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Line-shape modeling in microwave spectroscopy of the positronium n = 2 fine-structure intervals
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We report numerical simulations of positronium experiments designed to measure the n = 2 fine-structure
intervals. The simulations include all possible interference effects between all 20 states in the n = 1 and
laser-excited n = 2 manifolds as well as representations of the electric and magnetic fields present in the
waveguides used in the experiments. We find that rf wave reflection from the vacuum chamber walls is a
possible explanation of previously observed line-shape distortions and shifts. We also characterized several
systematic effects, including those arising from quantum interference, that are likely to be significant for future
measurements.
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I. INTRODUCTION

Positronium (Ps) is an exotic hydrogenic atom composed
of an electron bound to its antiparticle, the positron [1]. Being
composed of two low-mass leptons, strong and weak inter-
actions can be entirely neglected and there are no nuclear
structure complications, meaning that Ps is in effect fully
described by bound-state QED, and precision Ps spectroscopy
can be used to test this theory to a high degree [2]. Since Ps is
a pure QED system, such tests are naturally sensitive to non-
QED effects, such as new particles, forces, or interactions not
included in the QED theory, but only if they can be performed
with a precision commensurate with the relevant QED theory.
Unfortunately experimental precision in Ps measurements [3]
is far behind the theoretical situation [4].

Some recent measurements of the Ps n = 2 fine structure
have been conducted with the aim of closing the gap between
theory and experiment [5,6]. Previous measurements of the
2 3S1 → 2 3PJ intervals (where J = 0, 1, 2, and the transitions
are henceforth denoted as νJ ) have been conducted decades
ago, achieving uncertainties on the order of several MHz
[7–9], while the calculations have estimated uncertainties of
80 kHz [4]. By using new positron trapping [10] and Ps
production techniques [3], the new measurements were able
to improve the measurement uncertainties to sub-MHz levels.
However, it was found that the measured ν0 transition interval
disagreed with the QED calculation by more than four stan-
dard deviations [5]. Moreover, the ν1 and ν2 measurements
exhibited unexplained asymmetric line shapes [6] which pre-
vented a precise determination of the corresponding intervals.

It is well known that line centers of resonances can be
affected by the presence of nearby off-resonant pathways
and that shifts and asymmetric line shapes can result (e.g.,
Refs. [11,12]). Indeed, these types of quantum interference
(QI) effects have had to be taken into account in several high-
precision measurements (e.g., Refs. [13,14]). In the recent Ps
fine-structure experiments a simplified form of this effect was
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considered [6] and found not to contribute at the level of the
observed discrepancies. Here we present the results of a more
complete density-matrix model using numerical integration
of a master equation in the Lindblad form [15]. This model
includes all Ps states in the n = 1 and n = 2 manifolds, and
provides a full description of all relevant QI effects in the Ps
measurements.

In addition, the model included explicit representations of
the electric and magnetic fields inside the waveguides used
in the experimental apparatus, including contributions aris-
ing from reflections from the surrounding vacuum chambers.
These fields were modeled numerically using finite element
methods (FEM), and made it possible to perform complete
simulations of the experimental conditions, and thus to fully
characterize the extent to which QI effects and nonideal elec-
tromagnetic fields may have affected the measurements. We
find that, as expected, QI effects are indeed present, but are too
small to account for the anomalous observations. However,
some frequency-dependent microwave radiation reflection ef-
fects have been identified that may (at least qualitatively)
explain the observations.

The article is arranged in the following way. Section II
contains a description of the experimental setup and explains
in broad terms how it is modeled, including the particle tra-
jectories, signal extraction, and line-shape production for ideal
microwave fields. Section III describes the quantum dynamics
of the system using the Lindblad formalism, which naturally
includes all QI effects. In Sec. IV realistic microwave fields
are modeled using finite element methods, and are added to
the simulations along with the density-matrix treatment of
Sec. III. Additional (smaller) systematic effects are considered
in Sec. V for completeness, and we draw some conclusions
from this work in Sec. VI.

II. MODEL OF EXPERIMENT

Previously, simulations were performed that were designed
to represent the experimental arrangements used in recent
measurements of the Ps fine structure [5,6]. However, not all
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FIG. 1. Experimental configuration showing (a) the Ps formation
relative to the waveguide location and (b) the positions of four γ -ray
detectors around the vacuum chamber, for a WR-112 waveguide.

aspects of the experiments were simulated; for example, in
the experiments Ps atoms in the 2 3S1 level were generated via
a single-photon excitation process in a time varying electric
field [16]. Here we do not consider the initial-state prepara-
tion, and assume instead that 2 3S1 atoms appear at an initial
time t = 0 at a point in space �r0 = (0, 0, 0). This initial source
spot represents the point where the positron beam is implanted
into a mesoporous silica target, from which the positrons are
emitted [17]. The actual positron beam has a Gaussian profile
with a full width at half maximum (FWHM) of 3 mm [18].
The finite Ps source size does not affect the simulations in
any significant way and has been neglected. The Ps formation
process is also not explicitly simulated, but the resulting Ps
velocity distributions have been measured and are included,
as discussed below.

A. Geometry and particle trajectories

The experimental geometry is indicated in Fig. 1. Ps atoms
produced from a porous silica film [17] are emitted into an
excitation region where a laser drives 1 3S1 → 2 3PJ transi-
tions in a strong electric field. The electric fields perturb the
excited state via the Stark effect, allowing atoms to evolve
to the 2 3S1 level after it is turned off [16]. Excited-state
atoms subsequently pass through a grid in the side of a rect-
angular waveguide. This can be one of three different types,
depending on which transition is to be studied (see Table I): a
WR-112 waveguide, used for 2 3S1 → 2 3P2 (i.e., ν2) transi-
tions, is shown in Fig. 1.

TABLE I. Specifications of the three waveguides used in the
experiment and simulations. The dimensions listed refer to the dis-
tances between the inner walls in the y, z, and x dimensions (see
Fig. 1). The cutoff frequencies refer to the lowest-order TE10 modes.

Waveguide Dimensions (mm) Range (GHz) Cutoff (GHz)

WR-51(ν0) 12.95 × 6.48 × 160 15–22 11.58
WR-75(ν1) 19.05 × 9.53 × 160 10–15 7.87
WR-112(ν2) 28.5 × 12.6 × 160 7–10 5.26

FIG. 2. Velocity distribution of excited-state atoms, including
velocity selection in vx (dotted line) by the excitation laser and
subsequent correlations in vy (dashed line) and vx , as explained in
the text. The solid line represents the vz distribution of Ps atoms.

The trajectories of excited atoms passing through the
waveguide depend on the underlying velocity distributions
of the emitted ground-state Ps atoms and velocity selection
resulting from the bandwidth of the excitation laser (which is
approximately 100 GHz [18]). The physical structures within
the vacuum chamber are all included in the simulated system
geometry, and any Ps atoms that strike metal surfaces are
deemed to be lost via annihilation. Ps atoms enter the waveg-
uides through tungsten grids that have a geometrical open area
of 92.5%. Atoms lost in this way do not affect the simulations
and have not been included.

