging to the
spectroscopic terms 2p4(3P)3d 2,4(P, D, F ) of the fluorine atom, for which correlation effects on the hyperfine
structures are small, but relativistic LS-term admixtures are decisive to correctly reproduce the experimental
values. The Breit-Pauli analysis of the hyperfine matrix elements nails cases with large cancellation, either
between LS pairs for individual hyperfine operators or between the orbital and the spin dipole contributions.
Multiconfiguration Dirac-Hartree-Fock calculations are performed to support the Breit-Pauli analysis.
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I. INTRODUCTION

The development of relativistic theories applied to atoms
has greatly contributed to improving the agreement between
theory and observation. Among the methods accounting for
relativity, we can cite the multiconfigurational Hartree-Fock
(MCHF) approach with Breit-Pauli (BP) corrections [1,2]
and the multiconfigurational Dirac-Hartree-Fock (MCDHF)
approach with Breit and QED corrections [3,4]. The method-
ological developments, combined with increasing computer
resources, allow for accurate calculations of atomic wave
functions, which make it possible to study rigorously the
balance between electronic correlation and relativistic effects
on atomic properties. ATSP2K [5] and GRASP2018 [6] are
codes built on the MCHF+BP and MCDHF+Breit+QED
approaches, respectively.

Correlation effects are traditionally presented as being
dominant in light atoms, on the basis of the Z-dependent
perturbation approach of the nonrelativistic Hamiltonian [7],
while relativistic effects are expected to be more prominent
in heavy atoms, due to the large mean velocity of the inner
electrons relatively to the speed of light, when increasing the
nuclear charge [4,8]. This picture is definitely too simple, as
explicitly expressed two decades ago by Desclaux’s statement
[9]: “It is obvious that correlation and relativistic corrections
should be included simultaneously in a coherent scheme.”
It is nowadays acknowledged that relativity has to be taken
into account, even for light atoms [10,11], to obtain accurate
predictions of electronic structures.

The effects of relativity on the hyperfine interaction in
light atoms have been studied in several works [11–14]. In
fully relativistic calculations, as in the MCDHF method, the
influence of relativity leads to two effects [15,16]. The first

one is a direct effect that results in the contraction of radial
orbitals compared to the nonrelativistic ones. The second
one, an indirect effect, is a consequence of the first, which
manifests itself by an expansion of radial orbitals. Orbitals
characterized by low angular momentum l values, i.e., s and
p electrons, undergo the first contraction effect, while or-
bitals with larger l values, more efficiently screened due to
the relativistic contraction of the s and p shells, are radially
expanded outward. These effects, resulting from the appli-
cation of purely relativistic methods, have a weak influence
on the atomic properties of light elements. In the case of
the 1s22s22p43d configuration of fluorine (Z = 9), the mean
radii of Dirac-Hartree-Fock and Hartree-Fock (HF) orbitals
〈r〉DHF

1s = 0.175 43 and 〈r〉HF
1s = 0.175 67, respectively, differ

relatively by 0.14%. This contraction effect in fluorine is
rather small in comparison with, e.g., the gold atom, for which
the 1s orbital undergoes a relative displacement of the order of
13%, while the 6s contraction is of the order of 17%, due to
the combined direct and indirect effects of relativity [17,18].
In the BP approximation, the radial orbitals are frozen from
nonrelativistic calculations, while relativity is captured only
through the LS-term mixing for a given J value. For light
atoms, the inclusion of relativistic effects in the BP approx-
imation is generally sufficient to estimate atomic properties
accurately.

Large-scale MCHF calculations combined with nonrel-
ativistic configuration interaction calculations of hyperfine
parameters have been performed successfully in light atoms
[19–23]. In some studies, relativity was included to improve
the agreement with observation, either through the Breit-Pauli
approximation or using the relativistic configuration inter-
action approach [24–27]. In all these works, the relativistic
corrections were not negligible but remained relatively small,
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changing the hyperfine parameters by less than a few percent.
However, unexpected large deviations have been highlighted
in the study of hyperfine structures of some levels of the flu-
orine atom, for which the relativistic effects on the hyperfine
constants A3/2 and A5/2 of the 2p43p 4Po

3/2,5/2 levels were esti-
mated to be around 30% [28]. Even larger relativistic effects
have been found for other levels [14], of the order of 35% for
A(2p43s 4P1/2) and, even more spectacular, reaching 182% for
A(2p43p 4So

3/2). Aourir et al. [14] showed that in some cases,
although the relativistic effects can be important for the differ-
ent contributions to the hyperfine interaction, the global effect
of relativity may become relatively small due to large cancel-
lation. The theoretical values of Carette et al. [28] for A3/2

and A5/2 of the 2p43p 4Po
3/2,5/2 levels, both strongly affected

by relativity, were confirmed experimentally [29], while there
are no experimental values available to compare with for the
other two constants A(2p43s 4P1/2) and A(2p43p 4So

3/2).
Hyperfine constant values for the 2p4(3P)3d 2S+1LJ levels

have been determined recently from concentration modula-
tion spectroscopy experiments [29], and it is worthwhile to
investigate how much relativity affects the theoretical estima-
tion. The results obtained in the present work far exceeded
our expectations, since the relative differences between the
nonrelativistic values and those taking relativity into account
reach in some cases several hundred percent. As an example,
the nonrelativistic correlated values A(4F3/2) = 1333 MHz,
A(4F5/2) = 956 MHz, and A(4F7/2) = 995 MHz are dramat-
ically affected by the relativistic BP corrections, which
decrease them to A(4F3/2) = 122 MHz, A(4F5/2) = 252 MHz,
and A(4F7/2) = 263 MHz, in good agreement with the ex-
perimental values 110 ± 10, 304 ± 50, and 276 ± 10 MHz,
respectively.

In this work we investigate and explain the origin of the rel-
ativistic effects on the calculated hyperfine constants. We use
the MCHF method to estimate the hyperfine constants of the
2p4(3P)3d 2S+1LJ levels, within the framework of a nonrela-
tivistic approach for the optimization of the zeroth-order wave
functions. A simultaneous optimization scheme is applied
in the variational nonrelativistic procedure to get a common
orbital basis for describing a set of terms that mix in the
Breit-Pauli approximation. The relativistic effects are assessed
through Breit-Pauli calculations (MCHF+BP). The latter are
cross-checked by relativistic configuration interaction (RCI)
calculations performed in the Pauli approximation. We also
perform fully relativistic MCDHF and RCI calculations based
on similar correlation models. These four methods, used for
obtaining the relevant electronic wave functions, and the ba-
sic theory of hyperfine interaction are briefly described in
Sec. II. The simultaneous optimization strategy, used to get
a common set of orbitals for the 2p4(3P)3d 2S+1LJ targeted
levels, is described in Sec. III. The hyperfine constants cal-
culated using the nonrelativistic and relativistic models are
reported in Sec. IV for different correlation models and or-
bital active sets. The expressions of the matrix elements of
the hyperfine operators in the configuration state function
space limited to the [1/2, 9/2] range of J values arising from
2p4(3P)3d 4,2(F, D, P) terms are fully detailed in Sec. V A.
The theoretical results are analyzed through a detailed com-
parison with observation in Sec. V B. The main conclusions
are summarized in Sec. VI.

