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Benchmark angle-differential cross-section ratios for the electron-impact excitation of the xenon
5p6 1S0 → 5p56s[3/2]2, 5p56s[3/2]1, 5p56s′[1/2]0, and 5p56s′[1/2]1 + 5p56p[1/2]1 transitions

at low and near-threshold incident electron energies
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Experimental benchmark intensity ratios for the angle-differential scattering intensities for electron-impact
excitation from the xenon ground state 5p6 1S0 to its lowest five excited states 5p56s[3/2]2, 5p56s[3/2]1,
5p56s′[1/2]0, and (combined) 5p56s′[1/2]1 + 5p56p[1/2]1 are reported and compared to predictions from a
full-relativistic B-spline R-matrix close-coupling model as well as earlier experimental work. The above ratios,
which provide a stringent test of theoretical electron scattering models, are presented for this heavy rare gas
with particular emphasis on the role of spin-exchange and direct excitation processes affecting their angular
dependence.
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I. INTRODUCTION

The noble gases are interesting species as buffers in both
industrial applications and atomic collision studies. Xenon
is used in high-intensity discharge lamps [1], pulsed lamps
[2,3], in lasers for medicine [3,4], in NMR studies of lungs
[5], and other applications, for example, in plasma displays.
It also has a rich target structure involving open shells in the
excited states and is of particular interest in electron scattering
involving spin-exchange and spin-orbit coupling relativistic
effects, both in the target structure and for the scattering
(continuum) projectile. Such processes are fundamental in
electron-atom collisions. The inert rare gases are relatively
easy to handle as targets for experimental electron-atom stud-
ies. As a consequence, they have been studied extensively, and
much progress has been made in the theoretical modeling of
electron–rare-gas collisions. Many of the advances in the the-
oretical modeling of collisions with them have subsequently
been applied to other experimentally less inaccessible atomic
targets, such as metals, halides, or other corrosive vapors.

It is, however, only recently that these major advances
were made in the theoretical modeling, especially at low
incident electron energies (E0) in the threshold region near
the low exited states and the ionization potential or slightly
above. Presently, a paucity of data exist to challenge mod-
els in this near-threshold energy range. A survey paper on
electron–rare-gas collisions (Ne, Ar, Kr, Xe) was written by
Bartschat and Madison in 1987 [6]. Their calculations were
based on the semirelativistic distorted-wave Born approxima-
tion (DWBA), which provides a perturbative solution to the
electron-collision problem. In this model, exchange effects
were approximately accounted for by a semiempirical (local)
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model potential along the lines of Furness and McCarthy [7],
while the one-electron relativistic effects (most importantly
the spin-orbit interaction) were also included. These potentials
were added to the static Hartree potential of the final-state
electron configuration of the target, and the distorted waves
were calculated in the resulting potential. Their model did
very well when compared, e.g., to the electron-photon coin-
cidence work of Khakoo and McConkey [8] and measured
differential cross sections (DCSs) for Ne, Ar, and Kr (see
Ref. [6]).

This model was followed by a full-relativistic distorted-
wave approximation (RDWA) [9], yielding comparable ac-
curacy as the semirelativistic DWBA. In these models the
rare-gas ground state (np6) 1S0 and the excited np5(n + 1)s
states were described by just a single configuration each.
The four excited states are combinations of LS states, two
with total electronic angular momentum J = 1, the third with
J = 2, and the fourth with J = 0. While the two states with
total angular momenta J = 0, 2 are well LS coupled, the J = 1
states are a linear combination of two states, with the details
depending on the coupling scheme used. A popular scheme is
the so-called intermediate coupling adopted by Cowan [10],
in which a linear combination of LS-coupled 1P1 and 3P1

states is used to describe these excited np5(n + 1)s (J = 1)
states of the rare gases. One can, of course, extend this to a
multiconfiguration expansion framework using higher-lying
LS states as well. For example, a multiconfiguration expan-
sion (eight or more terms) for the 2p5 3s states of Ne was
used in [11].

Major breakthroughs came in the 1990s. As a result of
increasing computational power, physically more accurate
close-coupling methods began to do much better than per-
turbative theories, especially at near-threshold energies for
excitation of relatively simple quasi-one- and quasi-two-
electron targets, such as atomic hydrogen and helium as well
as the light alkalis and alkaline earth atoms. These were
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the convergent close-coupling (CCC) [12,13] and R-matrix
(close-coupling) with pseudostates (RMPS) [14,15] methods.
The use of pseudostates extended the traditional low-energy
close-coupling method to intermediate and (possibly) high
energies. Pseudostates have the mathematical properties of
bound states. Most importantly, they are easily normalizable,
but due to their confinement to either a hard (R matrix) or a
soft (CCC with a Laguerre basis) box, they provide a proper
discretization of the target continuum. While these methods
have been extremely successful for light (quasi-) one-electron
and (quasi-) two-electron atomic and ionic targets, even (re-
cently) for the H2 molecule [16], the situation is much less
satisfactory for more complex, open-shell targets. The chal-
lenges are increased if these targets are also heavy, because
both electron-electron correlation and relativistic effects need
to be described properly by the theoretical methods.