The positron beam and laser systems are both pulsed, with
widths of approximately 3 and 6 ns, respectively [18]. How-
ever, the Ps density is low enough that no Ps - Ps interactions
are possible [19], and simulations are therefore based on sin-
gle atom trajectories.

The excited-state Ps velocity distributions used in the sim-
ulations are shown in Fig. 2. The ground-state Ps velocity
distribution in the x direction (see Fig. 1) is known from
direct Doppler profile measurements [20] and, because of the
random structure of the mesoporous silica film, the velocity
profile in the y direction is expected to be identical to this.
However, for excited states the velocity distribution along the
x direction will be limited by the laser bandwidth, since the
excitation laser propagates along this direction. The veloc-
ity distribution along the z direction has been measured in
separate experiments using Rydberg Ps atoms in a multiring
electrostatic guide [21].

These profiles have been measured individually, but the full
three-dimensional Ps velocity profiles are not known directly.
The measured vz profiles are already those of excited-state
atoms since they are measured using Rydberg atoms (the
secondary excitation from n = 2 to Rydberg states has a neg-
ligible effect on the velocity distributions).

Correlations between the x, y, and z velocity components
are estimated in the following way: the emission of Ps from
silica is known to occur with energies on the order of 1 eV
[22]. However, in mesoporous films Ps then cools down via
collisions with internal surfaces [20,23]. The cooling process
becomes truncated when the Ps reaches the zero-point energy
of the confining voids, and in the samples of the type used
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FIG. 3. Geometry of the numerical simulation. Positronium
atoms are emitted from the SiO2 target at the origin of the coordinate
system. Excited-state atoms fly along straight trajectories through
the waveguide, where they interact with time-dependent electric
and magnetic fields. Tungsten meshes in rectangular orifices of the
waveguide (not shown in the figure) were present in the experiment
but were not taken into account in the simulation.

in this work cooling below ≈40 meV (in one dimension) is
not observed, even if the samples are cooled to cryogenic
temperatures [24]. Thus we assume that the average total Ps
energy is approximately 120 ± 30 meV, where the error is es-
timated from the maximum speeds observed. The distribution
of pore size silica films can directly translate into a spread of
Ps emission energies, arising from variations in the zero-point
energy. Moreover, random interconnects and opening of the
pore structures at the surface of the samples will also result in
a variation in Ps energies.

The Ps velocities are generated by using a Monte Carlo
selection of the Ps energy from the estimated range, and then a
Monte Carlo sampling from the distributions shown in Fig. 2,
limited by the total energy. This determines the ground-state
Ps velocities, and for excited states an additional selection is
then necessary to account for the finite laser bandwidth: atoms
determined to have vx outside of the laser bandwidth cannot
then be excited. Unless otherwise noted, in simulations we
assume that atoms fly in straight trajectories with constant
velocity �r(t ) = �r0 + �vt , where �v is the 3D velocity vector of
the atom. Atoms fly from z0 = 0 to z1 = 6 mm outside of
the waveguide, then enter it, then fly out of it after the point
z2 = z1 + b, where b is a height of the waveguide (see Fig. 3).

B. Numerical model overview

The quantum state evolution of the atoms is computed
using the master-equation approach described in detail in
Sec. III. The initial state of the density matrix is set to
a combination of the 2 1S3 sublevels. During the flight on
straight trajectories atoms are affected by time-dependent
electric and magnetic fields �E (�r, t ) and �B(�r, t ). We compute
the evolution of the density matrix during the flight with the
time-dependent probability of annihilation used to extract a
signal (see Sec. II C).

Since the waveguides used in the experiments were chosen
such that the only allowed mode is the TE10 mode, we write
the electric- and magnetic-field vectors inside the waveguide

(using SI units) as

�E± = E0

⎛
⎜⎝

0

0

sin
(

πy
a

)
cos (±kxx + ωt )

⎞
⎟⎠,
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)
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0

⎞
⎟⎠,

(1)

where E0 is the peak electric field of the rf wave, ω = 2π ×
(νJ + �ν) is the frequency of the wave with detuning �ν, a
and b are the width and height of the waveguide (see Fig. 3),

and kx =
√

ω2

c2 − π2

a2 is the wave vector of rf field. The ± sign
before kx chooses a direction of the traveling wave. A general
rf field inside the waveguide is a linear superposition of a
forward-traveling wave, described by fields �E+ and �B+, and a
backward-traveling wave, described by fields �E− and �B−. We
assume no exposure to rf electric and magnetic fields outside
the waveguide, keeping only a dc axial magnetic field of 32 G
(if necessary).

The numerical simulation allows us to study various sys-
tematic effects by including necessary elements in the model
and removing the elements which may hide them. Within this
paradigm, to investigate linewidth and quantum interference
shifts, we consider a model of an ideal forward-traveling
wave with constant amplitude. To illustrate a reflection-related
distortion of the linewidth, we consider a combination of the
forward-traveling wave and a small reflection from a fixed
distance. The most realistic simulation is based on numerical
computation of the rf field distribution (see Sec. IV) used to
extract parameters of forward- and backward-traveling waves.

C. Signal extraction

In the experiments [6] Ps decay rates were measured us-
ing the technique of single-shot positron annihilation lifetime
spectroscopy (SSPALS) [25]. This method allows Ps life-
time spectra to be generated when many gamma-ray photons
are detected nearly simultaneously. The observed signals are
equivalent to a measurement of the annihilation radiation
intensity as a function of time. These data are extracted as
integrals of the current through photomultiplier (PMT) detec-
tors, which we define as

VAT =
∫ T

A
I (t )dt, (2)

where A is the moment of time related to the beginning of the
measurement cycle and I is a current output of the PMT. The
experimental procedure [25] involves extracting a parameter
fd , that is proportional to the fraction of long-lived atoms,
using

fd = VAC − VAB

VAC
, (3)

where the times B and C were set to 700 ns and 1400 ns after
the beginning of the measurement cycle, respectively. In the
experiment, the fraction of long-lived atoms was measured
with ( fon) and without ( foff ) microwave radiation present.
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FIG. 4. Example of procedure of signal Sγ calculation. (a) The
fraction of “long-lived” atoms

∑
ρii(TC ), which annihilate from

t = 0 to TC = 1400 ns, the analog of experimentally measured value
VAC . (b) The fraction of the “short-lived” atoms

∑
ρii(TB), which

annihilate from t = 0 to TB = 700 ns, the analog of experimentally
measured value VAB. Points on both blue and red result for the “rf
on” regime with frequency and the solid line for the “rf off” regime.
(c) Black points: signal Sγ calculated using Eqs. (3), (4), and (5). Red
solid line: Lorentz fit of the calculated line shape.