II. THEORY

A. Variational methods

In order to investigate the effects of electronic correlation
and relativity on the magnetic dipole hyperfine constant, we
use the MCHF approach with BP corrections and the RCI
method in the framework of the Pauli approximation (RCI-P).
We also used the MCDHF method combined with the RCI
approach.

In the nonrelativistic MCHF method the wave function
�(γπLS) is a linear combination of configuration state func-
tions (CSFs) �(γiπLS) having the same parity π , L, and S
quantum numbers

�(γπLS) =
∑

i

ci�(γiπLS), (1)

where the CSFs are spin-angular-coupled antisymmetric prod-
ucts of one-electron spin orbitals φ:

φnlml ms (r) = 1

r
Pnl (r)Ylml (θ, φ)χms . (2)

The radial functions {Pnili (r)} and the mixing coefficients {ci}
in (1) are determined by solving iteratively the numerical
MCHF radial equations coupled to the eigenvalue problem in
the CSFs space, until self-consistency. Since the interactions
between several of the terms of the 2p43d configuration are
strong, it is important to determine a common set of orbitals
for these terms and those that lie below in the spectrum and
have the same parity. In this procedure, referred to as simulta-
neous optimization strategy, the energy functional is a linear
combination of energy functionals for the different LS terms
[5]. Once the one-electron radial functions are optimized for
the selected states, the BP Hamiltonian matrix is built and
diagonalized in the basis of LSJ configuration states belong-
ing to a given parity π . The resulting eigenvectors define the
intermediate-coupling wave functions

�(γπJ ) =
∑

k

ck�(γkπLkSkJ ), (3)

which explicitly illustrates the possible LS mixing for the
selected J value.

We also perform RCI calculations to determine the mixing
coefficients {ci} of the atomic wave function which, for a state
labeled γπJ , is written as a linear combination of relativistic
CSFs �(γiπJ ),

�(γπJ ) =
∑

i

ci�(γiπJ ), (4)

where the relativistic CSFs are spin-angular-coupled antisym-
metric products of one-electron Dirac spinors

φnκm(r) = 1

r

(
Pnκ (r)χκm(θ, φ)

iQnκ (r)χ−κm(θ, φ)

)
. (5)

In the RCI-P method, based on the Pauli limit of the Dirac
equation [30], the radial function of the small component
Qnκ (r) is estimated from the radial function of the large one
Pnκ (r) as

Qnκ (r) � α

2

(
d

dr
+ κ

r

)
Pnκ (r), (6)
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where, in our case, the large-component radial function Pnκ (r)
is the nonrelativistic MCHF radial function Pnl (r).

In the MCDHF-RCI method, the small and large radial
functions of the one-electron Dirac spinors (5) are obtained
using the fully relativistic MCDHF version of the multicon-
figuration method [2] to optimize the relativistic one-electron
orbital basis, together with the mixing coefficients.

B. Magnetic dipole hyperfine interaction

The magnetic dipole hyperfine interaction Hamiltonian is
given by.

Hhfs = T (1) · M (1), (7)

where M (1) is the magnetic nuclear moment operator,

M (1) = μN

nucleons∑
i

∇[riC(1)(i)][gl l
(1)(i) + gss(1)(i)],

μN is the nuclear magneton, and gl and gs are the nucleon
orbital and spin gyromagnetic g factors, respectively. The z
component of this irreducible tensorial operator M (1) is re-
lated to the conventional nuclear magnetic moment μI through
its nuclear matrix element

μI = 〈γI II|M (1)
0 |γI II〉.

In addition, T (1) is the dipolar magnetic operator tensor which,
in the nonrelativistic framework, is the sum of three terms
[31–33]

T (1) = α2

2

N∑
i=1

{2l (1)(i)r−3
i − gs

√
10[C(2)(i)

× s(1)(i)](1)r−3
i + gs

8
3πδ(ri )s(1)(i)} (8)

corresponding to the orbital, spin dipole, and contact con-
tributions, which we will denote by T (1)

orb, T (1)
sd , and T (1)

con,
respectively, i.e.,

T (1) = T (1)
orb + T (1)

sd + T (1)
con. (9)

The energy corrections of the fine-structure levels are gen-
erally expressed in term of the magnetic dipole hyperfine
constant AJ that is proportional to the reduced matrix element
of T (1),

AJ = μI

I

1√
J (J + 1)(2J + 1)

〈γ J‖T (1)‖γ J〉. (10)

As suggested by Eq. (9), AJ can be written as

AJ = Aorb
J + Asd

J + Ac
J , (11)

where the orbital (Aorb
J ), spin dipolar (Asd

J ), and contact (Ac
J )

hyperfine constants can be evaluated using (1) when omitting
relativistic corrections and with (3) if taking into account
relativistic effects through the Breit-Pauli approximation. In
the fully relativistic framework of the MCDHF or RCI ap-
proaches, the magnetic electronic tensor operator is (in atomic
units) given by [31,34]

T (1) = −iα
N∑

i=1

[αi · l iC(1)(i)]r−2
i (12)

and the AJ hyperfine constant (10) is evaluated using (4).

III. SIMULTANEOUS OPTIMIZATION STRATEGY

According to the NIST Atomic Spectra Database [35], the
17 levels of even parity of interest, 2p4(3P)3d 4D7/2,5/2,3/2,1/2,
2D5/2,3/2, 4F9/2,7/2,5/2,3/2, 2F7/2,5/2, 4P5/2,3/2,1/2, and 2P3/2,1/2,
arising from the six terms 2p4(3P)3d LS, all lie in the narrow
spectral window of 128 064.10–128 712.30 cm−1, above the
levels arising from the five terms 2p4(3P)3s 4P, 2p4(3P)3s 2P,
2p4(1D)3s 2D, 2p4(3P)4s 4P, and 2p4(3P)4s 2P of the same
parity. To satisfy the Hylleraas-Undheim-MacDonald the-
orem [36,37] in the variational procedure, the interaction
Hamiltonian matrix should include all low-lying levels of
the same LS symmetry in the MCHF procedure. More-
over, because of the orbital orthogonality constraints of the
ATSP2K package [5], a single radial orbital basis has to be
obtained for the subsequent BP calculations that mix the
levels of the same parity and J value. We therefore adopted
a simultaneous optimization scheme [38,39] for the MCHF
calculations, optimizing simultaneously the 6 + 5 = 11 terms
of even parity. The resulting orbital basis is then used to
determine the J-dependent energy levels in the framework
of the Breit-Pauli approximation. In the above scheme, the
uncorrelated HF calculation is done based on the 11 LS terms
arising from the {2p43d, 2p43s, 2p44s} configuration and re-
sults in a common orthonormal set of spectroscopic orbitals
(1s, 2s, 2p, 3s, 3d, 4s).

Electron correlation is included by taking the
{2p43d, 2p43s, 2p44s} configurations as the multireference
(MR), from which single (S) and double (D) excitations
are done to increasing orbital active sets to build the
SD-MR-MCHF expansions. For each orbital active set (AS),
all orbitals, spectroscopic and correlation, are optimized
in the MCHF procedure. These calculations are denoted
by SD-MR-MCHF[AS], although the latter acronym will
be shortened in some places as MR-MCHF[AS], or as
(SD)-MR-MCHF[AS] as a discrete reminder, since SD
excitations from the MR are considered in all the present
calculations. The terminology adapted for the active sets is
detailed in Ref. [14]. We recall only that the orbital active set
is denoted by [n] when no angular limitation applies and [nl]
when angular orbital limitation lmax = l is introduced.

