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Correspondence between the surface integral and linear combination of atomic orbitals methods
for ionic-covalent interactions in mutual neutralization processes involving H−/D−

Paul S. Barklem
Theoretical Astrophysics, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden

(Received 16 September 2021; accepted 23 November 2021; published 13 December 2021)

The surface integral method for estimating ionic-covalent interactions in diatomic systems been successful in
producing cross sections for mutual neutralization (MN) in reasonable agreement with experimental results for
branching fractions between final states in systems such as O+/O− and N+/O−. However, for simpler cases of
MN involving H− or D−, such as Li+/D− and Na+/D−, it has not produced results that are in agreement with
experiments and other theoretical calculations; in particular, for Li+/D− calculations predict the wrong ordering
of importance of final channels, including the incorrect most populated channel. The reason for this anomaly is
investigated, and a leading constant to the asymptotic H− wave function is found that is different by roughly a
factor of 1/

√
2 from that which has been used in previous calculations with the surface integral method involving

H− or D−. With this correction, far better agreement with both experimental results and calculations with full
quantum and linear combination of atomic orbitals (LCAO) methods is obtained. Further, it is shown that the
surface integral method and LCAO methods have the same asymptotic behavior, in contrast to previous claims.
This result suggests the surface integral method, which is comparatively easy to calculate, has greater potential
for estimating MN processes than earlier comparisons had suggested.

DOI: 10.1103/PhysRevA.104.062806

I. INTRODUCTION

Charge transfer, in which an electron moves from one atom
or ion to another during a collision, is a fundamental atomic
process. Mutual neutralization (MN), with the corresponding
reverse process ion-pair production

A+ + B− � A∗ + B, (1)

is an important special case, and methods for estimating cross
sections are important for interpreting experimental results
and testing our understanding of the physical mechanisms
involved [1–3], as well as modeling various plasma environ-
ments such as planetary and planetary-satellite atmospheres
[4], including earth’s ionosphere [5] and stellar atmospheres
[6,7], and being important for diagnostics of and fusion
plasma applications and high-energy physics experiments em-
ploying negative-ion sources [8]. The transferred electron is
captured into specific excited states A∗, and thus affects the
distribution of populations of states of atom A and its observed
spectrum. These processes occur predominantly through in-
teractions between ionic (A+ + B−) and covalent (A∗ + B)
configurations at avoided crossings in the adiabatic potential-
energy curves (e.g., [9,10]). Any method for estimating MN
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cross sections thus hinges on the ability to calculate the ionic-
covalent interactions.

A promising approach is the surface integral method. The
general technique was independently developed roughly si-
multaneously by a number of workers and thus is known
by various names, including the Holstein-Herring method
(e.g., [11]), the Firsov-Landau-Herring method (e.g., [12]),
and the Landau-Herring method (e.g., [13–15]). The original
papers on the idea include those by Firsov [16], Holstein
[17], and Herring [18], and the method was used to solve
problems in Landau and Lifshitz’s text Quantum Mechanics
[19], published in Russian in the 1950s; the asymptotic (large
internuclear distance R) splitting between gerade and unger-
ade states for H+

2 is solved in Sec. 81 of Ref. [19], building
on problem 3 in Sec. 50. The basic idea is that the interaction
energy can be calculated from the electronic current flowing
across a surface between the two nuclei, obtained by manip-
ulating Schrödinger equations corresponding to cases where
the electron is localized on either nucleus. On the assumption
that the wave functions are close to zero at the surface, i.e., in
the limit of large internuclear separations, the method allows
the interaction to be derived in terms of the atomic electronic
wave functions at the surface.

A key point in the use of the method is the choice of the
integration surface to ensure that wave functions are small.
Smirnov [20] derived expressions for the interaction in the
A+ + e + B system, assuming the interaction between e and
B to be zero and taking the integration surface as the midplane,
halfway between the two nuclei. Janev and Salin [14,15]
instead account for the potential due to B and chose the
integration surface to be a sphere around B where the poten-
tial becomes suitably small; see also Ref. [13] for an earlier
application in resonant charge transfer.
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Janev and Salin’s expressions for the couplings from the
surface integral method, which for consistency with previous
work [21,22] we will call the Landau-Herring-Janev (LHJ)
method, have been used in various studies of MN involving
H−, coupled with Landau-Zener dynamics, including MN of
alkalis with H− [23], H+

3 with H− [24], Si+ with H− [25],
and H+ and Be+ with H− [26]. In Refs. [21,22] the method
was compared with full quantum and linear combination of
atomic orbitals (LCAO) calculation results for MN of Li+,
Na+, and Mg+ with H−, and the results were found to dif-
fer significantly. Recent experimental results for branching
fractions in Li+/D− [1,2] and Na+/D− [3] have allowed cal-
culations to be tested, and full quantum and LCAO results [7]
have shown good agreement, implying the LHJ method is in
disagreement with these experiments. This is puzzling, given
that the LHJ method has been shown to produce estimates in
reasonable agreement with experiment for MN of N+/O− and
O+/O− [27,28].