The microwave radiation resonantly mixes long-lived 2 3S1

with 2 3PJ states, causing faster decay of atoms to the 13S1

state, with fast annihilation from the ground state thereafter.
A dimensionless quantity used as the signal is defined as

Sγ = foff − fon

foff
. (4)

To simulate the signal, we introduce in the density matrix
a set of fictitious “annihilation states” to count annihilation
events. The initial population of all those states is set to zero,
so the integrals of current through detectors in experiment are
related to the sum

VAT =
∑
i∈A

Wiρii(T ), (5)

where ρii refers to density-matrix elements (see Sec. III B),
and the sum can be taken with different weights Wi, so as to
allow investigations of the sensitivity of line positions with
different detector orientations.

Figure 4 shows an example of a calculation of the signal
using simulated frequency-dependent VAC and VAB values. The
resulting signal fits a nonshifted Lorentzian function (red bot-
tom line), confirming that, in the ideal case, the simulations
reproduce the expected transition frequencies.

D. Line-shape fitting

As in the experimental case, two types of fit function
were used to characterize the simulated data—the symmetric
Lorentzian function

SL = bL + aL

1 + 4
(

ν−νL
wL

)2 (6)

and the Fano function [26]

SF = bF + aF

1 + 2η
(

ν−νF
wF

)
1 + 4

(
ν−νF
wF

)2 , (7)

which is obtained from the form given in the experimental
article [6] by the replacements η = 2q

q2−1 , aF = A(q2−1)
(q2+1) , and

bF = A
q2+1 . The Fano fit in that form was used to describe

quantum interference effects in hydrogen spectroscopy ex-
periments [13] as proposed in Ref. [27]. The bL,F and aL,F

parameters are responsible for the signal background and
amplitude, respectively, νL,F is the center of the line, and wL,F

parameters characterize the linewidth. In the limit η → 0, the
Fano fit function approaches the Lorentzian one. The Fano
function is used to characterize quantum interference effects
on the line shape. This is in contrast to the experimental case
[6], in which the Fano function was used only as a way to
characterize asymmetry, with no underlying physical basis.

As a qualitative parameter that characterizes an asymmetry,
we use a discrepancy between line center frequency obtained
from Lorentz and Fano fits. Another parameter that may be
used to characterize the asymmetry is the parameter η in the
Fano line shape (7). A rough evaluation of the connection be-
tween those two methods gives a relation νL − νF ≈ ηwL/2.
In order to understand the line-shape asymmetry we pay spe-
cial attention to the parameter η of the Fano fit of simulated
data as well as the line center discrepancy νL − νF .

E. Linewidth of the transition

In the framework of this paper, line-shape distortions are
characterized by only two parameters—shifts and broadening;
more elaborate line-shape descriptions cannot be validated
owing to the limited signal-to-noise ratio of the measured
data. We therefore discuss only centroid shifts and linewidths
extracted from Lorentz and Fano fits to the simulated data.
Line shifts are the most important properties of these fits with
respect to understanding the measured fine-structure intervals,
with concomitant corrections or uncertainties for the exper-
imental error budget. However, linewidths do provide some
insight into the experiments and can be used to cross-check
saturation data and Ps velocity distributions.

The natural linewidth of 2S-2P transitions in Ps is ≈
50 MHz, primarily determined by the 3.19 ns radiative
lifetime of the 2P levels. The linewidth observed in the experi-
ments [6] is about 62–66 MHz. In this section, we consider the
mechanisms of additional broadening and the experimental
parameters affecting it.

1. Doppler broadening

Doppler broadening may arise from variations of the Ps
velocity component vx in the direction of the waveguide. The
frequency of the rf field observed by a moving atom with
x component of the velocity vx can be expressed as −kxvx,
which causes a shift of the line center frequency by +kxvx. To
simulate line distortions caused by this effect we calculate line
shapes for a regular set of vx from −70 km/s to +70 km/s.
Using weighted averaging, we can obtain an approximate line
shape for an arbitrary velocity distribution in the computed
interval. The vx distribution (see Fig. 2) can be approximated
by a Gaussian profile exp[−v2

x /v
2
w] with width parameter

vw ≈ 20 km/s.
To study the effect of Doppler broadening, we compute

how the FWHM wL of the line profile obtained from Lorentz
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FIG. 5. Doppler broadening, illustrated by the difference be-
tween the FWHM of Lorentz fits of the line without vx velocity
averaging and with vx velocity averaging, computed for ν0 (circles),
ν1 (squares), and ν2 (triangles) transitions vs the velocity distribution
spread vw .

fits depends on vw in a broad range around the most probable
value of 20 km/s. The results presented in Fig. 5 indicate that
the Doppler broadening is negligible in comparison with other
broadening mechanisms.

2. Time-of-flight broadening

To study time-of-flight broadening, we compute line
shapes for vx = 0 (to remove Doppler broadening) and 20 dB
lower rf power than was used in the experiment (to sup-
press saturation broadening). The linewidth of Lorentz fits
for the computed line shapes for various vz values is shown
in Fig. 6. For high velocities, broadening depends on the
time-of-flight b/vz, so the linewidth also varies with the height
of the waveguides b. For the most probable velocity of about
80 km/s, the time-of-flight broadening is about 3 MHz (for
the ν0 transition).

Slow velocity groups also may experience broadening be-
cause all atoms have to pass the 6 mm gap between target
and waveguide within the 700 ns time window. The slow
atoms spend too much time in the gap, which shortens inter-

FIG. 6. Time-of-flight broadening, illustrated by the FWHM of
Lorentz fit of the lines computed for ν0 (circles), ν1 (squares), and ν2

(triangles) transitions vs the velocity vz of the atom. The broadening
of the lines for higher velocities is caused by time-of-flight broaden-
ing concerned with the dimensions of the waveguide.

FIG. 7. Saturation broadening, illustrated by the FWHM of
Lorentz fit of the lines computed for ν0 (circles), ν1 (squares), and ν2

(triangles) transitions vs the power P in mW of the wave inside
the waveguide. The line shapes were computed for the velocity
distributions presented in Fig. 2. The broadening of the lines for
higher powers is caused by the saturation of the transition. The
noncyclic level structure of positronium (top) implies depletion of
the 2S/2P levels population; therefore, vast rf power causes flat-top
line distortion. Inset plot: the line shape of ν1 transition computed for
microwave power of P = 50 mW manifests flat-top distortion.

action time and produces an effect similar to the time-of-flight
broadening.

3. Saturation broadening

The large amplitude of the electromagnetic wave causes
line distortion, which also appears as a broadening. The most
well-known example is a simple power broadening in two-
level systems (e.g., Ref. [28]). This mechanism causes an
increase of the linewidth of the transition while its shape stays
Lorentzian. Also, this broadening type depends only on the
wave’s amplitude, and it does not depend on the interaction
time. In contrast, driving the experiments 2S-2P transition
causes depletion of 2S/2P states population via decay to 1S.
The depletion related to power and interaction time leads
to non-Lorentzian line distortion. For high rf amplitude this
distortion appears as a “flat-top” effect (see Fig. 7). Unlike
the power broadening in two-level systems, this distortion
depends on the time that atoms stay in the field. A mathe-
matically precise description of this distortion is complex, but
we may characterize it using a Lorentz fit of the computed line
shapes.