The relativistic BP wave-function expansions are built us-
ing the same SD-MR process but considering CSFs of all
LS symmetries that can be built from the AS and that can
mix with each other for a given J value. The corresponding
notation SD-MR-BP[AS] will be used in the following.

Table I reports the excitation energies of the
2p4(3P)3d 2S+1LJ levels classified according to the NIST
database. As already observed above, the levels lie close to
each other. The largest difference between levels having the
same J value does not exceed 385 cm−1 and is found for the
energy separation of 2D5/2 and 4F5/2. The smallest energy gap,
of the order of 52 cm−1, is observed between 2D5/2 and 4D5/2.

In the same table, the theoretical fine-structure values
�ESD-MR-BP obtained with the largest [9 f ] AS are compared
with the NIST values. For each level, the major contributions
to the corresponding Breit-Pauli wave function are also given.
All these contributions correspond to CSFs belonging to the
2p4(3P)3d configuration, which form the space that we will
indicate in the following as the {2p4(3P)3d LiSi} space. We
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TABLE I. Excitation energies according to the NIST Atomic Spectra Database [35], fine structures �ENIST and �ESD-MR-BP in cm−1 for
2p4(3P)3d 2S+1LJ levels, and mixing coefficients of the corresponding SD-MR-BP[9 f ] eigenvectors.

Term J Level (cm−1) �ENIST �ESD-MR-BP Mixing coefficients

4D 7/2 128 064.10 0 0 0.905 4D7/2 + 0.340 4F7/2 + 0.193 2F7/2
4D 5/2 128 087.83 23.7 22.6 0.847 4D5/2 + 0.326 4F5/2 + 0.248 4P5/2 − 0.283 2D5/2 − 0.083 2F5/2
4D 3/2 128 122.72 58.6 56.4 0.784 4D3/2 − 0.399 2D3/2 + 0.282 4P3/2 − 0.259 2P3/2 + 0.226 4F3/2
4D 1/2 128 184.99 120.9 118.6 −0.831 4D1/2 + 0.407 2P1/2 − 0.338 4P1/2
2D 5/2 128 140.48 0 0 0.827 2D5/2 + 0.342 2F5/2 + 0.283 4P5/2 + 0.273 4D5/2 − 0.121 4F5/2
2D 3/2 128 219.83 79.4 78.1 −0.717 2D3/2 − 0.345 2P3/2 − 0.464 4P3/2 − 0.338 4D3/2 + 0.090 4F3/2
4F 9/2 128 219.13 0 0 4F9/2
4F 7/2 128 514.75 295.6 299.2 0.782 4F7/2 + 0.455 2F7/2 − 0.391 4D7/2
4F 5/2 128 525.35 306.2 309.3 −0.679 4F5/2 + 0.567 2F5/2 − 0.387 2D5/2 + 0.198 4D5/2 − 0.034 4P5/2
4F 3/2 128 611.92 392.8 393.6 0.821 4F3/2 + 0.514 2P3/2 − 0.183 4P3/2 − 0.020 2D3/2 − 0.012 4D3/2
2F 7/2 128 220.36 0 0 0.853 2F7/2 − 0.495 4F7/2 + 0.004 4D7/2
2F 5/2 128 697.89 477.5 478.9 −0.442 2F5/2 − 0.671 4P5/2 − 0.362 4F5/2 + 0.372 4D5/2 + 0.237 2D5/2
4P 1/2 128 338.72 0 0 0.815 4P1/2 + 0.551 2P1/2 − 0.061 4D1/2
4P 3/2 128 523.28 184.6 189.7 0.762 4P3/2 − 0.410 4D3/2 − 0.412 2D3/2 + 0.232 2P3/2 + 0.008 4F3/2
4P 5/2 128 606.09 267.4 271.4 −0.614 4P5/2 + 0.575 2F5/2 + 0.509 4F5/2 + 0.051 4D5/2 + 0.030 2D5/2
2P 1/2 128 712.30 0 0 −0.708 2P1/2 − 0.525 4D1/2 + 0.440 4P1/2
2P 3/2 128 520.22 192.1 192.0 −0.684 2P3/2 + 0.489 4F3/2 + 0.358 2D3/2 − 0.274 4D3/2 + 0.249 4P3/2

notice that for all 17 levels,
∑

i c2
i ≈ 0.97, illustrating the

fact that the CSFs produced by the single and double exci-
tations from the MR only count for around 3% of the wave
functions. The large values of the mixing coefficients clearly
demonstrate strong interactions within the {2p4(3P)3d LiSi}
space. For example, the contribution of the 2p4(3P)3d 4F3/2,
2D3/2, 4D3/2, and 4P3/2 states in the composition of 2P3/2 level
reaches

∑
c2

i − c2
1 = 50.4%. It is interesting to cite the case

of the 2F5/2 level, which loses its dominant character to the
detriment of the 4P5/2 state with which it strongly interacts. A
similar situation has been reported in the case of the 3p54p
configuration of the argon atom between the 1D2 and 3P2 states
on the one hand and the 3D1 and 1P1 states on the other [40,41].

A similar simultaneous optimization scheme was used for
the MCDHF calculations, called extended optimal level [42],
in which the energy functional is built as the weighted sum
of a set of targeted atomic states. With these MCDHF orbital
sets, we performed RCI calculations that we denote by MR-
MCDHF-RCI[AS].

IV. HYPERFINE CONSTANTS CALCULATIONS

19F has a nuclear spin I = 1/2 and a nuclear magnetic mo-
ment μI = 2.628 868μN [43]. The magnetic dipole hyperfine
constants AJ for all 17 2p4(3P)3d 2S+1LJ levels, calculated
using the SD-MR expansions with the MCHF, BP, RCI-P,
and MCDHF-RCI methods, are reported in Tables II and III.
For the SD-MR-MCHF and SD-MR-BP approaches, the AJ

constant value is monitored along the sequence of increasing
ASs, from [4] up to [9 f ], to probe the correlation effects
on the hyperfine structures. One observes that the hyperfine
constant values quickly converge with the size of the ac-
tive space. Moreover, the lmax = 3 limitation that has been
adopted for building the AS introduces an estimated uncer-
tainty contribution of less than 1% for the hyperfine constants,
deduced by comparing similar calculations performed with
the [ng] active set. In other words, the hyperfine constant
values quickly converge not only with the size of the active