Asymptotic methods such as LHJ and LCAO are of sig-
nificant importance for many applications, as estimates can
be made rather inexpensively compared to full quantum cal-
culation (quantum chemistry potentials and couplings with
quantum scattering), and thus, it is valuable to resolve the
origin of this discrepancy. The fact that the LHJ method
appears to work well for MN involving O− and less well
for the simpler H− would seem to suggest the following
possible explanations: (1) there is a problem with the H−
wave function used, (2) the agreement for O− is fortuitous,
or (3) the full quantum, LCAO, and experimental results are
in error. In this paper it will be shown that an error appears to
have been made in deriving the asymptotic H− wave function
used in all applications to MN involving H−, and correcting
this error brings the LHJ method into reasonable agreement
with other theories and experiments. Previous claims that the
discrepancy between the LHJ and LCAO methods is due to
fundamental problems in the LCAO method are reexamined
in light of this.

II. THEORY

Mutual neutralization occurs predominantly at avoided
crossings between adiabatic molecular potential curves, cor-
responding to real crossings in a diabatic representation (e.g.,
[9,10]). In a diabatic representation the states of the system
can be described in terms of ionic and covalent configura-
tions. The ionic configuration is the case where the active
electron is located on core B, that is, A+ + (e + B), labeled
i with the corresponding diabatic electronic wave function
�i, and the covalent configuration is the case where the ac-
tive electron is located on core A+, that is, (A+ + e) + B,
labeled c with wave function �c; see Fig. 1 for a sketch
of the system. These two configurations have corresponding
diabatic states with potentials that cross, Hii = 〈�i|H |�i〉 and
Hcc = 〈�c|H |�c〉, where H is the Hamiltonian, and have an
off-diagonal interaction (coupling) Hic = 〈�i|H |�c〉. In the
adiabatic representation, the potentials avoid crossing, and
a key quantity is the splitting between the adiabatic poten-
tial curves �U , as it enters the Landau-Zener formula for
the transition probability [9,29,30]. The transition probability
between adiabatic states is (in atomic units, which are used

FIG. 1. Sketch of the A+ + e + B system, where A+ is the singly
charged core, e is the active electron, and B is a neutral atom. In
the MN process [Eq. (1)], the electron moves from being localized
on center B, the ionic configuration i, to being localized on A, the
covalent configuration c.

throughout)

P = exp

(
− π�U 2

2vR|d (Hii − Hcc)/dR|R=Rx

)
, (2)

where vR is the radial component of the velocity of the relative
motion of the nuclei, R is the internuclear distance, and Rx is
the distance at which the diabatic potentials Hii and Hcc cross.
The splitting �U is related to the interaction Hic = 〈�i|H |�c〉
in the (nonorthogonal) diabatic basis (e.g., [31,32]),

�U (Rx ) = |�(Rx )|
1 − S2

ic

, �(Rx ) = 2(HiiSic − Hic)
∣∣
R=Rx

, (3)

where Sic = 〈�i|�c〉 is the overlap between states i and c.
Note that if the diabatic basis is orthogonal,

�U (Rx ) = �(Rx ) = 2Hic(Rx ). (4)

The references mentioned above, as well as Refs. [10,21,33],
can be consulted for more details on the Landau-Zener
model and the relationship between adiabatic and dia-
batic representations, including orthogonal and nonorthogonal
representations.

A. Surface integral method

The surface integral method can be used to estimate the
quantity � via

�(Rx ) =
∫

s
(�∗

i ∇�c − �∗
c∇�i )d�s, (5)

where s is the surface of integration; see Refs. [12,14,15,31]
for more details. Note that here, the wave functions � are only
the spatial components.

The LHJ theory, which chooses the surface s to be a sphere
centered on B, derives an analytic expression for �(Rx ) writ-
ten in terms of the asymptotic forms of the spatial atomic wave
function ϕ of the active electron. That is,

�(�r, �R) −−−→
R→∞

ϕ(�r) = Rnl (r)Ylm(θ, φ), (6)

such that Rnl (r) is the radial part of the wave function, Ylm is
the spherical harmonic function, and �r is the active electron
coordinate with respect to the relevant nucleus ( �rA or �rB).
When the active electron is on core A+, i.e., the system is
in the covalent configuration c, the asymptotic behavior of
the Coulomb wave function (i.e., the leading term of the
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asymptotic expansion) is used:

Rc(r) = Ncr1/γc−1 exp (−γcr), (7)

where −γ 2
c /2 is the binding energy of the electron and the

quantum numbers nl are now dropped from the radial function
R for simplicity. When the electron is on core B, thus forming
a negative ion, and the system is in the ionic configuration i,
the appropriate asymptotic form is used:

Ri(r) = Ni
2γi

π
kli (γir), (8)

where −γ 2
i /2 is the binding energy of the electron, and thus,

E−
B = γ 2

i /2 is the electron affinity of the negative ion, kl (x) is
the modified spherical Bessel function (e.g., [34]), and li is the
orbital angular momentum quantum number. For the specific
case of li = 0,

Ri(r) = Ni exp (−γir)/r. (9)

Both wave functions contain leading constants, Nc and Ni,
that must be determined. In the case of Nc, it can be estimated
from the Coulomb wave-function normalization constant
from quantum defect theory [35–37] (see, e.g., Eq. (19) of
Ref. [14]), which can be expected to give accurate results for
sufficiently excited states with diffuse wave functions well de-
scribed by quantum defect theory. The leading-constant factor
for the negative-ion function is, however, more problematic to
determine. Due to the 1/r factor, the normalization is domi-
nated by contributions at short distances where the asymptotic
form is not valid and overestimates the wave function, and
the value given by normalization Ni = √

2γi (see Ref. [38])
cannot be expected to give an accurate representation of the
asymptotic behavior. Ni should therefore be determined by
comparison with detailed atomic structure calculations. One
expects Ni >

√
2γi, and this has sometimes led to the use of a

cutoff value r0, below which the wave function is zero and can
be chosen to give correct normalization (e.g., Refs. [21,38]).

Using these wave functions, Refs. [15,39] give the expres-
sion for �(Rx ) as

�(Rx ) = δmimc NiRc(Rx )

(2γiRx )|mc||mc|!

×
[

(2lc + 1)(2li + 1)(lc + |mc|)!(li + |mi|)!
(lc − |mc|)!(li − |mi|)!

]1/2

,

(10)

which for li = 0, as in the case of H− (1S), reduces to the
rather simple expression

�(Rx ) = NiRc(Rx ) × (2lc + 1)1/2. (11)

The modification due to angular momentum coupling to core
electrons in complex systems, including those with equivalent
electrons, is given in Refs. [12,15,39]. The major advantage of
this approach is that, as can be seen, it reduces to an analytic
expression and does not require the evaluation of any matrix
elements of the Hamiltonian.

B. LCAO method

The LCAO approach can be used to calculate �(Rx )
through the calculation of the matrix elements of the

Hamiltonian using the same or similar atomic wave functions
for the active electron. This was done in Refs. [21,32,40,41]
for the case involving H−, considering two electrons. The
main differences between these different descriptions are
the treatment of the two-electron wave functions, leading to
slightly different expressions, but they are equivalent asymp-
totically (at large separations R). For the purposes of our
discussion, a much simpler one-electron version is preferable,
again equivalent to the above formulations at large R.

Considering the model and coordinate system given in
Fig. 1, ignoring any interactions with the neutral atom B, the
Hamiltonian is H = −1/rA, and we have the rather simple
expression in terms of atomic wave functions

Hii = 〈ϕi| − 1

rA
|ϕi〉, (12)

where for large R we have

〈ϕi| 1

rA
|ϕi〉 ≈ 1

R
, (13)

and similarly,

Hic = 〈ϕi| − 1

rA
|ϕc〉. (14)

Using these results in Eq. (3), we obtain

�(Rx ) ≈ 2

(
− 1

R
〈ϕi|ϕc〉 − 〈ϕi| − 1

rA
|ϕc〉

)∣∣∣∣
R=Rx

≈ 2〈ϕi| 1

rA
− 1

R
|ϕc〉

∣∣∣∣
R=Rx

, (15)

where we now define

Tic(R) ≡ 2〈ϕi| 1

rA
− 1

R
|ϕc〉, (16)

the “postinteraction operator” T of charge-transfer theory also
found in Refs. [32,40]. The same result is found through a
different derivation in Sec. 10.3 of Ref. [42].

Analytic expressions for Tic(R) can be obtained by adopt-
ing the asymptotic forms of the atomic wave functions given
above, although for any given lc and li, they are significantly
more complex than those arising from the surface integral
method for �(Rx ) given above. Expressions for both Tic(R)
and Sic(R) for the lc = li = 0 case are given in the Appendix.