The currently available CCC models are generally limited
to one-electron [12,17] and two-electron systems [18] outside
of a structureless 1S0 or 1�0 core [19]. In these cases the
resulting collision data are impressively accurate and bench-
mark cross sections for electron scattering from such targets
have been generated. This success clearly revealed that close-
coupling calculations provide the most physically tractable
and accurate method for solving low-energy electron-atom
or electron-molecule scattering problems, as was suggested
early on by Poet [20] for atomic hydrogen in a simplified S-
wave model. The well-known R-matrix close-coupling model
of the Belfast group [21] was demonstrated for more com-
plex targets with relativistic effects [22]. However, numerous
high-quality experimental datasets (see, e.g., Refs. [23–26]
from our group) continued to represent significant challenges
to theoretical treatments of the heavy rare gases (Kr, Xe),
leading theoreticians to seek further progress in developing
sophisticated approaches and the associated computer codes
for electron collisions with complex targets.

A very promising method available for these rare-gas tar-
gets is the recent B-spline R-matrix (BSR) approach that
allows the use of nonorthogonal sets of one-electron or-
bitals, employing B splines to represent them. Technically,
this has the advantages of compact configuration-interaction
expansions to yield sufficient accuracy as well as the availabil-
ity of accurate and efficient integration schemes. A general
computer code that can be used for calculations of atomic
structure, photo-ionization, and electron collisions in a non-
relativistic and semirelativistic (Breit-Pauli) framework was
published by Zatsarinny [27] and has been used for numerous
calculations of the above processes. For a general overview
of the method and its applications until 2013 we refer to
the review by Zatsarinny and Bartschat [28]. Similar to the
Belfast code, the available suite of computer codes is general;
i.e., it is applicable to targets such as the heavy noble gases
of interest for the present work. A fully relativistic version
described by Zatsarinny and Bartschat [29] also exists. While
a comprehensive write-up is not presently available due to
the recent passing of Dr. Zatsarinny in March 2021, the BSR
code with instructions is freely available from his GitHub site
[30]. Furthermore, attempts to make the code accessible to
a wider audience, i.e., not just specialists, is currently being

undertaken on the Atomic, Molecular, and Optical Science
(AMOS) Gateway [31].

II. ANGLE-DIFFERENTIAL CROSS-SECTION RATIOS

In the past, for the rare gases, there were significant dis-
agreements observed between theory and experiment, for
angle-differential and even angle-integrated cross sections.
These were usually accredited to problems in the absolute
normalization process of the experimental data using conven-
tional electrostatic electron spectrometers [32]. This problem
is difficult to overcome systematically when normalizing in-
elastic scattering features, with nonzero energy loss EL, to
the elastic standard scattering feature (EL = 0) in an energy
loss spectrum acquired by the electrostatic spectrometer. This
needs a reliable and accurate characterization of the spectrom-
eter’s analyzer’s detection efficiency for different EL values in
the energy loss spectrum. Here, in order to obtain absolute
inelastic DCSs, the scattering intensities of inelastic features
in the same energy loss spectrum are normalized to the elastic
scattering intensity by using DCSs for elastic scattering at the
same E0 and scattering angle θ . This requires that the ana-
lyzer’s detection efficiency characterized by the residual elec-
tron energy ER(= E0–EL ) is accurately known. Standardized
elastic scattering DCSs are accurately determined by using
the well-established relative flow method [33] in the ≈10%
uncertainty region. Knowing an accurate analyzer detection
efficiency characteristic, the absolute inelastic DCSs may be
determined from the spectrum, provided the elastic DCS is
known in tandem with the analyzer detection efficiency.

This is indeed the case for electron time-of-flight (TOF)
electron spectrometers, where—unlike for conventional elec-
trostatic spectrometers—the detection efficiency is indepen-
dent of ER of the scattered electron, since the system does not
employ electrostatic focusing in the electron detector. In our
laboratory, we recently built an electron time-of-flight (TOF)
spectrometer to determine such accurate elastic-to-inelastic
differential electron scattering ratios for the excitation of the
H2 X 1�+

g → b 3�+
u transition [34]. These benchmark ratios

(which were measured by the TOF system) were found to
be in excellent agreement with predictions from the CCC
model by the Curtin University group [34]. After normal-
izing our TOF spectrum’s elastic feature to well-established
elastic electron scattering DCSs from our group [35], we
determined benchmark experimental DCSs for elastic and
inelastic processes for the H2 molecule and again found ex-
cellent agreement with the CCC [34].