space, but also with the angular momentum value considered
for building the correlation orbital active space, a fact that has
been observed in many studies, including investigations of the
electric-field gradient at the nucleus [44,45]. From Tables II
and III we see that electron correlation effects are small. To
highlight this fact, we report in Table IV the relative dif-
ference between the HF and (SD)-MR-MCHF[9 f ] hyperfine
constants values. This quantity remains smaller than 5% for
nine hyperfine constants and is between 6% and 14.5% for
the others. Although the description of electron correlation
does not seem to be crucial, Tables II and III illustrate the
large disagreement between the (SD)-MR-MCHF[9 f ] the-
oretical hyperfine constants and the available experimental
values [29], except for the constant A(2D3/2). It becomes clear
that the origin of this large theory-observation gap should be
found somewhere else other than in electron correlation. The
comparison of the hyperfine constants between BP[HF] and
HF (see Table IV) or between (SD)-MR-BP[9 f ] and (SD)-
MR-MCHF[9f] (not displayed in the table) indeed indicates
huge relativistic effects. The relative differences reach val-
ues of 1872%, 898%, 614%, 300%, and 316% for A(4P5/2),
A(2F5/2), A(4F3/2), A(4F5/2), and A(4P1/2), respectively. In the
same table we also report the relative differences between
(SD)-MR-BP[9 f ] and BP[HF] hyperfine constants values,
which illustrate how much electron excitations beyond the
{2p4(3P)3d LiSi} space model affect the hyperfine constants.
Except for the four constants A(4P1/2), A(2F5/2), A(4P5/2), and
A(4F3/2) for which the corresponding ratio values are large
(58%, 20%, 19%, and 74%, respectively), we observe that
the relativistic effects are efficiently captured through the BP
calculations limited to the [HF] active space. For almost all
levels considered, the BP[HF] and (SD)-MR-BP[9 f ] hyper-
fine constants are in good agreement with observation [29].

The MR-RCI-P[9 f ] results are given in Tables II and
III. Since the RCI-P method radically differs from the BP
approach, it is interesting to compare the MR-RCI-P[9 f ]
and MR-BP[9 f ] hyperfine constant values. We can observe
that the two sets of results, obtained using the ATSP2K and
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TABLE II. Hyperfine-structure constants (in MHz) of 2p4(3P)3d 2D, 4D, and 2P calculated with HF and (SD)-MR-MCHF by using the
simultaneous optimization strategy, BP[HF], (SD)-MR-BP, and (SD)-MR-RCI-P methods. These values are compared with fully relativistic
results calculated with the (SD)-MCDHF-RCI method and with observation.

2D 4D 2P

AS A3/2 A5/2 A1/2 A3/2 A5/2 A7/2 A1/2 A3/2

HF
1734 373 3554 1422 778 169 −3346 −1435

MR-MCHF
[4] 1618 406 3330 1443 832 228 −3345 −1249
[5 f ] 1437 605 2876 1563 1027 441 −3708 − 927
[6 f ] 1744 310 3643 1434 762 125 −3232 −1411
[7 f ] 1678 368 3479 1454 812 188 −3319 −1314
[8 f ] 1674 369 3471 1451 811 189 −3317 −1314
[9 f ] 1675 370 3472 1453 813 190 −3320 −1312

BP[HF]
1574 1066 4860 2304 1474 865 −2354 −565

MR-BP
[4] 1579 1076 4614 2291 1494 886 −2271 −491
[5 f ] 1484 1209 4465 2523 1738 1081 −2134 −292
[6 f ] 1680 1033 4733 2210 1402 805 −2348 −558
[7 f ] 1649 1067 4658 2263 1462 854 −2317 −506
[8 f ] 1652 1066 4647 2260 1460 852 −2325 −503
[9 f ] 1654 1067 4646 2262 1461 852 −2327 −496

MR-RCI-P
[9 f ] 1652 1065 4640 2258 1458 850 −2326 −497

MR-MCDHF-RCI
[9 f ] 1649 1066 4608 2257 1463 855 −2312 −463

Expt. [29] 1582 ± 50 1046 ± 50 4541 ± 50 2290 ± 50 1481 ± 20 793 ± 20 −2378 ± 80 −498 ± 80

GRASP2018 independent packages, are in excellent agreement
with each other. In the same tables, we also report the MR-
MCDHF-RCI[9 f ] results. The global agreement of the latter
with the MR-BP[9 f ] results for the 17 hyperfine constants
is 4.7%. The largest differences occur for A(2P3/2), A(2F5/2),
A(4F3/2), and A(4P5/2) with relative deviations of 6.8%, 9.4%,
19.7%, and 33.3%, respectively.

However, the values obtained in the two approaches lie
within the uncertainty interval of the experimental values
for the first constant A(2P3/2). This is almost the case for
A(2F5/2) and A(4F3/2), while the case of the very small A(4P5/2)
value is more problematic, as it will be further discussed
below. The global agreement of the averaged MR-BP[9 f ]
and MR-MCDHF-RCI[9 f ] hyperfine constant values with the
15 available measured hyperfine constants is around 20%.
The largest discrepancies are found for A(4P1/2) and A(4P5/2).
Excluding the last two from this sample, the global theory-
observation agreement drops to 3.5%.

Large differences between the nonrelativistic and Breit-
Pauli results are most likely due to the strong relativistic
interaction between the terms. In order to verify this con-

jecture, we analyze in full detail the matrix elements of the
different operators of the hyperfine interaction [see Eqs. (9)
and (11)] in the {2p4(3P)3d LiSi} space model. It should be
noted that the contact hyperfine interaction is zero within this
configuration space in which we keep the 1s and 2s shells
closed in the CSF lists. That occupation restriction allows us
to limit this detailed analysis to the orbital and spin dipole
contributions to the AJ constants, as done in the next section.
However, the complete hyperfine interaction Hamiltonian is
used, including the contact contribution, in the more elaborate
calculations based on larger configuration spaces and orbital
active sets.

V. MAGNETIC DIPOLE HYPERFINE INTERACTION
IN THE {2p4(3P)3d LiSi} SPACE

A. Matrix elements

In the present section we limit the CSFs to the
{2p4(3P)3d LiSi} space. The atomic wave function describing
the γ LSJ states, where γ = 2p4(3P)3d , are therefore written
according to Eq. (3) as

�(γ 2S+1LJ ) =
∑

i

ciφ(γ LiSiJ ), (13)
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TABLE III. Hyperfine-structure constants in (MHz) of 2p4(3P)3d 4P, 2F , and 4F calculated with HF and (SD)-MR-MCHF by using the
simultaneous optimization strategy, BP[HF], (SD)-MR-BP, and (SD)-MR-RCI-P methods. These values are compared with fully relativistic
results calculated with the (SD)-MCDHF-RCI method and with observation.

4P 2F 4F

AS A1/2 A3/2 A5/2 A5/2 A7/2 A3/2 A5/2 A7/2 A9/2

HF
1574 − 724 −848 1285 1437 1515 1021 1015 1184

MR-MCHF
[4] 1823 − 565 −699 1156 1439 1295 962 1010 1207
[5 f ] 2667 − 206 −406 1017 1594 995 978 1135 1384
[6 f ] 1460 − 741 −841 1218 1390 1416 950 961 1146
[7 f ] 1694 − 634 −755 1178 1427 1334 956 994 1190
[8 f ] 1693 − 634 −755 1180 1427 1337 957 994 1189
[9 f ] 1699 − 632 −753 1178 1428 1333 956 995 1191

BP[HF]
−730 −1029 −43 −161 1457 212 255 282 1176

MR-BP
[4] −530 − 995 −30 −174 1494 149 267 280 1201
[5 f ] −491 −910 −39 − 93 1716 48 383 353 1377
[6 f ] −509 −1048 −41 −220 1420 146 201 230 1139
[7 f ] −482 −1028 −34 −203 1477 130 244 258 1184
[8 f ] −469 −1033 −32 −205 1477 129 250 262 1184
[9 f ] −462 −1033 −36 −202 1480 122 252 263 1185