C. H− asymptotic wave function

The general theory of asymptotic wave functions has been
well expounded, for example, in Sec. 2.1 of Ref. [43], as well
as Ref. [44]. The derivation of the asymptotic wave function
for H− is particularly simple, and so it is instructive for the
following discussion to present the basic equations (see, e.g.,
Refs. [41,42,44] for details). The two-electron nonrelativistic
Hamiltonian, in atomic units, is

H = −1

2
∇2

1 − 1

2
∇2

2 − 1

r1
− 1

r2
+ 1

r12
, (17)

where r1 and r2 are distances of electrons with labels 1 and
2 to the proton and r12 is the distance between electrons.
Taking the asymptotic case r1 � r2, then r12 ≈ r1, the asymp-
totic form then allows separation into terms related to each
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electron,

H ≈
(

−1

2
∇2

1

)
+

(
−1

2
∇2

2 − 1

r2

)
≡ H1 + H2, (18)

such that H1 is the Hamiltonian for the loosely bound distant
electron and H2 is the Hamiltonian for the tightly bound
electron close to the proton. Then the time-independent
Schrödinger equation becomes

(H1 + H2)ψ = (−EH− + E1s
H

)
ψ, (19)

where ψ is the electronic wave function, E1s
H is the energy

of the hydrogen ground state (−0.5 a.u.), and EH− is the
electron affinity of H (a positive value; see below). Separating
the total wave function ψ into spatial and spin functions
ψ = ϕ( �r1, �r2)χS=0, where χS=0 is the singlet spin function,
the asymptotic spatial wave function becomes

ϕasymp( �r1, �r2) = ϕLR( �r1)ϕH
1s( �r2), (20)

where H2ϕ
H
1s( �r2) = E1s

H ϕH
1s( �r2) and thus ϕH

1s(�r) =
exp (−r)/

√
π is the hydrogen ground-state function, and

the long-range (LR) electron function is the solution of

H1ϕLR( �r1) = (− 1
2∇2

1

)
ϕLR( �r1) = −EH−ϕLR( �r1). (21)

The spherically symmetric (l = 0) solution is

ϕLR(�r) = A exp (−γ r)/r γ r � 1, (22)

where γ = √
2EH− and A is an arbitrary constant related to Ni

in Eq. (9), which we need to determine. The electron affinity
of H from modern measurements is EH− = 0.754195(19) eV
or 0.0277162 a.u. [45], which gives γ = 0.235441 in atomic
units. The validity condition γ r � 1 thus requires r � 1/γ =
4.26 a.u. As will be shown below, A = Ni

1√
4π

, and correct nor-

malization would imply Ni = √
2γ ≈ 0.686 and A ≈ 0.194.

Unfortunately, a range of different definitions and notations
for the asymptotic function and the leading constant have been
used in various sources. Part of this difference often arises
from separation into radial and angular components, for this
case (l = 0)

ϕLR(�r) = R(r)Y00(θ, φ) = R(r)
1√
4π

. (23)

In early papers by Smirnov [20], the following definition was
used:

R(r) = AS65

√
2γ exp (−γ r)/r, (24)

where
√

2γ arises because the function is correctly normal-
ized if AS65 = 1 (see Sec. II A). In Ref. [20], the value A2

S65 =
2.65 was derived, which means AS65 = 1.63. This implies
A = AS65

√
2γ 1√

4π
= 0.316. Later work by Smirnov and oth-

ers [14,23,38,42,46] adopted the definition

R(r) = AS exp (−γ r)/r = BS

√
2γ exp (−γ r)/r, (25)

such that B in Ref. [42], here denoted BS , is equal to AS65.
Note that AS = Ni and is thus the value required for use in
the equations of Janev and Salin [14,15], that is, Eqs. (10)
and (11). Smirnov [38,42,46] derived AS from the simple
Chandrasekhar two- and three-parameter wave functions [47],
finding a value of AS = 1.13 ± 0.06, and thus, BS = AS65 =
1.64 ± 0.08. A value of AS in this range has been used in

all applications of the LHJ method to processes involving H−
[21–26]. This gives A = AS

1√
4π

= 0.319.
In LCAO applications [40,41] the value A = 0.223106

has been used, determined from the 203-parameter variational
wave function of Pekeris [48], with asymptotic values of the
wave function being presented in Ref. [49]. This derivation
will be discussed in Sec. II C 1. In Ref. [22] the LCAO method
was applied, and the same value is essentially used, but a
factor of

√
2 must be applied to adjust for the antisymmetrized

version of the asymptotic wave function that was employed.
Clearly, there is a discrepancy between the leading constant

of the asymptotic wave function derived by Smirnov and used
in all LHJ theory applications, A ≈ 0.319, and the value that
has been applied in LCAO calculations, i.e., A ≈ 0.223. The
two values of A differ by a factor of roughly

√
2. In the

following we repeat both derivations in detail to show the
source of the problem.