Inelastic scattering ratio measurements had been carried
out by us earlier for Ne [11], Kr [25], and Xe [23]. DWBA
calculations for these ratios were reported by Bartschat and
Madison [36], with particular emphasis on observed devia-
tions from statistical weight ratios. Referring to the excellent
agreement between the experimental ratios in [11] and the
predictions from their semirelativistic BSR calculations for
Ne, Zatsarinny and Bartschat [37] commented that such DCS
ratios in the noble gases are “a very sensitive test to the quality
of the theoretical model.” Finding that it is easier and more
accurate to measure relative ratios in scattering experiments,
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FIG. 1. Electron energy loss spectrum of Xe taken at E0 =
15.0 eV and θ = 110◦. ( ) data; (—) linear least-squares fit to the
spectrum using a multi-Gaussian instrumental line profile centered at
the empirical EL values given by Moore [41], also listed in Table II.
The features m = 1, 2, 3, and 4+5 are discussed in the text following
Eqs. (1)–(4) and are also listed in Table I.

we recently decided to revisit inelastic scattering ratios for
the lowest transitions in Kr [38] and provided experimental
benchmark data for testing an existing BSR model for Kr [39].
This model had been employed to calculate benchmark DCSs
for the electron-impact excitation of the individual electronic
states in the 4p6 1S0 → 4p55s transitions. Our significantly
improved results in tandem with earlier measurements of these
ratios [25] showed very good to excellent agreement with a
31-state model for the excitations in Kr and provided great
encouragement on the theoretical progress of the BSR con-
cerning the situation for electron-impact excitation in the rare
gases. We also pointed out areas where theory needed small
improvements.

The present work is similar to [38], but is carried out
on the corresponding transitions in Xe to draw attention to
such ratios as benchmarks to aid theory in the critical area of
experimental and theoretical electron-collision physics for Xe,
which is even more challenging than Kr due to the increased
nuclear charge and the particular level structure. Unlike in Kr,
we could not resolve the 5p6 1S0 → 5p56s′[1/2]1 excitation
from the neighboring 5p56p[1/2]1 excitation (see Fig. 1).
Hence our definition of the ratios in Eqs. (2) and (4) below

differs somewhat from similar ratios in Kr. In the present
paper, we define these ratios as follows:

r(E0, θ ) = σ (6s[3/2]2)

σ (6s′[1/2]0)
, (1)

r
′(E0,θ ) = I2(E0, θ )

I4+5(E0, θ )
= σ (6s[3/2]1)

σ (6s′[1/2]1) + σ (6p[1/2]1)
, (2)

r′′(E0,θ ) = I1(E0, θ )

I2(E0, θ )
= σ (6s[3/2]2)

σ (6s[3/2]1)
, (3)

and

r′′′(E0,θ ) = I3(E0, θ )

I4+5(E0, θ )
= σ (6s′[1/2]0)

σ (6s′[1/2]1) + σ (6p[1/2]1)
. (4)

Here, Im (E0, θ ) are the intensities of the electron energy
loss features for excitation of the m = 1 to 4 (see labels
in Fig. 1) for the 5p6 1S0 → 5p56s, 6s′[K]J transitions, and
m = 5, in (Fig. 1) for the 5p6 1S0 → 5p56p[1/2]1 transi-
tion, which could not be resolved from the nearest-lying
5p6 1S0 → 5p56s′[1/2]1 m = 4 feature. These intensities are
proportional to their corresponding DCSs (σ ). In the nota-
tion and discussion below, we use the intermediate-coupling
scheme [10,11] that is appropriate for the heavy noble gases,
where K is the total angular momentum of the parent ion
(Xe+) 5p5 core and J is the total angular momentum of the
core plus the valence 6s, 6s′, or 6p electron. Table I shows
the result of a multiconfiguration expansion of the states of
interest in this work. The Cowan code [10] only uses term-
averaged 6s and 6p orbitals. One can clearly see for the
excited levels 1–3 that a single configuration dominates in
all cases, but for levels 4 and 5 more than one configuration
is involved significantly. Based on Table I, the J = 1 states
are approximately a ≈ 60/40 mix of states with dominant
5p56s singlet and triplet character, except that the 6s′[1/2]1

state includes a small (≈10% after squaring the coefficient)
contribution from the 5p55d 3P1 configuration.

The ratio r defined in Eq. (1) addresses the ratio between
the pure triplet 6s[3/2]2(3P2) and 6s′[1/2]0(3P0) states (with
its approximate LS-coupled component in brackets), respec-
tively. Since the statistical weights of these states are 2J + 1,
one would expect the DCS ratio to be close to 5 for a well
LS-coupled system, provided one can neglect the energy dif-
ference between the two states as well as the potential term

TABLE I. Intermediate-coupling coefficients for the 5p6 and 5p56s, 5p56s′, and 5p56p states of Xe in a multiconfiguration expansion,
obtained with the Cowan code [10] by Fontes [40]. EL values from the Cowan code and from Moore [41] are also displayed. The notation [K]J

(see text) indicates the total electronic angular momentum of the (5p5)2PK ionic core. After coupling to the outer electron orbital (here 6s or
6p or 5d), this results in a total angular momentum J of the state. See text for more discussion.