MR-RCI-P
[9 f ] −461 −1033 −34 −202 1478 124 252 263 1183

MR-MCDHF-RCI
[9 f ] −445 −1026 −48 −183 1483 98 259 266 1188

Expt. [29] −226 ± 50 −1035 ± 50 −17 ± 10 −190 ± 10 110 ± 10 304 ± 50 276 ± 10

where LiSi represents any of the six terms listed in Table I corresponding to the same J value. In this approximation, which keeps
the 1s and 2s shells closed, there is no contact contribution and the hyperfine constant A(2S+1LJ ) of each level 2p4(3P)3d LSJ is
only made of the orbital and spin dipole contributions, i.e.,

A(2S+1LJ ) = Aorb(2S+1LJ ) + Asd(2S+1LJ ), (14)

where

Aorb(2S+1LJ ) =
∑

i j

Aorb
J (γ LiSi, γ LjS j ), Asd(2S+1LJ ) =

∑
i j

Asd
J (γ LiSi, γ LjS j ) (15)

are made of the diagonal (i = j) and off-diagonal (i �= j) hyperfine interaction matrix elements coupling the CSFs in the basis.
Here Aorb

J (γ LiSi, γ LjS j ) and Asd
J (γ LiSi, γ LjS j ) are proportional to the reduced matrix elements 〈γ LiSiJ‖T (1)

orb‖γ LjS jJ〉 and
〈γ LiSiJ‖T (1)

sd ‖γ LjS jJ〉, respectively, and to the relevant eigenvector coefficient products cic j . They can be written as

Aorb
J (γ LiSi, γ LjS j ) = 1

2
cic jGμ

μI

I
Morb, Asd

J (γ LiSi, γ LjS j ) = 1

2
cic jGμ

μI

I
Msd, (16)

with [33,46]

Morb = δSiS j (−1)Li+Si+J+Lj+12

√
(2Li + 1)(2Lj + 1)(2J + 1)

J (J + 1)

{
Li Si J
J 1 Lj

}

×
[{

1 2 Li

L j 1 1

}√
6〈2p4 3P‖U(1)‖2p4 3P〉〈2p|r−3|2p〉 +

{
2 1 Li

L j 1 2

}√
30〈3d 2D‖U(1)‖3d 2D〉〈3d|r−3|3d〉

]
(17)
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TABLE IV. Relative differences in percent between (MR-MCHF[9 f ], HF), (BP[HF], HF), and (MR-BP[9 f ], BP[HF]) hyperfine constants.

2D 4D 2P 4P 2F 4F

A3/2 A5/2 A1/2 A3/2 A5/2 A7/2 A1/2 A3/2 A1/2 A3/2 A5/2 A5/2 A7/2 A3/2 A5/2 A7/2 A9/2

|MR-MCHF[9 f ]−HF|
|MR-MCHF[9 f ]|

3.5 0.8 2.4 2.1 4.3 11 0.8 9.3 7.3 14.5 12.6 9.0 0.6 13.6 6.7 2.0 0.5
|BP[HF]−HF|

|BP[HF]|
10.1 65.0 26.8 38.2 47.2 80.4 42.1 153.9 315.6 29.6 1872 898.1 1.3 614 300.3 259.9 0.6

|MR-BP[9 f ]−BP[HF]|
|MR-BP[9 f ]|

4.8 0.0 4.6 1.8 0.9 1.5 1.2 13.9 58.0 0.4 19.4 20.2 1.5 73.7 1.2 7.2 0.7

and

Msd = (−1)S j+L j+1/2

√
(2Si + 1)(2S j + 1)(2Li + 1)(2Lj + 1)(2J + 1)

J (J + 1)
gs

√
30

⎧⎨
⎩

Li Si J
L j S j J
2 1 1

⎫⎬
⎭

×
[
−

√
6

5

{
1 1

2 Si

S j 1 1

}{
1 2 Li

L j 2 1

}
〈2p4 3P‖V(21)‖2p4 3P〉〈2p|r−3|2p〉

−
√

10

7

{
1
2 1 Si

S j 1 1
2

}{
2 1 Li

L j 2 1

}
〈3d 2D‖V(21)‖3d 2D〉〈3d|r−3|3d〉

]
. (18)

Here Gμ = 95.410 68 is the numerical factor to be used when
expressing the matrix elements Morb and Msd in atomic units
(a−3

0 ), μI in nuclear magnetons (μN), and AJ in units of
frequency (MHz), while gs = 2.002 319 3 is the electronic g
factor corrected for the quantum electrodynamic effects. In
addition, U(1) is the unit tensor operator acting only in the
L space and V(21) is the unit double tensor operator [47].
Further, 〈nl|r−3|nl〉 are the one-electron radial integrals for
the active subshells nl = 2p and 3d . The numerical factors√

6 and
√

30 appearing in (17) correspond to the reduced
matrix elements of the angular momentum operator 〈l‖l(1)‖l〉
for l = 1 and 2, respectively. In the same way, the numerical
factors −√

6/5 and −√
10/7 appearing in (18) correspond

to the reduced matrix elements of the renormalized spherical
harmonic 〈l‖C(2)‖l〉 for l = 1 and l = 2 [compare the struc-
ture of Eqs. (27) and (31) in [33]].

B. Detailed analysis

The numerical values of the products of the mixing coef-
ficients cic j , the electronic matrix elements Morb [Eq. (17)]
and Msd [Eq. (18)], and the results of the formulas (14)–(16)
are reported in Tables V and VI for 2p4(3P)3d 2D3/2 and
2p4(3P)3d 2D5/2, respectively. The mixing coefficients of the
corresponding eigenvectors are taken from the MR-BP[9 f ]
calculations (see Table I). The resulting Aorb

J (γ LiSi, γ LjS j )
and Asd

J (γ LiSi, γ LjS j ) values are given in the fourth and sixth
columns, respectively. For each (LiSi, LjS j ) relevant pair, the
sum of the orbital and spin dipolar contributions is reported
in the last column. At the bottom of the table, we give the
total values of the orbital and spin dipolar hyperfine constants,
together with their resulting sum, from the contribution of
the matrix elements in the {2p4(3P)3d LiSi} space and from
HF and MR-BP[9 f ] calculations, respectively. As previously
indicated, the hyperfine contact interaction is strictly zero in

the {2p4(3P)3d LiSi} space, but not anymore in the spaces
associated with the HF calculations in the simultaneous op-
timization scheme for 2p4(3P)3d 2P, 4P, and 2D states, which
involve the contamination by CSFs with one electron 3s or 4s.
The same observation can be done for the (SD)-MR-BP[9 f ]
calculations for all states 2p43d LS, for which the opening of
the 1s2 and 2s2 subshells switches on the contact contribution
through the spin-polarization excitation mechanism [48]. The
latter, however, remains rather small. Indeed, as one can see
in Tables V and VI, the contribution of the contact interaction
does not exceed 1% in the HF calculations and is of the
order of 2% in the MR-BP[9 f ] calculations. The experimental
values are given in the last row.