The peak electric field E0 of the traveling wave (1) is
connected with the power P with the following relation:

E2
0 = 4P

abc ε0

√
1 − π2c2

a2ω2

. (8)

To study the saturation broadening, we compute line shapes,
averaging over the vz and vx velocities for powers of the
microwave field ranging from 0.5 to 5 mW. The results are
shown in Fig. 7 and can be linearly fitted with good accuracy.
The 3 to 5 MHz difference from the natural linewidth at
zero power is caused by time-of-flight broadening. The fit
slopes depend on vz velocity distribution and are given by
6.9 MHz/mW, 7.9 MHz/mW, and 6.6 MHz/mW for ν0, ν1,

062810-5



L. A. AKOPYAN et al. PHYSICAL REVIEW A 104, 062810 (2021)

and ν2 transitions, respectively. In the rf power of more than
1 mW, this saturation is the leading broadening mecha-
nism. Our simulation shows that other mechanisms manifest
themselves as nonzero broadening at P → 0, but they are
negligible compared to the saturation effect. Therefore, the
observed linewidth can be used to estimate the actual power
of the rf wave coupled into the waveguide.

III. QUANTUM DYNAMICS AND INTERFERENCE

A. Master equation

The quantum dynamics of positronium atoms are de-
scribed using numerical integration of a master equation in the
Lindblad form [15] (see also Refs. [29,30]). The master equa-
tion describes the evolution of the density matrix of the atom
in the form of an ordinary differential equation:

dρ

dt
= − i

h̄
[Ĥ, ρ] + Lρ, (9)

where ρ is a density matrix of the system, Ĥ is the
Hamiltonian of the system, and Lρ is a spontaneous relaxation
superoperator. We describe this superoperator as

Lρ = −
∑

α,β∈D

γαβ

2

(
ρS+

α S−
β + S+

α S−
β ρ − 2S−

β ρS+
α

)
, (10)

where D represents the set of all possible spontaneous decay
channels in the considered atomic system, γαβ is a cross-
damping constant for two different decay channels α and β,
S+

α,β are operators of excitation of decay channel, and S−
α,β are

deexcitation operators. In our model we describe each decay
channel α by its upper state |uα〉, lower state |lα〉, and an off-

diagonal electric dipole moment �dα = 〈lα| �̂d|uα〉, associated
with this decay. In this description we write excitation and
deexcitation operators as S+

α = |uα〉〈lα| and S−
α = |lα〉〈uα|.

The cross-damping constant (in SI units) is

γαβ = ω3/2
α ω

3/2
β ( �dα, �dβ )

3πε0 h̄c3
, (11)

where ωα is a frequency of transition, ε0 is a vacuum permit-
tivity, and c is the speed of light. One can see that, if α = β,
Eq. (11) represents a standard electric dipole allowed decay
constant. If α �= β, Eq. (11) describes a constant responsible
for the quantum interference of two decay channels.

B. Basis states and Hamiltonian

We model a positronium atom in the basis of its quan-
tum states which are the eigenfunctions of its unperturbed
Hamiltonian (see Fig. 8). A convenient set of quantum num-
bers for us is |n, S, L, J, M〉, where n is the principal quantum
number, S is the sum of electron and positron spins, L is the
orbital angular momentum quantum number, J is the total
angular momentum quantum number (i.e., the sum of S and
L), and M is a projection of the total angular momentum on
a quantization axis. The direction of the quantization axis can
be defined arbitrarily; here we always use the z axis of the
experimental geometry. We restrict our basis to all quantum
states with n = 1, 2, neglecting a population of n > 2 levels.
This corresponds to the experiment in which the atoms formed

FIG. 8. Diagram of quantum states of positronium used in the
simulation model. States marked with blue wavy lines are fictitious
states for counting annihilation events. Red (solid) arrows represent
electric dipole allowed transitions; violet (dashed) arrows represent
magnetic dipole allowed transitions. Spontaneous decays 2P → 1S
are included in the simulation but not shown here. Radiative or
annihilation lifetimes for all levels are also indicated, according to
the primary decay mode.

in the ground state n = 1 are excited to state n = 2 by a
narrow-band laser. The laser excitation allows us to avoid
excitation of n > 2 levels, which may produce additional
quantum interference shifts similar to that described in work
[31]. The diagram of those states is shown in Fig. 8; it includes
20 real quantum states of the positronium atom, i.e., 16 states
in the n = 2 manifold and four states in the n = 1 manifold.

To model the signal detected in the experiments we intro-
duce additional fictitious states (“annihilation states”) to count
annihilation events. We neglect the possibility of annihila-
tion of 2P states [32,33], so it is sufficient to include eight
such states, corresponding to real states with L = 0. We thus
model the annihilation process as a decay from a real state
|n, S, L, J, M〉 to an annihilation state |n, S, L, J, M〉A, with
a decay constant corresponding to that of the real state. We
assume that all eight annihilation channels do not interfere,
which happens automatically in the model because the final
states are distinguishable. The fictitious states are included
in the basis, extending our density-matrix size to 28 × 28.
However, they are not included in the Hamiltonian, and their
role in the numerical model is limited by a final state of
cascade decay processes.

The Hamiltonian of the positronium atom is written as

Ĥ = Ĥ0 − �̂d �E (�r, t ) − �̂μ �B(�r, t ), (12)
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where Ĥ0 is the unperturbed Ps Hamiltonian, �E is the classical

electric field, �r is a coordinate of the atom at time t , �̂d is
an electric dipole moment operator, �B is a classical mag-
netic field, and �̂μ is a magnetic dipole moment operator. The
Hamiltonian Ĥ0 is written as a diagonal matrix; the energies
of the states are taken from theory (see [4] and references
therein). Both electric and magnetic fields are written explic-
itly as functions of time and coordinate, which allows us to
include dc fields and rf fields in a convenient form.

To avoid fast oscillation of optical frequencies, which
would make numerical integration of the master equation
impossible, we use the rotating wave approximation (RWA)
(e.g., Ref. [28]). We make the following substitution of vari-
ables for density-matrix elements ρ in Eq. (9):

ρi j = ρ̃i j exp
{
−

( i

h̄

)
(Ei − Ej )t

}
, (13)

where Ei = E1S if i belongs to the n = 1 manifold and Ei =
E2S if i belongs to the n = 2 manifold. The energies E1S

and E2S are mean energies of n = 1 and n = 2 manifolds.
It is obvious that we make such a replacement only for fast-
oscillating ρi j , where i and j are related to different manifolds;
this operation replaces them with slow-oscillating variables
ρ̃i j . After the substitution (13) we find that Eq. (9) is in a form
where all fast oscillations are written explicitly as exponential
factors. We implement the RWA by neglecting all the terms
which oscillate with a frequency above 1 THz. The resulting
system of equations is suitable for numerical integration. This
method works if we use as EnS any energy, close to the ener-
gies of manifold, because the wrong selection of EnS will only
affect the performance of the numerical code and not the final
output of that code.