Energy (eV)

Level number Configuration Intermediate coupling Cowan [10] Moore [41]

0 5p6 1S0 0.998 ((5p61S0) + · · · 0 0
1 6s[3/2]2 0.996 (5p56s 3P2) + · · · 8.361 8.315
2 6s[3/2]1 0.777 (5p56s 1P2) + 0.626(5p56s 3P1) + · · · 8.458 8.437
3 6s′[1/2]0 0.906 (5p56s 3P0) + 0.413(5p55s 3P0) + · · · 9.537 9.447
4 6s′[1/2]1 0.72 (5p56s 3P1)–0.61(5p56s 1P1) + 0.33(5p55d 3P1) + · · · 9.618 9.570
5 6p[1/2]1 0.86(5p56p 3S1)–0.46(5p56p 3P1) + 0.21(5p56p 1P1) + · · · 9.577 9.580
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dependence of the valence orbital. In order to indicate those
possible effects, we follow the standard notation of using 6s
and 6s′ 6s′ for the outer orbital when the parent ion is either
the (5p5)2P3/2 (for 6s) or the (5p5)2P1/2 (for 6s′) core state.
On the other hand, the ratio r′ defined in Eq. (2) addresses the
ratio between the 6s[3/2]1 and 6s′[1/2]1 + 6p[1/2]1 states.
Unlike the situation in Kr, here the 6s′[1/2]1 excitation (level
4, Table I) is not resolved from the 6p[1/2]1 excitation (level
5, Table I) and the arguments regarding the dipole limit of
the r′ that could be applied in our Kr experiment [38] are not
applicable here for Xe. Nevertheless, r′ still supplies a useful
quantitative test of theory here regarding these states.

Next, r′′ defined in Eq. (3) represents the ratio of the LS-
coupled 6s[3/2]2 (3P2) state and the mixed-coupled 6s[3/2]1

state, while r′′′ defined in Eq. (4), in a similar fashion as r′′, is
the ratio between the pure 6s′[1/2]0 (3P0) state and the other
mixed state 6s′[1/2]1 + 6p[1/2]1. From an experimental point
of view, it is important to note that both r′′ and r′′′ are less
affected by the instrumental transmission efficiency than r and
r′, since the features in r′′ and r′′′ are very closely spaced
in EL; i.e., they have almost equal ER values that control
the scattered electron detection efficiency. This is especially
important at low E0 values close to threshold and will be
further addressed in the experimental section below.

In this work, the recently obtained inelastic DCS ratios
for Xe are presented in comparison with the respective the-
oretical predictions, as well as the earlier Xe experimental
ratios obtained in our group by Khakoo et al. [23] and ratios
determined from the DCSs in the earlier work of Filipović
et al. [42] who also measured similar DCSs for features 1, 2,
3, and 4+5 (see Fig. 1), but at higher E0 values of 15, 20, 30,
and 80 eV with θ from 5 ° to 150 ° and extrapolated DCSs
for θ = 0◦. A summary of the full-relativistic D(irac)BSR
(DBSR) electron scattering model for Xe is given in Sec. III.
More details of the theory, for both Kr and Xe, can be found
in [39]. A discussion of the experimental apparatus and the
measurement procedures for obtaining the above-mentioned
DCS ratios is given in Sec. IV. The experimental and theo-
retical results are presented and discussed in detail in Sec. V
followed by conclusions in Sec. VI.

III. THEORY

Because the details of the calculation were given by Zat-
sarinny and Bartschat [39], we only summarize the main
points here. The calculations reported in this paper were
performed using the R-matrix (close-coupling) approach, as
implemented in the DBSR suites of computer codes. The
initial structure calculation for Xe+, similarly to Kr+ [39],
was carried out with the GRASP2K relativistic atomic-structure
package [43]. After that the valence orbitals were generated
in a frozen-core calculation for Xe+, employing the average-
term approximation. All these states of Xe+ were then used
as target states in B-spline bound-state close-coupling calcu-
lations to generate the low-lying states of atomic Xe (with
N = 54 electrons) employing nonorthogonal, term-dependent
orbitals for each state.

In the scattering calculations, we included (similarly to Kr)
the lowest 31 physical states of Xe, i.e., the fine-structure
levels with configurations 5p56s, 5p56p, 5p55d , and 5p57s,

respectively. This model will be referred to as DBSR-31
below. Since this is a full-relativistic approach, the mixing
coefficients in the multiconfiguration expansions are math-
ematically not the same as in the intermediate-coupling
scheme. This is a similar situation as in the RDW model [9].
In a truly complete expansion, the specifics of the numerical
basis would not matter. While this ideal situation is not achiev-
able in practice, it still makes some sense to interpret the final
results in the intermediate-coupling scheme, which appears
to capture the essential physics regarding the orbital and spin
angular-momentum character of the states in question.