1. Direct matching of the asymptotic wave function

The most straightforward approach to determining the ap-
propriate constant in the asymptotic wave function is through
direct matching to a calculated wave function for H−. This is
the approach that has been used in the LCAO case, and the
method stems from Ref. [49]. They defined a function equal
to the two-electron spatial wave function where either r1 = 0
or r2 = 0, ψ (r) in their notation. Here, we denote this same
function:

ϕ0(r) ≡ ϕ( �r1 = 0, | �r2| = r) = ϕ(| �r1| = r, �r2 = 0)

= C(r) exp (−γ r)/r, (26)

such that C(r) is the same as in Ref. [49] and converges
to a constant value C(∞) at large r [50]. Equating to the
asymptotic wave function from above, Eq. (20), taking r2 = 0,
we obtain

ϕ
asymp
0 (r) = ϕLR(| �r1| = r)ϕH

1s( �r2 = 0)

= ϕLR(r)
1√
π

= A exp (−γ r)/r
1√
π

, (27)

which means A = C(∞)
√

π . In Ref. [49], C(∞) = 0.125874,
and thus, A = 0.223106 was found by matching points at r =
14–16 a.u. from the calculated values of ϕ0(r) extracted from
the 203-parameter wave function of Ref. [48] given in their
Table 1. This is the value used in LCAO calculations.

Figure 2 compares ϕ0(r) extracted from various detailed
calculations of the wave function ϕ( �r1, �r2) with asymptotic
forms of the wave function ϕ

asymp
0 (r) for the two different

values of A discussed above. It is clearly seen that A ∼ 0.223
matches all the functions better than the higher value of A ∼
0.319. Note that among detailed calculations, only the Pekeris
wave function has the expected asymptotic form even at very
long range since the variational form of the wave function
used ensures correct asymptotic behavior. The two- and three-
parameter wave functions derived by Chandrasekhar [47] are
of particular interest as they were used by Smirnov and also
because they are so simple that they can be used to exemplify
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FIG. 2. The asymptotic H− wave function ϕ0(r) as defined in
Eq. (26), extracted from various detailed calculations of the wave
function ϕ( �r1, �r2): the 203-parameter function from Pekeris [48] cal-
culated in Ref. [49], the 19-parameter function of Hart and Herzberg
[51], and the 2- and 3-parameter functions of Chandrasekhar [47].
Asymptotic forms [Eq. (27)] with the two values of A discussed in
the text are also shown.

various issues. The Chandrasekhar wave function is

ϕ( �r1, �r2) = N[exp (−ar1 − br2) + exp (−ar2 − br1)]

× (1 + cr12), (28)

where for the two-parameter function (c = 0) he found
through variational calculations a = 1.03925 and b =
0.28309 and it can be found from the normalization condi-
tion that N = 0.031443 and for the three-parameter function
introducing correlation he found a = 1.07478, b = 0.47758,
c = 0.31214 and it can be found that N = 0.031226. That a ≈
1 in both cases shows the expected result of an unscreened
hydrogen 1s-like function for the electron close to the proton,
with a more distant long-range electron. Having said that, it
is clear that the functions do not have the correct asymp-
totic behavior when the distant electron is very far from the
nucleus. The Chandrasekhar 2-parameter function does not
have asymptotic behavior at any distance, and the 3-parameter
and Hart and Herzberg 20-parameter functions [51] have only
roughly asymptotic behavior in the region r ≈ 4–10 a.u. This
is due to the fact that the asymptotic region has little influence
on the state energies and thus the wave function determined
by variational methods.

2. Electronic-density-matching method

An alternative approach, which has been used by Smirnov
[38,42,46], is to match the electron density function. Gener-
ally, for an N-electron system, ignoring spin, the electronic
density is

ρ(�r) = N
∫

d �r2 · · ·
∫

d �rN |ϕ(�r, �r2, . . . , �rN )|2, (29)

and thus, for H− and two electrons

ρ(�r) = 2
∫

d �r2|ϕ(�r, �r2)|2. (30)

FIG. 3. Derived values for A as a function of r. Corresponding
values for AS are shown on the right axis. The blue (dark gray)
lines show the values derived from Chandrasekhar’s two-parameter
wave function, and the orange (light gray) lines are from the three-
parameter wave function. In each case, dashed lines are from the
electronic density matching method, and dotted lines are from the
direct matching method. The horizontal solid red line shows the value
derived from direct matching to the accurate wave function due to
Pekeris [48]; see Fig. 2 and Sec. II C 1.

For the asymptotic form this gives

ρasymp(�r) = 2
∫

d �r2

∣∣ϕLR(�r)ϕH
1s( �r2)

∣∣2

= 2|ϕLR(�r)|2
= 2A2 exp (−2γ r)/r. (31)

As done by Smirnov, one can derive analytical expressions for
the asymptotic constant A or some related version of it, e.g.,
AS or AS65, as a function of r by equating the asymptotic form
with the electronic density calculated from Chandrasekhar’s
wave functions, and the expressions found by Smirnov are
given in Refs. [38,42]. Using Mathematica, this analysis was
repeated here, making use of Hylleraas coordinates for the
three-parameter case [52,53], and the results are plotted in
Fig. 3.