Since our basis consists of 28 different states, system (9)
contains 282 = 784 coupled differential equations. To derive
them, we use a dedicated C++ program that uses the com-
puting algebra system GINAC [34]. The system of equations
was cross-checked via a similar derivation in Wolfram Math-
ematica script. We also applied an analytic simplification of
the system, which helps us to remove a large fraction of
density-matrix variables, leaving only 408 coupled differential
equations. The derived system of equations was transformed
to C++ compatible code incorporated into a fast numeri-
cal solver, using the Runge-Kutta eighth order method with
Dormand-Prince step prediction algorithm [35]. The numeri-
cal integration code solves the differential equations for zero
rf field (to obtain foff ) and for each possible value of the
rf frequency, giving as output a table of all values of the
annihilation state population. These data were then used to
obtain a signal using Eqs. (3), (4), and (5).

C. Quantum interference

Quantum interference is an effect causing distortion of
line shapes due to the presence of other nearby nonresonant
levels in the atomic system. Shifts associated with this effect
have been widely discussed (e.g., Refs. [11,13,36–38]). Such
shifts may arise from the interference of quantum evolution
paths through resonant levels with paths through nonresonant
levels. The phase relations which affect the interference are
connected with the polarization of exciting and emitted light.

As a result, the QI shift often manifests itself as a dependence
of the line center from the relative polarization of the excit-
ing electromagnetic field and detected spontaneous relaxation
photons (e.g., Ref. [12]).

In contrast to many previous works, the signal in the
positronium experiment does not come from fluorescence de-
cay photons, but rather from annihilation photons. However,
these annihilation events are preceded by Lyman α decays,
and the polarization of the emitted 243 nm photons is en-
tangled with the spin projection M of the final 1S state. If
the γ -quanta detectors have various sensitivity to annihilation
from different Zeeman components of 1 3S1 level, there will
be a QI shift.

In this section, we first consider a simple model based on
the Kramers-Heisenberg formula to illustrate the nature of the
QI shift. The result depends on the geometrical properties of
the detectors, and a simplified model of this mechanism is de-
scribed below. We then, in Sec. IIIC2, use the master-equation
approach to obtain a more realistic estimation of the QI shift
in the positronium experiment.

1. Simple model of QI shift

To illustrate the QI shift [see Fig. 9(a)] let us consider
a simplified case where an atom in an initial state |i〉 =
|23S1(M = 0)〉 interacts with a z-polarized rf electric field.
The rf electric field drives transitions to excited states |e1,2〉 =
|23PJ (M = 0)〉, with J = 0, 2 (the transition to J = 1, M =
0 is forbidden by electric dipole selection rules). Excited
states decay to a manifold of final states | f1,2,3〉 = |13S1(M =
−1, 0,+1)〉. The probability of process i → fα should be
derived as a result of interference of two paths: i → e1 → fα
and i → e2 → fα .

Note that the frequency difference between 2 3P0 and 2 3P2

states is about 10 GHz, while the natural linewidth is about
50 MHz. Thus the lines of transitions i → e1 and i → e2 are
separated by ≈200 linewidths, so the presence of a distant
level may seem to be negligible. However, significant inter-
ference effects are possible even with such a large separation
of levels (see, e.g., Ref. [11]). Following the approach used
in Refs. [12,36], we can write a rate of spontaneous photon
emission via the Kramers-Heisenberg formula as

Rq,p(i → f ) = πE2
0 ω3

s

h3c3ε0

∣∣∣∣∣
∑

e

dp(i → e)dq(e → f )

ω − ωei + i�/2

∣∣∣∣∣
2

, (14)

where q denotes polarization of emitted photons, p is a po-
larization of rf electric field (0 for π -polarized field and ±1
for σ±-polarized field), E0 and ω are electric-field ampli-
tude and frequency, ωs ≈ 2π × 1230 THz is emitted photons’
frequency, dp(i → e) and dq(e → f ) are emission dipole mo-
ments, ωei = ωi − ωe is energy difference between i and e
states, and � is an inverse lifetime of state e. In our simple ex-
ample we have only two excited states e1 and e2. To continue,
we designate rf detuning δ = ω − ωe1i and level separation
� = ωe2i − ωe1i. Then, since the polarization of the exciting
electric field is directed along the z axis, we set p = 0. The
dipole moments for i → e transitions can be easily calculated
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FIG. 9. (a) Simple scheme to illustrate QI shift in the positronium
experiment. We compute rate Rk of transitions i → e1 → f1,2,3 (blue
arrows) as a function of driving field frequency. The presence of
off-resonant paths i → e2 → f1,2,3 (red arrows) leads to interference
which shifts the lines. (b) Lorentz fit center νL of the function
R2 + β(R1 + R3). For β = 1 detection probabilities of Zeeman com-
ponents M = ±1 and M = 0 are equal and the QI shift vanishes. For
the realistic case β = 0.74 the QI shift computed with this simple
model is about −26.5 kHz. Inserted figure: spatial distribution of the
annihilation photons with respect to quantization axis z: blue/bright
mesh for M = ±1 component; orange/dark mesh for M = 0 compo-
nent. Detectors (green) placed in the xy plane are more sensitive to
the M = 0 component with weight ratio approximately 0.74:1:0.74.

(in atomic units of ea0):

d0(i → e1) = +2
√

3,

d0(i → e2) = −2
√

6.
(15)

The dipole moments for e → f can also be simply
computed:

d+1(e1 → f1) = d−1(e1 → f3) = +256

243

√
2

3
,

d+1(e2 → f1) = d−1(e2 → f3) = +256

243

√
1

3
,

d0(e1 → f2) = −256

243

√
2

3
,

d0(e2 → f2) = +512

243

√
1

3
.

(16)

Substituting these numbers into Eq. (14), we can get ap-
proximate line shapes of transitions to states f1, f2, and f3

neglecting constant factor:

R1 = R3 ∼ S1 + S2 − 2S12,

R2 ∼ S1 + 4S2 + 4S12,
(17)

where R1 = R0,+1(i → f1), R2 = R0,0(i → f2), and R3 =
R0,−1(i → f3) are transition rates to f1,2,3 states. The symbols
S1, S2, and S12 designate the Lorentz line shape for i → e1

transition, i → e2, and their interference:

S1 = 1

�2 + 4δ2
, (18)

S2 = 1

�2 + 4(δ + �)2
, (19)

S12 = 2[�2 + 4δ(δ + �)]

(�2 + 4δ2)[�2 + 4(δ + �)2]
. (20)

The term (20) leads to distortion of the line shape, giving a
QI shift. One can see that if � � � and � � δ the interfer-
ence term can be approximated by the dispersive part of the
Fano profile:

S12 ≈ 2

�

δ

�2 + 4δ2
. (21)

Due to this, using Fano profiles instead of Lorentz profiles
includes the interference term and helps to avoid the QI shift.
Another way to avoid the interference term is a proper weight-
ing of the signal components. From Eq. (17) one can see that
if we detect annihilation from states fi with equal probabilities
the line shape is

R1 + R2 + R3 ∼ 3S1 + 6S2. (22)

This line has no QI shift since the S12 term vanishes.
Similarly, we can compute the shift for atoms that start from
23S1(M = ±1) states and show the same property of the
QI shift. In the real experiment, the detection probability of
various Zeeman components is slightly different due to geo-
metrical effects. Figure 9(b) shows how the Lorentz fit center
of the line described by function β(R1 + R3) + R2 depends on
weighting parameter β. To estimate the realistic value of β, we
need to introduce the geometrical model of the detector.