We then used the DBSR version [29] to solve the (N + 1)-
electron-collision problem. We calculated partial-wave contri-
butions up to J = 61/2 numerically. No extrapolation scheme
to account for even higher partial waves was necessary for all
observables presented in this paper.

At this time, only results from the 31-state model are
available. In the original paper [39], 75-state results were
also presented, but the calculations were limited to energies
below 10.5 eV. Note that the general features seen in the
near-threshold region were reproduced in both models and
the DBSR-31 and DBSR-75 predictions were often very simi-
lar. Ideally, one would extend the present calculations much
further to include an even larger number of physical and
pseudostates, i.e., to also couple to the ionization continuum.
Due to the passing of Dr. Zatsarinny, however, this is presently
not possible, but such calculations are planned for the future.

IV. EXPERIMENT

The present California State University (CSUF) energy
loss system is a moderate current, high-resolution electro-
static energy loss spectrometer, which has been well tested
and described in detail before [44]. The system consists of
an electron monochromator and an electron energy analyzer,
with both employing double hemispherical energy selectors.
The collimated gas beam is delivered to the collision region
via a movable gas thin aperture source, which is aligned and
placed about 5 mm below the collision region. The entire
spectrometer is housed in a magnetically shielded vacuum
chamber that is pumped with a 12 in. diameter diffusion pump
down to a base pressure of ≈ 1 × 10–7 Torr. In order to create
and maintain an environment suitable for measuring stable
low-energy electron energy loss spectra over long periods of
time, the electron gun and energy analyzer are both baked to
about 120 °C during the experiment, and the vacuum chamber
is properly oil baffled with a low-temperature Freon trap.

The experimental apparatus is computer controlled via the
LABVIEW program. The latter is run in the multichannel scal-
ing mode and monitors the input pressure of the target gas,
steers the movable gas source in and out of the interaction
region, drives a stepper motor that sets the scattering angle po-
sition of the electron energy analyzer, and controls the energy
loss ramp of the electron energy analyzer. The experimen-
tal energy loss spectra acquired by the multichannel scaling
program are analyzed by separate software that employs a
multi-Gaussian instrumental line-profile unfolding technique
to fit the energy loss spectra [44].

Xenon energy loss spectra (e.g., Fig. 1) were acquired for
E0 values of 9.5, 10.0, 12.5, 15.0, 17.5, and 20.0 eV for θ
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TABLE II. Transmission parameters that affect the ratios r, r′,
r′′, and r′′′. The EL values, listed in increasing order for the 6s[3/2]2,
6s[3/2]1, 6s′[1/2]0, and 6s′[1/2]1 states, are taken from the recom-
mended values of Moore [41]. See text for a detailed discussion.

E0(eV) → 9.5 10 12.5 15 17.5 20

EL (eV) ER (eV)
8.315 1.185 1.685 4.185 6.685 9.185 11.685
8.437 1.063 1.563 4.063 6.563 9.063 11.563
9.447 0.053 0.553 3.053 5.553 8.053 10.553
9.575 – 0.425 2.925 5.425 7.925 10.425

�ER/ER bar

r 1.83 1.01 0.313 0.185 0.131 0.102
r′ – 1.14 0.326 0.190 0.134 0.104
r′′ 0.0271 0.0188 0.0074 0.0046 0.0033 0.0026
r′′′ – 0.0654 0.0107 0.0058 0.0040 0.0031

ranging from 10 ° to 120 ° with a typical energy resolution
of ≈ 35–45 meV for an incident current of ≈ 13–22 nA. The
electron beam E0 was calibrated using the He−(1s2s2)2S res-
onance at 19.366 eV at θ = 90◦ [45,46] to obtain E0 with an
accuracy of 50 meV or better during the entire run at a fixed
E0 value. The CSUF spectrometer and the earlier spectrometer
at the NASA–Jet Propulsion Laboratory, Pasadena, California
(JPL) in [23] differ somewhat, in that the former used real
apertures in the analyzer as opposed to virtual apertures in
the CSUF spectrometer. Additionally, the CSUF spectrometer
employed a thin aperture gas-target collimation system rather
than the earlier JPL hypodermic needle gas collimator. In this
experiment, the movable gas source was kept fixed, because
the system was not observing elastic scattering as it did in
previous work [47] where elastic background scattering from
surfaces was found to be significant. This also improved the
acquired scattering counts (more acquisition time for inelastic
measurements with the gas beam aligned with the electron
beam) and thus reduced the statistical uncertainties.