The two tables illustrate the large effects of terms mixing
on the orbital and spin dipole constants through the factors
cic j . For example, for the state 2D3/2, the contributions to the
orbital hyperfine constant of two nondiagonal matrix elements
(2D,2P) and (4P,4D), which are equal to 428 and 487 MHz,
respectively, are of the same order of magnitude as that of the
main matrix element (2D,2D), which is 447 MHz. The total
contribution of the mixing states to the constant Aorb(2D3/2)
is 646 MHz, or 59% of a total of 1093 MHz, despite a
compensation effect estimated to 354 MHz, due to the mixing
with other LS component. Mixing effects on the spin dipolar
Asd(2D3/2) constant are reduced by cancellation effects. Their
contribution to the total hyperfine constant is of the order of
47%. The term-mixing effect on the total hyperfine constants
depends on the relative sign of the orbital and spin dipole
contributions resulting from each matrix element. They are
often reduced due to opposite signs, inducing strong cancel-
lation. In the case of A(2D3/2) = 1618 MHz, these effects are
of the order of 47%. Finally, the value of A(2D3/2) obtained
using the {2p4(3P)3d LiSi} space represents 98% of the value
resulting from the MR-BP[9 f ] calculation, which is based on
a space formed by 1 114 108 CSFs. We then deduce that most
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TABLE V. Values of Aorb
3/2(γ LiSi, γ LjS j ), Aorb(2D3/2), Asd

3/2(γ LiSi, γ LjS j ), Asd(2D3/2), A3/2(γ LiSi, γ LjS j ), and A(2D3/2) in MHz according
to the formulas (14)–(16).

(LiSi, LjS j ) cic j Morb Aorb
3/2(γ LiSi, γ LjS j ) Msd Asd

3/2(γ LiSi, γ LjS j ) A3/2(γ LiSi, γ LjS j )

(2D,2D) 0.5145 3.4612 447 3.2288 417 864
(2P,2P) 0.1187 −5.7542 −171 0.1539 5 −166
(4P,4P) 0.2156 −2.3016 −124 −0.5220 −28 −152
(4F,4F ) 0.0081 9.2212 19 −3.3199 −7 12
(4D,4D) 0.1143 2.3074 66 3.2298 93 159
2 × (2D,2P) 2 × 0.2472 3.4540 428 −1.3844 −172 256
2 × (2D,4P) 2 × 0.3330 00 00 0.1549 26 26
2 × (2D,4F ) 2 × −0.0645 00 00 −2.3147 75 75
2 × (2D,4D) 2 × 0.2425 00 00 0.8069 98 98
2 × (2P,4P) 2 × 0.1600 00 00 −0.2242 −18 −18
2 × (2P,4F ) 2 × −0.0310 00 00 −1.1580 18 18
2 × (2P,4D) 2 × 0.1165 00 00 1.0390 61 61
2 × (4P,4D) 2 × 0.1570 6.1800 487 00 00 487
2 × (4F,4D) 2 × −0.0304 3.8538 −59 00 00 −59
2 × (4P,4F ) 2 × −0.0417 00 00 2.0711 −43 −43

Aorb(2D3/2 ) Asd(2D3/2 ) A(2D3/2)
1093 525 1618

HF 910 825 1734a

MR-BP[9 f ] 1118 563 1654a

Expt. [29] 1582 ± 50

aThese totals differ from Aorb(2D3/2) + Asd(2D3/2 ) because they include the contact contribution, which is not strictly zero in the HF and
MR-BP[9 f ] calculations (see the text for more details).

of the relativistic effects due to mixing effects are captured by
the single {2p4(3P)3d LiSi} space. The results corresponding
to the two calculations BP[HF] and MR-BP[9 f ] are in good
agreement with the experiment.

For the level 2D5/2 (Table VI), the HF hyperfine constants
values Aorb

5/2 and Asd
5/2 change from 607 to 827 MHz and from

−236 to 186 MHz, respectively, when using the BP[HF]
model, which is equivalent to a variation of the total A(2D5/2)

TABLE VI. Values of Aorb
5/2(γ LiSi, γ LjS j ), Aorb(2D5/2), Asd

5/2(γ LiSi, γ LjS j ), Asd(2D5/2), A5/2(γ LiSi, γ LjS j ), and A(2D5/2) in MHz according
to the formulas (14)–(16).

(LiSi, LjS j ) cic j Morb Aorb
5/2(γ LiSi, γ LjS j ) Msd Asd

5/2(γ LiSi, γ LjS j ) A5/2(γ LiSi, γ LjS j )

(2D,2D) 0.6846 2.3074 396 −0.9225 −158 238
(2F,2F ) 0.1170 6.5866 193 −1.5820 −46 147
(4P,4P) 0.0804 −3.4526 −70 0.1382 3 −67
(4F,4F ) 0.0145 5.5986 20 −1.6204 −6 14
(4D,4D) 0.0748 1.8130 34 1.2194 23 57
2 × (2D,2F ) 2 × 0.2831 1.2310 175 1.9724 280 455
2 × (2D,4P) 2 × 0.2346 00 00 −0.3794 −45 −45
2 × (2D,4F ) 2 × −0.0998 00 00 −1.2125 61 61
2 × (2D,4D) 2 × 0.2263 00 00 1.0475 119 119
2 × (2F,4P) 2 × 0.0970 00 00 0.4052 20 20
2 × (2F,4F ) 2 × −0.0413 00 00 −0.6195 13 13
2 × (2F,4D 2 × 0.0936 00 00 0.1317 6 6
2 × (4P,4D) 2 × 0.0775 3.0342 118 −1.0124 −39 79
2 × (4F,4D) 2 × −0.0330 2.3542 −39 1.1791 −20 −59
2 × (4P,4F ) 2 × −0.0342 00 00 1.4495 −25 −25

Aorb(2D5/2 ) Asd (2D5/2 ) A(2D5/2)
827 186 1013

HF 607 −236 373a

MR-BP[9 f ] 843 197 1067a

Expt. [29] 1046 ± 50

aThese totals differ from Aorb(2D5/2) + Asd(2D5/2 ) because they include the contact contribution which is not strictly zero in the HF and MR-
BP[9 f ] calculations (see the text for more details).
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TABLE VII. Values of Aorb
3/2(γ LiSi, γ LjS j ) = orb, Asd

3/2(γ LiSi, γ LjS j ) = sd, A3/2(γ LiSi, γ LjS j ) = orb + sd for 4D, 4F , 4P, and 2P states. At
the bottom of the table we give the total values Aorb

3/2, Asd
3/2, and A3/2 corresponding to BP[9 f ] calculations, while the last row contains the

experimental values.