In the experiments annihilation events are detected via the
annihilation γ quanta, meaning that we must include in the
model some probability of event detection. In this paper we
neglect the sensitivity of detectors to the energy and polariza-
tion of the annihilation photons, and consider only geometric
effects. The directional emission profiles of γ quanta from
three-photon annihilation are [39]

PM=0 ∼ (π2 − 9) sin2(θ ) + 1

6
[3 cos2(θ ) − 1], (23)

PM=1 ∼ (π2 − 9)[cos2(θ ) + 1] − 1

6
[3 cos2(θ ) − 1]. (24)

The detectors in the real experiment are positioned around
the setup orthogonal to the quantization axis [see Fig. 9(b)].
This breaks the symmetry, so the probabilities of annihilation
detection of M = −1, M = 0, and M = +1 states are dif-
ferent. For example, for pointlike detectors in the xy plane
they are related as [6π2 − 53]:[12π2 − 110]:[6π2 − 53] ≈

062810-8



LINE-SHAPE MODELING IN MICROWAVE SPECTROSCOPY … PHYSICAL REVIEW A 104, 062810 (2021)

TABLE II. Difference between the line fit centers obtained by
Lorentz (νL) and Fano (νF ) fits from the unperturbed transition
frequency used in the numerical simulations. The weights are the
relative probabilities Wi of positronium annihilation detection with
spin projection M = −1, M = 0, and M = +1, respectively [ac-
cording to Eq. (5)]. The lines designated HP were calculated for the
high-power regime, which is close to the best known estimation of
rf power in experiment; the lines designated LP were calculated for
the low-power regime, with an artificial decrease of power in the
simulation by a factor of 100 to avoid saturation-related distortion
of the line shape. The uncertainty of numerical calculation is less
than 1 kHz.

νL (kHz) νF (kHz)

Weights Line HP LP HP LP

ν0 −2.3 0.07 −1.3 0.40
1:1:1 ν1 −1.8 −0.07 −1.2 0.06

ν2 4.3 −0.06 3.7 −0.38
ν0 −249 −138 29 0.76

1:0:0 ν1 229 231 −85 −2.5
ν2 −150 −133 67 0.82
ν0 174 198 −61 −2.1

0:1:0 ν1 −618 −304 170 2.0
ν2 193 113 −127 −1.9
ν0 34 25 −8 −0.21

0.74:1:0.74 ν1 −59 −41 17 0.40
ν2 29 18 −10 −0.57

0.74:1:0.74. Precise measurement of the detection probabil-
ities is difficult, so we restrict our consideration to extreme
cases of maximal sensitivity to one of those components and
the case of pointlike detectors.

2. QI shift from the master equation

Quantum interference is naturally included in the mas-
ter equation, so we can use it to characterize this effect.
We simulate experimental lines using a single running wave
( �E+, �B+) without reflections, a constant electric-field ampli-
tude E0(ω) = const, and the velocity distributions shown in
Fig. 2. We fit simulated line shapes with both Lorentz and
Fano profiles, and compute the difference of the obtained fit
centers from the transition frequency used in the simulation
according to Eqs. (6) and (7). We consider this difference
νL or νF as an estimate of the uncertainty caused by the
line-shape model (or, more properly, the physical mechanisms
described by those models). Similarly, the difference between
the Lorentz and Fano fit centers can be considered as a metric
of the asymmetry of the underlying line shape; that is, for
symmetric line shapes they will be identical.

We summarize the results of this procedure in Table II. We
observed that the results depend on at least two essential pa-
rameters: (1) the weights of the different Zeeman components
and (2) the rf power. In the former case, the effects due to
weighting the Zeeman components [i.e., Wi in Eq. (5)] are a
direct analog of shifts observed in experiments [13,36] with
limited solid angle detectors. Setting Wi = 1 for all compo-
nents effectively cancels out the QI shift, as shown above in
the simple model. In the latter case, the rf power dependence
arises from saturation of the transition, because the process

2 3S1 → 2PJ → 1 3S1 is not cyclic. Saturation causes “flat
top” distortion of the line shape (see Fig. 7). The simple
Lorentz and Fano fits of saturated transitions show broader
lines and an increased magnitude of QI shifts. To illustrate this
effect and obtain numbers that could be used to estimate the
size of the QI shift, we compute line shapes in two regimes:
high power (HP), when the power of the rf wave corresponds
to the estimation of power in the experiment, and low power
(LP), when the power is decreased by factor 100.

The result of our calculation in Table II shows that the QI
shift in the worst case, i.e., for the unrealistic scenario of only
M = 0 annihilation detection, is −618 kHz for a Lorentz fit
and +170 kHz for a Fano fit. The more realistic weighting of
0.74:1:0.74 shows −59 kHz for a Lorentz fit and +17 kHz
shift for a Fano fit. These results exclude the possibility
that the line-shape asymmetry observed in experiment [6] is
caused by QI effects. However, it is evident that any improved
experiments that are able to obtain uncertainties better than
100 kHz will require more careful studies of QI effects.

Using Fano fits eliminates the QI shift in the low-power
regime since the Fano profile approximates the distortion
caused by QI. The last column in Table II illustrates this effect.
However, using Fano fits for noisy data processing worsens
the statistical uncertainty. Therefore, this should be avoided if
the uncertainty of the QI shift is smaller than the additional
uncertainty of the Fano fit. Another way to eliminate a QI
shift is to design a detection scheme with the weights of
Zeeman components close to 1:1:1 (see Table II). This may be
achieved by directly observing the surviving 2 3S1 population
using a microchannel plate detector, for example.

IV. REALISTIC MICROWAVE RADIATION FIELDS

Reflection of the rf wave that can occur in the experiment
[6] may cause line distortions. To show how this may affect
the line shape, we first consider a simple model of a reflection
from a single point on the x axis. In the framework of a simple
model, we show that the reflection may cause asymmetry. We
also show that there exist regimes in which the line is strongly
shifted without large asymmetry, which present difficulties for
data interpretation. After that we consider a more realistic
model of the rf field computed from FEM simulation.

A. Simple reflection model

One of the candidates for the line-shape distortion related
to the experiment is a systematic dependence of the rf electric-
field amplitude E0 on the rf frequency ω. From the Kramers-
Heisenberg formula (14) we see that the transition probability
is proportional to the square of electric-field amplitude R(i →
f ) ∼ E0(ω)2. Therefore, it is clear that, if the electric field
depends on ω, line-shape distortions may occur.