From Fig. 3 it can be seen that the values of A and AS as
a function of r from electronic density matching of both the
two- and three-parameter Chandrasekhar wave functions are
roughly constant and in agreement around r = 2–5 a.u., the
region used by Smirnov to derive AS . Figure 3 clearly favors
a low value, A ≈ 0.22 (AS ≈ 0.79), rather than a high value,
A ≈ 0.32 (AS ≈ 1.13). Thus, the analysis presented here from
electron density matching is roughly in agreement with the
value from direct matching, A = 0.223 (AS = 0.791), which
is roughly a factor of 1/

√
2 lower than that found by Smirnov,

A ≈ 0.32 (AS ≈ 1.13). The difference is not precisely a factor
of 1/

√
2 since different wave functions are used, the direct

method permitting the easy use of the accurate 203-parameter
function of Pekeris.

Note that the criterion for validity of the asymptotic wave
function, r � 1/γ = 4.26 a.u., is not satisfied across this
entire region r = 2–5 a.u. Further, it is clear that the Chan-
drasekhar wave functions do not have correct asymptotic
behavior, as is seen from application of the direct method,
which gives rapidly varying values of A (see also Fig. 3). That
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the density-matching method using these simple wave func-
tions gives values that agree reasonably with the values from
direct matching of the accurate and asymptotically correct
wave function of Pekeris is thus perhaps somewhat surprising.
It may reflect that the density method, by accounting for
contributions from both electrons at intermediate distances,
reaches asymptotic behavior at smaller internuclear distances
than the direct method, in which the second electron is fixed
at the nucleus. Contributions from both electrons to the wave
function are equal, ϕLR(�r) = ϕH

1s(�r), at roughly r = 2.3 a.u.

III. COMPARISON OF THEORETICAL CALCULATIONS
AND EXPERIMENTS

Experiments were recently performed in Louvain on MN
of Li+/D− [1] and at the Double ElectroStatic Ion Ring
ExpEriment (DESIREE) facility in Stockholm on Li+/D−
[2] and Na+/D− [3], resolving final states and thus mea-
suring branching fractions for the neutral products. D− is
preferred over H− in the experiments for practical reasons
but is basically identical to H− in terms of binding energy
(electron affinity) and thus electronic structure. The differ-
ent mass leads to trajectory (Coulomb-focusing) effects but
is easily accounted for in the dynamical calculations. In a
recent paper [7], existing full quantum calculations [54–56]
and (two-electron) LCAO method calculations [21,22] were
compared with experiment, generally finding good agreement,
with the full quantum calculations performing best, in line
with expectations. The reader is referred to Ref. [7] for a dis-
cussion regarding these comparisons, including the discussion
of Coulomb-focusing effects caused by H− versus D−.

Here, these comparisons are supplemented with calcula-
tions from the LHJ theory using the two A values discussed,
and these calculations use the same code as the LCAO cal-
culations, described in Refs. [21,22]. The results are shown
for Li+/D− in Fig. 4 and for Na+/D− in Fig. 5. To aid
comparison (see Ref. [7]), the plots are presented on the re-
duced energy scale, which is defined as ER = ECM/μ = 1

2v2,
where ECM is the collision energy in the center-of-mass frame,
μ is the reduced mass of the system, and v is the relative
velocity. It is clear that the comparisons with experiment are
significantly improved for both Li+/D− and Na+/D− if the
low value of A = 0.223 is adopted, compared to the high value
of A = 0.319. In particular we note that for Li+/D− (Fig. 4),
the high value leads to the prediction of 3p being the dominant
channel at low energy, rather than 3s, as clearly seen to a
high degree of certainty in experiments. This discrepancy is
resolved for the LHJ theory with the lower value of A. Further,
the low value of A leads to much better consistency between
full quantum, LCAO, and LHJ predictions in both cases. Note
also that LHJ with the high value of A leads to variation of the
branching fractions at lower collision energies.