4D 4F 4P 2P

(LiSi, LjS j ) orb sd orb + sd orb sd orb + sd orb sd orb + sd orb sd orb + sd

(2D,2D) 138 129 267 0 0 0 146 137 283 111 104 215
(2P,2P) −97 3 −94 −381 10 −371 −78 2 −76 −675 18 −657
(4P,4P) −46 −10 −56 −19 −4 −23 −335 −76 −411 −36 −8 −44
(4F,4F ) 118 −43 75 1559 −561 998 0 0 0 552 −199 353
(4D,4D) 355 498 853 0 0 0 97 136 233 43 61 104
2 × (2D,2P) 179 −72 107 −18 7 −11 −165 66 − 99 −424 170 −254
2 × (2D,4P) 0 −9 −9 0 0 0 0 −24 −24 0 7 7
2 × (2D,4F ) 0 105 105 0 19 19 0 4 4 0 − 203 −203
2 × (2D,4D) 0 −127 −127 0 0 0 0 68 68 0 −40 −40
2 × (2P,4P) 0 8 8 0 11 11 0 −20 −20 0 19 19
2 × (2P,4F ) 0 34 34 0 −245 −245 0 −1 −1 0 194 194
2 × (2P,4D) 0 −106 −106 0 −3 −3 0 −50 −50 0 98 98
2 × (4P,4D) 686 0 686 7 0 7 −968 0 −968 −211 0 −211
2 × (4F,4D) 342 0 342 −18 0 −18 −7 0 −7 −259 0 −259
2 × (4P,4F ) 0 66 66 0 −156 −156 0 7 7 0 126 126

Aorb
3/2 Asd

3/2 A3/2 Aorb
3/2 Asd

3/2 A3/2 Aorb
3/2 Asd

3/2 A3/2 Aorb
3/2 Asd

3/2 A3/2

1675 476 2151 1130 −922 208 −1310 249 −1061 −899 347 −552
MR-BP[9 f ] 1706 507 2262a 1146 −1009 122a −1333 281 −1033a −916 382 −496a

Expt. [29] 2290±50 110 ± 10 −1035 ± 50 −498 ± 80

aThese totals differ from orb + sd because they include the contact contribution which is not zero in the MR-BP[9 f ] calculations (see the text
for further explanation).

constant from 371 to 1013 MHz. We notice a particularly
important effect on the spin dipole interaction. This effect is
mainly due to the two matrix elements (2D,2F ) and (2D,4D)
of the spin dipole operator, which increase the spin dipole
contribution by 280 and 119 MHz, respectively. Note that
among the 2D5/2 eigenvector LS composition, the contribution
of 2F5/2 to the constant A5/2 is 641 MHz, which corresponds
to 63% of the total value.

In Tables VII–X, we report in detail, for all the other
considered levels, the contributions of the hyperfine orbital
(orb), spin dipolar (sd) constants, their sum (orb + sd) for each
matrix element, and the totals Aorb

J , Asd
J , and AJ . In the penul-

timate row we report the MR-BP[9 f ] values, which we com-
pare with observation [29] in the last row, when available.

The value of the c1 coefficient in the development of
the wave functions from Table I is a good indicator of the
importance of the relativistic effects. If the coefficients ci

are deduced from a Breit-Pauli calculation limited to the
{2p4(3P)3d LiSi} space such that

∑
i c2

i = 1, the weight c2
1 can

be written as

c2
1 = Aorb

J (LS, LS)

Aorb(2S+1LJ )[HF]
= Asd

J (LS, LS)

Asd(2S+1LJ )[HF]
= AJ (LS, LS)

A(2S+1LJ )[HF]
,

(19)

where c2
1 = 1 would correspond to a Hartree-Fock calculation.

When |c1| decreases, the relative difference between
AJ (LS, LS) and A(2S+1LJ )[HF] increases, which reveals large
term-mixing effects. This can be illustrated in the case of
2F5/2 for which |c1| = 0.442 (see Table I), with the following
values: Aorb

5/2(2F,2F ) = 323 MHz, Asd
5/2(2F,2F ) = −77 MHz,

A5/2(2F,2F ) = 246 MHz, Aorb(2F5/2)[HF] = 1691 MHz,
Asd(2F5/2)[HF] = −406 MHz, and A(2F5/2)[HF] = 1285 MHz
(see Table VIII). We can observe however that the relations
(19) are not perfectly verified because the ci coefficients
reported in Table I are taken from the SD-MR-BP[9 f ]
eigenvectors and therefore do not fully satisfy

∑
i c2

i = 1.
The large difference between the two values of A5/2(2F,2F )
and A(2F5/2)[HF] indicates a significant contribution from the
other matrix elements, as it can be seen in Table VIII (column
10, labeled “orb + sd”).

For all states, the hyperfine constants calculated using
MR-BP[9 f ] or MR-RCI-P[9 f ] agree very well with obser-
vation, except for A(4P1/2) and A(4P5/2), as already noted at
the end of Sec. IV. For the first case [A(4P1/2)], Table X
illustrates a huge cancellation between the two diagonal
contributions A1/2(2P,2P) = −993 MHz and A1/2(4P,4P) =
1022 MHz, leaving much room for the off-diagonal coupling
matrix element A1/2(4P,4D) = −516 MHz. For the second
case [A(4P5/2)], the fact that this hyperfine constant is the
smallest one (in absolute value) among the 15 experimental
values can be easily understood from the very large cancel-
lation between the orbital and spin dipole contributions, as
demonstrated in Table VIII. The use of the {2p4(3P)3d LiSi}
space combined with the ci coefficients of the MR-BP[9 f ]
eigenvector makes it possible to demonstrate very clearly
the effects of the term mixing on the hyperfine constants. In
some cases, for example, 4F3/2 and 4P3/2, the {2p4(3P)3d LiSi}
limited space is not large enough to obtain good agreement
with the [9 f ]-space result, but is sufficient to demonstrate the
importance of the mixtures.
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TABLE VIII. Values of Aorb
5/2(γ LiSi, γ LjS j ) = orb, Asd

5/2(γ LiSi, γ LjS j ) = sd, and A5/2(γ LiSi, γ LjS j ) = orb + sd for 4D, 4F , 2F , and 4P
states. At the bottom of the table we give the total values Aorb

5/2, Asd
5/2, and A5/2 corresponding to BP[9 f ] calculations, while the last row contains

the experimental values.

4D 4F 2F 4P

(LiSi, LjS j ) orb sd orb + sd orb sd orb + sd orb sd orb + sd orb sd orb + sd

(2D,2D) 46 −18 28 87 −35 52 33 −13 20 1 0 1
(2F,2 F ) 11 −3 8 531 −128 403 323 −77 246 547 −131 416
(4P,4P) −53 2 −51 −1 0 −1 −390 16 −374 −327 13 −314
(4F,4F ) 149 −43 106 647 −187 460 184 −53 131 364 −105 259
(4D,4D) 326 219 545 18 11 29 63 42 105 1 1 2
2 × (2D,2F ) 15 23 38 −135 −217 −352 −65 −104 −169 11 17 28
2 × (2D,4P) 0 13 13 0 −3 −3 0 30 30 0 4 4
2 × (2D,4F ) 0 56 56 0 −160 −160 0 52 52 0 −9 −9
2 × (2D,4D) 0 −126 −126 0 −40 −40 0 46 46 0 1 1
2 × (2F,4P) 0 −4 −4 0 −4 −4 0 60 60 0 −72 −72
2 × (2F,4F ) 0 8 8 0 120 120 0 −50 −50 0 −91 −91
2 × (2F,4D) 0 −5 −5 0 7 7 0 −11 −11 0 2 2
2 × (4P,4D) 320 −107 213 −10 3 −7 −380 127 −253 −47 16 −31
2 × (4F,4D) 326 163 489 −158 −79 −237 −159 −80 −239 31 15 46
2 × (4P,4F ) 0 59 59 0 17 17 0 177 177 0 −228 −228

Aorb
5/2 Asd

5/2 A5/2 Aorb
5/2 Asd

5/2 A5/2 Aorb
5/2 Asd

5/2 A5/2 Aorb
5/2 Asd

5/2 A5/2

1140 237 1377 979 −695 284 −391 162 −229 581 −567 14
MR-BP[9 f ] 1157 253 1461a 990 −764 252a −400 180 −202a 589 −622 −36a

Expt. [29] 1481 ± 20 304 ± 50 −190 ± 10 −17 ± 10

aThese totals differ from orb + sd because they include the contact contribution which is not zero in the MR-BP[9 f ] calculations (see the text
for further explanation).