An important consideration in this experiment was to
control the transmission efficiency for the different fea-
tures (features 1, 2, 3, and 4+5 in Fig. 1), which had
respective EL values of 8.315, 8.437, 9.447, and 10.575 ≈
[10.570+10.580]/2 eV. At small E0 values, the ER of the
scattered electrons becomes significantly different across the
energy loss spectrum.

Since the transmission efficiency of the electron detector
is dependent on ER it can significantly vary for the different
inelastic features. Table II shows the ratio �ER

ER
(= α) at dif-

ferent E0 values for the four ratios, where, e.g., in the case
of r, features 1 and 3, �ER = ER(1)–ER(3) is the difference
between the residual energies of scattered electrons exhibiting
features 1 and 3, and ER = [ER(1) + ER(3)]/2 is the mean
residual energy of these features. Assuming that the transmis-
sion efficiency is approximately a linear function across the
spectrum vs ER, α gives the value of the fractional difference
in the transmission of electrons for the features involved. At
E0 = 12.5 eV, for example, r and r′ have relative fractional
transmission differences of ≈32% while those of r′′ and r′′′
are only ≈1%. This means that the measured ratios r′′ and r′′′
are much more precise as benchmarks than r and r′.

In order to control this transmission problem, the scat-
tered electron detector analyzer was first tuned to the average
mid–residual energy of features 1 and 3 or 2 and 4, which
are similar for both r and r′ at any E0 value. For example,
at E0 for features 1 and 3 (r) the mid–residual energy is
3.619 eV = [4.185 + 3.053]/2) eV and for features 2 and 4
(r′) it is 3.474 eV = [4.063 + 2.925]/2 eV (see Table II). This
required tuning the gun and analyzer to the elastic scattering
at 90 ° at E0 = ER (e.g., at E0 = 12.5 eV, ER ≈ 3.55 eV). Fur-
thermore, the electron gun would be set to this E0 = ER value
of 3.55 eV and the analyzer maximized for elastic scattering.
The electron gun was then retuned to deliver a focused beam
at the E0 of the required value (in this case 12.5 eV). As a
result, the transmission peaked at approximately the mid-EL

of states 1 and 3 or 2 and 4, while it fell equally at EL

values of the features on either side of this maximum, thus
giving consistently reproducible and accurate r and r′ values
by breaking away from a skewed transmission function for the
r and r′ features. This procedure does not affect r′′ and r′′′,
which were always well reproduced for any tuning conditions
of the analyzer. At E0 = 15 eV, this problem is diminished,
and the r and r′ ratios were found to be reproducible with
≈11% uncertainties.

V. RESULTS AND DISCUSSION

Parts (a–f) of Table III list the ratios r, r′, r′′, and r′′′ at dif-
ferent E0 values as a function of θ . Figures 2–5 display these
ratios from the current measurements along with the previous
ratios of [23,42] and the DBSR-31 results. Our estimated
errors for all ratios of [42] are ±15%, since the authors did
not rigorously account for the likely change in transmission
efficiency between features 1 to 4+5. We also note that the
θ = 0◦ data of [42] are extrapolated results.

Figure 2 exhibits r ratios at several E0 compared to our
previous measurements [23] and the DBSR-31 theory. Unlike
in the recent similar work with Kr [38], where we observed ex-
cellent agreement for all E0 values with our earlier r values, as
well as with the DBSR-31 predictions, we see less agreement
here for Xe. For example, at E0 = 12.5 eV, there is somewhat
qualitative agreement, but significant disagreement of up to
50% with theory. At E0 = 15 eV, we see good agreement
between the present measurements and [23] for θ � 40◦, and
θ � 90◦ between the present measurements and [23,42], but
the DBSR-31 model does not reproduce the angular depen-
dence, showing a “bump” at θ ≈ 110◦ that is not seen in any
of the experimental datasets.

Based on the experimental errors and the agreement be-
tween the three experiments, this bump is about five standard
deviations of the error bars outside of the present experi-
mental results and about three standard deviations away from
the other experiments [23,42]. This suggests a problem with
the theory. At E0 = 17.5 eV, the present work shows good
agreement with the DBSR model across the complete angu-
lar range. At E0 = 20.0 eV, the present experiment and [23]
agree very well for θ � 100◦, but we note again disagree-
ment with theory, especially at forward scattering angles and
θ ≈ 70◦–80◦, where the predictions are about 50% below the
experimental r ratios. The r values of [42] trend significantly
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TABLE III. Angle-differential r, r′, r′′, and r′′′ values with associated errors taken at (a) E0 = 9.5 eV, (b) E0 = 10.0 eV, (c) E0 = 12.5 eV
(d), E0 = 15.0 eV (e) E0 = 17.5 eV, and (f) E0 = 20.0 eV. See text for discussion.