A simple illustration of this effect can be obtained by as-
suming that a small fraction of the rf power in the waveguide is
reflected after some distance L from the interaction region. We
can compute an rf electric field affecting an atom at position
x = 0, combining �E+ and �E− from equations with a corre-
sponding phase delay and amplitude reflection coefficient q:

Ez ∼ E0[cos(ωt + kxx) + q cos(ωt − kxx − 2kxL)]

= ESW (ω, x) cos(ωt + kxx + φSW ), (25)

062810-9



L. A. AKOPYAN et al. PHYSICAL REVIEW A 104, 062810 (2021)

FIG. 10. Centers of Lorentz (hexagons) and Fano (circles) fits
[(a) and (c)] and the asymmetry parameter η of the Fano fits [(b) and
(d)] computed for the ν0 line vs distance to the reflection point L.
The amplitude reflection coefficient q = 0.1 corresponds to 1% of
reflected power. In the small-L regime [(a) and (b)], the difference
between Lorentz and Fano fits can be used to characterize the quality
of the fits. In a regime of large L [(c) and (d)], the Fano and Lorentz
fits give almost equally wrong results, and the difference between
them cannot be used for uncertainty estimation. The parameter η in
the fit function (7) characterizes the line asymmetry and grows as the
Fano and Lorentz fit centers diverge from each other.

where ESW (ω, x) and φSW are the amplitude and phase of the
rf field in the standing wave, respectively, observed by an atom
in a point with coordinate x, where

ESW (ω, x) = E0

√
1 + q2 + 2q cos[2kx(L + x)], (26)

φSW (ω, x) = arcsin
q sin[2kx(L + x)]√

1 + q2 + 2q cos[2kx(L + x)]
. (27)

The field variations described by Eq. (26) cause a dis-
tortion of the line shape, which can easily be included in
the numerical model. To study this effect we simulated line
shapes varying parameter L, using a magnetic field B = 0,
reflection coefficient q = 0.1, and using equal Zeeman com-
ponent weights. The centroid values obtained from Lorentz
and Fano fits to the obtained data are shown in Fig. 10 for the
ν0 transition as a function of L.

As shown in Fig. 10, we observe different effects for small
and large values of L. If L is small (on the order of several
wavelengths), the distortion causes vastly different shifts of
the Lorentz and Fano fit centers. Since we use a difference
δν = νL − νF as a signature of the line asymmetry, we would
consider the lines as asymmetric. However, for these lines, we
can use δν as an estimator of experimental uncertainty.

In contrast, for the large values of L (order of magnitude
λω0/�), the Lorentz and Fano fits exhibit similarly varying
results. Our qualitative estimator of asymmetry η shows that
lines are much more symmetric than in the regime of small
L. The difference δν is an order of magnitude smaller than
the deviation of the fit centers from zero detunings, so the δν

cannot be used to characterize the uncertainty. In the actual
experiment, the reflections can happen anywhere, so the δν

cannot be used as a reliable uncertainty estimator.

B. Real microwave field simulations

In the real experimental apparatus, reflections of the rf
waves can happen everywhere. Therefore, a simplified model
of the type described above is unlikely to provide an adequate
description of the experiment. However, we can simulate the
line shape by assuming that the rf field outside the waveguide
does not affect Ps atoms, but that the actual field distributions
in the surrounding space do have some effect on the fields
inside the waveguide. Our approach is the following: first, we
numerically compute the real distribution of rf fields inside
the vacuum chamber, including the waveguide, using the finite
element method. Then we use the results of these simulations
to obtain the resulting parameters of the field inside of the
waveguide, exploiting the fact that only the TE10 mode can be
propagated within the guide. The modified waveguide fields
may then be included in the master-equation code to compute
the line shape.

1. Description of the microwave field simulations

Microwave radiation fields in the full experimental geome-
try were simulated using CST studio suite software [40]. The
layout of the simulation matches the waveguide and chamber
setup of [6], with a six way chamber containing either a
WR-112, WR-75, or WR-51 waveguide, with the dimen-
sions of each respective waveguide given in Table I, and UV
windows to allow the laser light to enter the chamber. The
waveguide port models a wire with 50 Ohm impedance. The
individual materials present were modeled using the material
library so as to emulate the aluminum waveguide, steel cham-
ber, and fused silica windows. CST Studio Suite evaluates
3D electromagnetic fields using a finite element method. The
software allows for calculation of the phase and magnitude
of the EM field through use of the domain frequency solver.
The frequencies simulated match the experimental frequen-
cies sampled from Ref. [6]. An example of the rf field results
is shown in Fig. 11. In this case the field was calculated
including a WR-112 waveguide in the vacuum at a microwave
frequency of 8.624 GHz.

The direct calculation of the rf field inside the vacuum
chamber shows a strong dependence of the electric field in
the waveguide center on the rf frequency. The vacuum cham-
ber acts as an rf cavity with a complicated shape and mode
structure, making a quasirandom E (ω) profile. The effective
rf electric fields in the centers of the waveguides are shown
in Fig. 12. The rf field amplitude within the frequency scan
range varies by up to a factor of 6, although this may result
from underestimating rf absorption in the numerical model.

2. Waveguide field computation from microwave simulation results

The Ps velocity distributions (see Fig. 2) can be used to
estimate the region of Ps propagation inside the waveguide.
According to the experiment [6], the characteristic velocities
of Ps atoms are of 20 and 100 km/s along z and x axes,
respectively, while the atom creation area has approximately
3 mm in diameter. Thus the Ps atom distribution area has no
more than 11 mm length along the x direction. To obtain the
parameters of the rf waves in this region we extract the ampli-
tude of the z component of the electric field along the line with
coordinates z = 6 + b/2 mm and y = 0 mm corresponding
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FIG. 11. CST Studio Suite simulation results for the rf field,
for a WR-112 waveguide at frequency 8.624 GHz and phase = 0.
This figure demonstrates the TE10 mode inside the waveguide, as
well as reflections from the chamber geometry. The field outside
the waveguide is 100 times weaker than the field inside the waveg-
uide; however, the peak waveguide field is not shown on the figure
for clarity.

to the center of the waveguide (see Fig. 3) and in the range
−13 mm � x � 13 mm. The amplitude of the field on this
line was fitted with function (26) and the parameters q, E0,
and L were obtained. For better fit qualities the wavelength is
considered also as varying parameter. The fitting results show
that the standing-wave model of the field inside the waveguide
gives an adequate description of the field, which approximates
FEM simulation results in the region of Ps atom propagation
with inaccuracy less than 2%. The obtained effective ampli-
tude Eeff (ω) = ESW(ω, x = 0) for all transitions is shown in
Fig. 12. The fit results for the standing waves for different
frequencies were cross-checked via different MATLAB and
Wolfram Mathematica scripts.

3. Line shape

We modified the master equation code to use external data
for the rf field instead of constant values of E0, L, and q.
The results of the computation made by this code for all three
transitions are summarized in Table III. The line shapes of all
transitions are also shown in Fig. 12, along with the effective
field dependence on frequency detuning. The computation

TABLE III. Shifts for Lorentz and Fano fits of the results, ob-
tained after including FEM simulated field into the model. The
lines were calculated for single atom trajectory with vz = 100 km/s,
vx = 0 km/s, and zero magnetic field.