VI. CONCLUSION

In this work we have presented the results of elaborate ab
initio variational calculations of hyperfine constants for 17
levels in fluorine, all arising from the six terms 2p4(3P)3d
4D, 2D, 4F , 2F , 4P, and 2P. The choice of these levels was
guided and justified by the recent publication of experimental
AJ values for 15 of these 17 levels, extracted from concen-
tration modulation spectroscopy experiments [29]. The global
theory-observation agreement is very good (of the order of

3.5%) for 13 levels, taking into account of the relatively
large experimental uncertainty of the order of 5%. The larger
disagreement observed for A(4P1/2) and A(4P5/2) can be fully
understood in terms of large cancellation and interference
effects that make their estimation particularly challenging.

The present theoretical study is at first sight quite surpris-
ing, although some previous work on other levels of fluorine
atom opened this perspective [14,28]. It indeed reveals, in con-
trast to what is a priori expected for light atoms, weak electron

TABLE IX. Values of Aorb
7/2(γ LiSi, γ LjS j ) = orb, Asd

7/2(γ LiSi, γ LjS j ) = sd, and A7/2(γ LiSi, γ LjS j ) = orb + sd for 4D, 4F , and 2F states.
At the bottom of the table we give the total values Aorb

7/2, Asd
7/2, and A7/2 corresponding to BP[9 f ] calculations, while the last row contains the

experimental values.

4D 4F 2F

(LiSi, LjS j ) orb sd orb + sd orb sd orb + sd orb sd orb + sd

(2F,2F ) 46 6 52 257 34 291 901 120 1021
(4F,4F ) 127 −13 114 673 −67 606 270 −27 243
(4D,4D) 338 −203 135 63 −38 25 0 0 0
2 × (2F,4F ) 0 −22 −22 0 −119 −119 0 141 141
2 × (2F,4D) 0 61 61 0 −62 −62 0 1 1
2 × (4F,4D) 207 249 456 −206 −248 −454 −1 −2 −3

Aorb
7/2 Asd

7/2 A7/2 Aorb
7/2 Asd

7/2 A7/2 Aorb
7/2 Asd

7/2 A7/2

718 78 796 787 −500 287 1170 233 1403
MR-BP[9 f ] 729 82 852a 799 −553 263a 1187 247 1480a

Expt. [29] 793 ± 20 276 ± 10

aThese totals are slightly different from orb + sd because they include the contact contribution which is not zero in the MR-BP[9 f ] calculations
(see the text for further explanation).
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TABLE X. Values of Aorb
1/2(γ LiSi, γ LjS j ) = orb, Asd

1/2(γ LiSi, γ LjS j ) = sd, and A1/2(γ LiSi, γ LjS j ) = orb + sd for 4D, 4P, and 2P states.
At the bottom of the table we give the total values Aorb

1/2, Asd
1/2, and A1/2 corresponding to [9 f ] calculations, while the last row contains the

experimental values.

4D 4P 2P

(LiSi, LjS j ) orb sd orb + sd orb sd orb + sd orb sd orb + sd

(2P,2P) −479 −64 −543 −876 −117 −993 −1449 −194 −1643
(4P,4P) 164 11 175 958 64 1022 279 19 298
(4D,4D) 1002 1401 2403 05 07 12 400 559 959
2 × (2P,4P) 0 −19 −19 0 61 61 0 −43 −43
2 × (2P,4D) 0 −416 −416 0 −41 −41 0 457 457
2 × (4P,4D) 2431 487 2918 −430 −86 −516 −2003 −401 −2404

Aorb
1/2 Asd

1/2 A1/2 Aorb
1/2 Asd

1/2 A1/2 Aorb
1/2 Asd

1/2 A1/2

3118 1400 4518 −343 −112 −455 −2773 397 −2376
MR-BP[9 f ] 3183 1499 4646a −351 −115 −462a −2824 467 −2327a

Expt. [29] 4541 ± 50 −226 ± 50 −2378 ± 80

aThese totals differ from orb + sd because they include the contact contribution which is not zero in the MR-BP[9 f ] calculations (see the text
for more details).

correlation effects on hyperfine structures, but large (if not
huge) relativistic effects on hyperfine constants. To explain
the latter observation, we investigated the matrix elements
of the magnetic dipole hyperfine interaction Hamiltonian in
the limited {2p4(3P)3d LiSi} configuration space, extracting
the weights from the eigenvectors of much larger CSF ex-
pansions. This detailed analysis, combining the Breit-Pauli
wave-function compositions, with the analytical Racah al-
gebra ingredients, beautifully illustrated the crucial role of
relativistic term mixing in the theoretical estimation of the
hyperfine constants. It also shed invaluable light on the in-
terference mechanism between the orbital and spin dipole
contributions and between the relativistic coupling-term con-
tributions to the hyperfine constant values, allowing us to
understand their relative magnitude.

Estimations and investigations of theoretical uncertainties
of atomic properties should be systematically included, when
possible. As observed by Drake [49], it is clear that the culture
is changing within the theoretical computational community
to make uncertainty quantification the usual expectation when
theoretical results are presented. The present work is one step
in this direction, among a few others in the framework of
multiconfiguration variational approaches [50–52]. It indeed
illustrates how the details of the magnetic dipole hyperfine op-
erators can be explored to highlight difficult cases in terms of
cancellation, either between LS pairs for individual operators
or between the orbital and the spin dipolar operators, and to
assess the reliability of the theoretical hyperfine constants. As
an example, the relatively large uncertainty inferred from the
observed differences between MCHF-BP and MCDHF-RCI
as well as from the theory-experiment differences for the two
levels 2p4(3P)3d 4P1/2 and 4P5/2 can be explained by large
interferences occurring in the amplitude of the observable.

Relativistic corrections should be systematically consid-
ered in hyperfine-structure calculations of close-lying levels
that can interact with each other through the relativistic
Hamiltonian, even in light atomic systems. This observation
is particular relevant for excited regions of the spectrum
for which the energy-level density is expected to increase.
For nonrelativistic atomic systems, so qualified since the
Schrödinger picture holds as a good zeroth-order approxi-
mation, the Breit-Pauli approximation remains an excellent
approach to unravel the complex interference mechanisms
involved in the theoretical A values, reproducing satisfactorily
the four-component relativistic MCDHF results. Incidentally,
the perfect consistency between the Breit-Pauli calculations
and the RCI-P approaches was demonstrated. Orbital orthog-
onality constraints in the BP calculations forcing the use of a
simultaneous optimization strategy in the MCHF approach,
and the layer-by-layer approach used to solve convergence
issues in the fully relativistic MCDHF scheme [53] are the
current limiting factors to guarantee the consistency between
the two approaches. The global agreement between the two
methods is however good for similar configuration lists and
orbital active sets used to build the variational spaces.
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[12] J. Bieroń, P. Jönsson, and C. Froese Fischer, Phys. Rev. A 60,
3547 (1999).
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