(a) θ (deg) r′′ Error

20 0.357 0.030
25 0.326 0.024
30 0.278 0.021
35 0.320 0.023
40 0.360 0.026
45 0.424 0.032
50 0.565 0.041
60 0.972 0.089
70 1.57 0.14
80 1.86 0.25
90 1.76 0.24
100 1.13 0.11
110 0.627 0.047
120 0.383 0.029

(b) θ (deg) r′′ Error

20 0.673 0.059
25 0.773 0.068
30 0.762 0.067
35 0.674 0.049
40 0.736 0.051
45 0.707 0.049
50 0.600 0.045
60 0.578 0.041
70 0.525 0.039
80 0.543 0.039
90 0.608 0.049
100 0.578 0.041
110 0.583 0.042
120 0.539 0.037

(c) θ (deg) r Error r′ Error r′′ Error r′′′ Error

20 7.55 0.97 2.71 0.25 0.128 0.023 0.068 0.028
25 7.40 0.74 2.02 0.35 0479 0.055 0.122 0.018
30 7.21 0.70 2.18 0.20 0.576 0.051 0.175 0.025
35 5.79 0.67 2.43 0.21 0.494 0.052 0.162 0.015
40 5.90 0.60 2.38 0.25 0.412 0.034 0.166 0.018
45 4.22 0.46 2.25 0.33 0.348 0.031 0.185 0.019
50 4.62 0.69 1.77 0.16 0.396 0.063 0.151 0.008
60 4.23 0.47 1.50 0.20 0.387 0.058 0.137 0.012
70 4.15 0.26 1.19 0.13 0.476 0.039 0.136 0.010
80 3.94 0.44 1.30 0.13 0.539 0.045 0.177 0.011
90 3.09 0.51 1.48 0.23 0.474 0.02 0.227 0.023
100 2.00 0.26 1.19 0.22 0.313 0.035 0.182 0.019
110 2.43 0.37 1.10 0.26 0.356 0.027 0.162 0.013
120 3.63 0.33 1.26 0.18 0.456 0.037 0.158 0.011

(d) θ (deg) r Error r′ Error r′′ Error r′′′ Error

20 3.34 0.22 2.46 0.22 0.241 0.038 0.222 0.023
25 3.46 0.23 2.26 0.21 0.331 0.044 0.228 0.024
30 3.28 0.22 2.13 0.19 0.339 0.041 0.221 0.023
35 3.73 0.23 2.16 0.20 0.283 0.027 0.164 0.016
40 3.35 0.20 2.10 0.17 0.233 0.022 0.147 0.015
45 3.30 0.21 1.84 0.15 0.192 0.021 0.108 0.011
50 3.02 0.22 1.57 0.16 0.166 0.018 0.087 0.009
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TABLE III. (Continued.)

60 2.22 0.15 1.19 0.12 0.166 0.012 0.089 0.009
70 1.72 0.12 0.965 0.080 0.219 0.018 0.123 0.013
80 1.75 0.12 0.995 0.078 0.298 0.024 0.169 0.017
90 1.62 0.12 0.975 0.077 0.316 0.025 0.191 0.020
100 1.52 0.11 0.802 0.059 0.304 0.019 0.160 0.017
110 1.60 0.11 0.653 0.043 0.355 0.019 0.123 0.013
120 2.12 0.13 0.561 0.051 0.480 0.026 0.127 0.013

(e) θ (deg) r Error r′ Error r′′ Error r′′′ Error

15 2.51 0.35 2.92 0.34 0.048 0.024 0.042 0.020
20 2.23 0.32 2.57 0.31 0.087 0.010 0.101 0.012
25 2.73 0.38 2.38 0.28 0.148 0.017 0.130 0.016
30 2.41 0.35 2.00 0.24 0.176 0.021 0.146 0.018
35 2.77 0.40 1.84 0.22 0.182 0.021 0.121 0.015
40 2.84 0.45 1.77 0.23 0.177 0.023 0.110 0.015
45 2.93 0.43 1.67 0.20 0.168 0.020 0.096 0.012
50 2.78 0.38 1.53 0.18 0.171 0.019 0.094 0.011
60 2.52 0.37 1.26 0.15 0.144 0.017 0.073 0.009
70 1.70 0.25 1.06 0.13 0.163 0.020 0.105 0.013
80 1.53 0.22 0.961 0.117 0.216 0.026 0.150 0.019
90 1.30 0.19 0.972 0.118 0.257 0.030 0.193 0.024
95 1.29 0.19 1.01 0.13 0.268 0.033 0.211 0.027
100 1.75 0.28 0.914 0.121 0.324 0.042 0.174 0.024
110 2.02 0.33 0.746 0.101 0.418 0.056 0.154 0.022
120 3.02 0.49 0.670 0.090 0.559 0.073 0.125 0.017