Janev and Radulovic [23] also performed calculations with
the LHJ method for Li+/H− and Na+/H−, although state-
resolved results were shown for only Na+/H− (their Fig. 1).
Our results for Na+/H− partial cross sections are significantly
different from theirs; in particular at low energy they found
3p to be the second most populated channel, only an order
of magnitude lower than 4s. This is in strong disagreement
with experiment, where the 3p channel is not observed, and

FIG. 4. Branching fractions for the MN reaction Li+ + D− →
Li(nl ) + D as a function of reduced collision energy. The 3s, 3p,
and 3d channels are shown in separate panels. Experimental results
from Louvain [1] and from DESIREE [2] are shown, with estimated
errors (1σ ). Theoretical results are shown from full quantum (FQ)
calculations and LCAO and LHJ asymptotic methods with the old
(high) value for A and the new (low) value for A; see text for further
details. Theoretical results are also shown for the case where D− is
replaced by H−, marked by (H) in the legend.

with all other calculations, including our LHJ calculations
with the old, high value of A, for which we find the cross
section for 3p to be more than five orders of magnitude lower
than 4s; this may suggest a labeling error. In Ref. [56] sub-
stantial differences were also noted compared to full quantum
calculations. This was investigated further by comparing our
LHJ theory avoided-crossing parameters with those in Table
1 of Ref. [23], in particular �(Rx ). However, for both Li and
Na we were unable to reproduce all of their results using the
equations and numbers in the paper. Using their equations,
their value for the leading constant in the negative-ion radial
wave function, and their values for Rx, we obtain �(Rx ) in
agreement (within 10%) for a few crossings (Li 2s and 2p,
Na 3p), but for the majority there are significant differences
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FIG. 5. Branching fractions for the MN reaction Na+ + D− →
Na(nl ) + D as a function of reduced collision energy. The 4s, 3d , and
4p channels are shown in separate panels. Experimental results from
DESIREE [3] are shown, with estimated errors (1σ ). Theoretical
results are shown from full quantum (FQ) calculations and LCAO
and LHJ asymptotic methods with the old (high) value for A and the
new (low) value for A; see text for further details. Theoretical results
are also shown for the case where D− is replaced by H−, marked by
(H) in the legend.

(up to a factor of 2.5 for Na 4p), with our result usually
being larger (only for Li 3d do we obtain a roughly 20%
smaller value). Our LHJ theory values using A = 0.319 agree
well with what we calculate from the equations in Ref. [23],
which are just simpler versions of the more general theory. As
such, detailed comparison of the avoided-crossing parameters
is not particularly enlightening for the more general problem
of interest here, namely, the relationship between LHJ theory,
LCAO theory, and experiment.

Dochain and Urbain [57] semiempirically found a similar
need for a factor of 1/

√
2 correction to the couplings in LHJ

theory and in doing so obtained good matches to experimental
results for MN of D− with He+, Li+, Na+, C+, and N+,
although with some discrepancies for O+.

Finally, it is worth noting that calculations with the
Smirnov formulation of the surface integral method [20], tak-
ing the surface of integration as the midplane between the two
atoms, while improving with the lower value of A, still per-
form substantially worse than the Janev and Salin formulation
(see also Ref. [26]).

IV. DISCUSSION

It was claimed in Ref. [39] that the LCAO method is
“essentially incorrect for the problem of calculation of �(R),”
with reference to the work of Herring [18]. It is, however,
unclear that the criticisms of the LCAO method for the cases
discussed by Herring, the exchange interaction [58] in H+

2 and
H2, apply also to ionic-covalent interactions. First, the prob-
lem of the 1/r12 term described for the exchange interaction
in H2 is not relevant, as it does not enter the one-electron
LCAO method (see Sec. II B) and in the two-electron methods
enters only empirically via the H− electron affinity and wave
function (e.g., Eq. (10) of Ref. [21]). Second, in both cases,
a basis with a single tightly bound 1s wave function is used
in the LCAO description. In the case studied in detail by
Herring for the exchange splitting in H+

2 , the surface integral
approach permits a modification factor which increases the
value of the wave function between the two nuclei, capturing
departures of the molecular wave function from the atomic
ones, which cannot be modeled in a LCAO basis with a single
fixed orbital. In contrast, the LCAO method for ionic-covalent
interactions employs two wave functions that capture the main
components of the molecular wave function at internuclear
distances corresponding to the crossing.

More quantitatively, Ref. [39] claimed that there is a dis-
crepancy between the asymptotic behavior of the interactions
in the LHJ and LCAO formulations. For LHJ the interaction
has the asymptotic behavior

�LHJ(Rx ) ∝ exp(−γcRx ) (32)

at large Rx [see Eqs. (10) and (7)], while for LCAO at large R,
Ref. [39] claimed the asymptotic behavior is

�LCAO(Rx ) ∝ exp[−(γi + γc)Rx]; (33)

however, this relationship is asserted without proof and misses
the important fact that γi and γc are related at the crossing
point Rx. Assuming a pure Coulomb interaction for the ionic
potential and a null potential for the covalent state, the cross-
ing point is given by

1

Rx
= γ 2

c

2
− γ 2

i

2
. (34)

Using the one-electron LCAO expression for Tic(R) for
lc = li = 0 given in the Appendix and making the sub-
stitution γi → √