Waveguide Line νL (MHz) νF (MHz)

WR-51 ν0 −3.55 −2.38
WR-75 ν1 −5.51 −11.12
WR-112 ν2 −2.34 +1.80

FIG. 12. Effective rf electric-field amplitudes Eeff for x = 0 in
the waveguide, obtained from FEM simulations (solid lines in top
sections of each panel) and transition line shapes computed with this
field (bottom sections in each panel) with Lorentz and Fano fits for
all transitions [ (a), (b), (c) for ν0, ν1, ν2, respectively]. The dashed
lines in the top figures represent the ideal electric-field amplitudes
without reflection calculated with Eq. (8) for each waveguide. Large
fluctuations of simulated rf electric field are caused by multiple
reflections inside the vacuum chamber. Those fluctuations lead to the
uncontrollable behavior of the line shape. The shifts of the Lorentz
fits (solid line bottom) and Fano fit (dotted line bottom) for different
J are shown.

was done for magnetic field B = 0 and single velocity vz =
100 km/s. The ν1 line shows a large shift of at least −6 MHz,
while other transitions show smaller shifts of several MHz for
the Lorentz fitting function.

4. Uncertainty of the experiment

The results of the field simulations show that the quasir-
andom modulation of the rf field amplitude causes line
distortions which can mimic the results obtained in experi-
ments. The lines may demonstrate asymmetry (discrepancy
between Lorentz and Fano fits) or no asymmetry with a
random shift. The root mean square of Lorentz fit center shifts
obtained in the simulations is around 4 MHz. This result can
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be used as a conservative estimation of the uncertainty of the
experiment caused by the rf field reflection.

Additional elements (cables, targets, and holders) not in-
cluded in the simulation but placed in the vacuum chamber
in the actual experiment could change the rf mode structure
of the vacuum chamber. Due to that, the simulation cannot
be used for a direct correction of the experimental results.
However, those elements could possibly absorb the rf power,
decreasing the quality factor of the vacuum chamber as an rf
cavity. Due to that, the field simulations could overestimate
the quasirandom variations of rf amplitude.

V. OTHER SYSTEMATIC EFFECTS

Using the master-equation model it is also possible to study
other perturbations that could affect Ps fine-structure measure-
ments. We found that the considered effects are negligible at a
level of accuracy on the order of 200 kHz. Although these
effects are not presently limiting measurements we briefly
describe them here because they may become important in
future measurements.

To estimate how a particular perturbation shifts the line,
we computed perturbed and unperturbed line shapes for all
three transitions’ fine structure. We use a difference between
perturbed and unperturbed Lorentz and Fano fit centers to
estimate the magnitude of the shift. The calculation of line
shape was completed using a single trajectory with velocity
100 km/s, magnetic field 32 G, and equal distribution of
the Zeeman components’ weights. The following effects were
considered.

a. Imperfect magnetic-field alignment. We introduce an
imperfect alignment by tilting the magnetic-field direction
by 10◦ from its ideal orientation. The simulation shows that
this changes the position of the fit centers for ν0, ν1, and ν2

components by approximately −10, −29, and +32 kHz for
both for Lorentz and Fano fits.

b. Polarization of positron beam. Because it is derived from
the beta decay of a radioactive source, the positron beam used
in the experiments is partially spin polarized [41]. Previous
experiments have indicated that the beam polarization is ≈0.3
[42], meaning that the Ps atoms will also be partially spin
polarized [43]. This polarization can be modeled via unequal
populations of 2 3S1(M = −1) and 2 3S1(M = +1) states at
the beginning of evolution. To match the experimentally mea-
sured polarization, the initial populations of corresponding
states were set to 14/60 and 26/60. We found that the line
does not show any asymmetry and the difference between the
Lorentz fit central frequency for polarized and unpolarized
beams does not exceed 2 kHz for all fine-structure compo-
nents.

c. Tilted polarization axis of rf field. Misalignment of the
polarization of the electric field is almost impossible because
it could happen only if the waveguide is mechanically tilted.
However, we checked what happens if the electric field of the
rf wave polarization axis is 10◦ off from its normal direction
along the z axis. The simulations indicate that the lines are
shifted by approximately −10, −29, and +32 kHz for both
the Lorentz and Fano fits.

d. Imperfect polarization near the meshes. In the actual
experiment, atoms enter and exit the waveguide through the

meshes in its upper and lower walls. The electric-field vec-
tor near the meshes may have random variations due to the
presence of wires. To mimic this effect we introduce in the
model a tilt of the rf wave electric field by angle θ (z) =
θ0[(z − za)/b]4, where θ0 = 45◦, za is a z coordinate of the
waveguide wall, and b is a height of the waveguide. The
simulation shows that the lines are shifted approximately by
−1, −2, and +3 kHz for both the Lorentz and Fano fits.

e. High harmonics in rf wave. We model an effect for
the second and third harmonic using replacement cos(ωt ) by
cos(ωt ) + 0.5 cos(Nωt ), where N = 2, 3. The Lorentz fits for
the second harmonic show the shift of the line center by −1.7,
−1.2, and +1.0 kHz; corresponding shifts for Fano fits are
−1.7, −1.2, and −1.5 kHz. The shifts for third harmonic
distortion are also small, not exceeding 1 kHz for both Lorentz
and Fano fits of all transitions.

VI. CONCLUSIONS

We have described a numerical model related to positro-
nium fine-structure spectroscopy experiments [6]. The model
is based on the formalism of a master equation in the Lind-
blad form, and allows us to include a variety of experimental
effects and investigate subsequent systematic shifts. We cal-
culated quantum interference effects and show conclusively
that they are negligible at the current level of experimental
precision.

A finite element simulation of the microwave radiation,
including reflections from the surrounding vacuum cham-
ber, was performed. We found that reflections of rf waves
may generate fields inside the waveguides that are able to
cause distortions of the resulting line shapes, arising from
frequency-dependent variations in the radiation field. Depend-
ing on the details of the reflections, this effect can lead to
asymmetric line shapes, and may even shift the line without
visible asymmetry (as characterized by the difference between
Fano and Lorentz fits; see Fig. 10). We also reproduce qual-
itatively the observations [6] of both positive and negative
shifts. The observed Fano-Lorentz difference is on the order
of a few MHz, which is comparable to those predicted by the
simulations. The root mean square of Lorentz fit center shifts
for simulated line profiles is about 4 MHz, which can be used
as an estimation of uncertainty caused by rf wave reflection.

An improvement of the experimental uncertainty
requires solving the problem of frequency-dependent rf
wave amplitudes. We expect that this can be achieved by
redesigning the waveguide and vacuum chamber elements so
as to eliminate reflections, or by constructing an active
monitoring and control system. In that case, the new
methods employed [6] should make it possible to achieve
measurements of the Ps n = 2 fine structure with a precision
at the 100 kHz level and bring the experimental uncertainties
in line with those of theory.
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