γ 2
c /2 − 2/Rx, an analytic expression for

�LCAO(Rx ) = Tic(R = Rx ) can be obtained. This results in a
complicated expression which is no longer dependent on γi

and which can be shown to have the same behavior as the
LHJ theory for large Rx; i.e., for lc = 0

�LHJ(Rx ) = NiRc(Rx ). (35)

This agreement is most convincingly shown by numerical
results for the ratio �LCAO/�LHJ, which is dependent only on
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FIG. 6. Three-dimensional mesh plot of the ratio �LCAO/�LHJ as
a function of γc and Rx for lc = li = 0 analytic expressions obtained
as described in the text. The ratio tends to 1 for Rx � γ −2

c (see text).
The plot ranges from n∗ = 2 (γc = 0.5) to n∗ = 10 (γc = 0.1).

γc and Rx, as shown in Fig. 6. The condition for validity of the
LHJ method is Rx � γ −2

i (Ref. [14]), which, noting that for
large Rx we have γi ≈ γc − 1/(γcRx ), is roughly equivalent
to Rx � γ −2

c . The ratio is seen to be exactly 1 in the region
of validity of the LHJ theory. Note the effective principle
quantum number of the neutral state on A is n∗ = 1/γc; thus,
the validity criterion can also be written Rx � n∗2. Outside
the region of validity for the LHJ theory, at crossings at
shorter internuclear distances, the LCAO theory gives larger
interactions, and the disagreement increases very rapidly.

In summary, previous claims that LCAO theory is incorrect
for ionic-covalent interactions at large internuclear distance
seem to be unfounded, and correction of the leading constant

for the H− asymptotic wave function in the LHJ theory brings
the two theories into reasonable quantitative agreement for the
two cases of MN of Li+ and Na+ with H− and D−. It has also
been shown that the LCAO and LHJ theories have the same
behavior for large Rx. The LCAO theory has been developed
only for cases involving H− and D−, treating two electrons to
varying degrees of complexity. The surface integral method,
LHJ, is, however, easily applied to any given situation if the
asymptotic wave function for the negative ion is known. The
results shown here suggest that if correct wave functions for
the active electron on the negative ion can be obtained, LHJ
theory can be used to obtain reasonable estimates for MN
processes occurring at a large internuclear distance in prac-
tically any system, perhaps even those involving molecules,
and thus is of potentially great utility for situations such as
astrophysical modeling, where often a large number of rate
estimates are needed and completeness can be more important
than accuracy. It would be useful also to further develop and
investigate the utility of the one-electron LCAO method as
outlined in this paper, enabling application to complex atoms
beyond H− and D−.
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APPENDIX: ONE-ELECTRON LCAO INTEGRALS FOR lc = li = 0

The matrix element Tic(R) can be derived analytically using the asymptotic atomic wave functions, Eqs. (7) and (9), for the
radial parts Rc and Ri of the asymptotic spatial atomic wave functions ϕc and ϕi, respectively. The simplest possible case is
taken, where both ϕc and ϕi are spherically symmetric and lc = li = 0. It is instructive to first consider the overlap, which can be
shown to be

Sic(R) = 〈ϕc|ϕi〉 = Ni

γiR

∫ R

0
dr r Rc(r)e−γiR sinh(γir) +

∫ ∞

R
dr r Rc(r)e−γir sinh(γiR), (A1)

where r = rA (see Fig. 1). Performing these integrals with the aid of Mathematica, we obtain in its most compact form

Sic(R) = − NcNi

2γiR
[(γc − γi )(γc + γi )]

− γc+1
γc e−γiR

{
(γc − γi )

1
γc

+1
[

e2γiR�

(
1 + 1

γc
, (γc + γi )R

)
− �

(
1 + 1

γc

)]

+(γc + γi )
1
γc

+1
[
�

(
1 + 1

γc

)
− �

(
1 + 1

γc
, (γc − γi)R

)]}
, (A2)

where �(z) is the Euler gamma function and �(a, z) is the incomplete gamma function (see, e.g., Ref. [34]). Similarly, Tic(R) can
be evaluated simply by adding the operator T = 2( 1

rA
− 1

R ) into Eq. (A1). Evaluating these integrals gives, in its most compact
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form,

Tic(R) = − NcNi

γcγiR2
[(γc − γi )(γc + γi )]

− γc+1
γc e−γiR

(
2γcγie

R(γi−γc )[R(γc − γi )(γc + γi)]
1
γc

−
{

(γc − γi)
1
γc

+1[γcR(γc + γi ) − 1]

[
�

(
1

γc

)
− e2γiR�

(
1

γc
, (γc + γi )R

)]}

+ (γc + γi )
1
γc

+1[γcR(γc − γi ) − 1]

[
�

(
1

γc

)
− �

(
1

γc
, (γc − γi )R

)])
. (A3)
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