(f) θ (deg) r Error r′ Error r′′ Error r′′′ Error

10 2.02 0.20 2.27 0.22 0.008 0.001 0.033 0.014
15 1.97 0.19 2.13 0.21 0.060 0.007 0.065 0.008
20 2.18 0.22 1.91 0.20 0.105 0.011 0.089 0.009
25 2.06 0.24 1.71 0.20 0.122 0.014 0.103 0.012
30 1.89 0.20 1.60 0.17 0.093 0.010 0.110 0.012
35 1.83 0.19 1.46 0.16 0.121 0.013 0.103 0.011
40 1.84 0.20 1.41 0.15 0.125 0.013 0.098 0.011
45 1.79 0.20 1.37 0.15 0.126 0.014 0.103 0.011
50 1.95 0.21 1.27 0.14 0.132 0.014 0.093 0.010
60 2.01 0.22 1.15 0.13 0.155 0.017 0.094 0.010
70 2.24 0.26 1.06 0.12 0.187 0.022 0.088 0.010
80 1.54 0.16 0.958 0.102 0.211 0.022 0.121 0.013
90 1.08 0.13 0.947 0.110 0.192 0.022 0.149 0.017
100 1.22 0.14 0.900 0.106 0.235 0.028 0.159 0.019
110 2.08 0.25 0.852 0.101 0.355 0.043 0.144 0.018
120 3.29 0.40 0.833 0.101 0.502 0.062 0.130 0.019

lower than the present and Ref. [42] values, and they are in
severe disagreement with the DBSR predictions.

Whereas level 1 (the 6s[3/2]2 state) is well LS coupled
with a 0.996 amplitude due to the 5p56s 3P2 LS-coupled state,
Table I shows that level 3 (the 6s′[3/2]0 state) is contaminated
by the 5p55d 3P0 LS component with an amplitude of 0.413
(i.e., about a 17% contribution after squaring the coefficients)
in the intermediate-coupling scheme. Hence, unlike in Ne and
Ar, where both of these two states are well LS coupled and
dominated by a single configuration, the r parameter for Xe
is expected to deviate from the statistical weight ratio of 5 as
discussed in [36], either because of relativistic spin-orbit ef-
fects or due to an increased difference in ER as E0 gets close to
threshold. In [38] for Kr, oscillatory deviations of about 30%

on average from the statistical weight value of r = 5 were
observed for E0 values of ≈3 eV above threshold. However, in
Xe we see significantly reduced r values below 5, i.e., values
around 1–2, being observed at all E0 values here. Theory
does well to qualitatively reproduce these smaller r values,
but it needs to perform better quantitatively. We emphasize
that the present data have smaller or comparable uncertainties
than our earlier Xe measurements [23,42]. This is due to the
better statistical counts in the present work that focused the
data acquisition time only on the lowest four excited states of
Xe, rather than on the extended spectrum of Xe studied in the
previous work [23,24]. We also reckon that the lower values
of r at E0 = 20 eV could be due to poorer statistics in their
work with an extended spectrum.
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FIG. 2. Angle-differential r values with associated errors taken at (a) E0 = 12.5, 15.0, 17.5, and 20.0 eV. Experiments: ( ) Present work;
( ) Khakoo et al. 1996 [23]; ( ) Filipović et al. 1988 [42]. Theory: DBSR-31 calculations. See text for discussion.

FIG. 3. Same as Fig. 2, but for the r′ ratios. The dashed lines represent the original DBSR-31 results multiplied by factors (see text) that
visually improve the agreement with experiment. See text for a detailed discussion.
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FIG. 4. Same as Fig. 2, but for the r′′ ratios. See text for discussion.

In Fig. 3 for r′, we see generally excellent agreement
between the measurements. For E0 = 15.0 eV, however, the
present r′ values correct the earlier ones at θ ≈ 30◦ by about
30%. This yields an angular dependence that is better modeled
qualitatively by the theory. However, the predictions have to
be multiplied by a factor of ≈1.6 across the entire angular
range for nearly perfect agreement with the experimental data.
All experiments lie higher than theory, but the r′ values of [42]
are closest to theory and could be due to a transmission in-
crease in the spectrum from detecting feature 2 and detecting
4+5. A similar problem regarding the size of the r′ values is
observed for E0 = 17.5 eV, where theory has to be multiplied
by about 1.75 to better agree with the experimental data. At
E0 = 20.0 eV, the two experimental datasets are in excellent
agreement with each other within the estimated uncertainty
of ≈11%. At this energy, the theoretical results should be
multiplied by about 1.5 to get into good quantitative agree-
ment with the measurements. Here transmission variation in
the experiments is minimal, and we see all three experiments
in very good agreement with each other. We note that these
multiplication factors are only shown to provide a better visual
comparison between experiment and theory in a qualitative
sense. We do not presently understand the origin of this value,
except that (again based on the very good agreement between

the three experimental datasets) theory needs to be improved
to remedy this.

In Fig. 4 we show results for the r′′ ratio, which is our most
accurate observable, since it is least affected by spectrometer
transmission, i.e., <3% at E0 of 9.5 eV and < 1% at higher
E0 values shown in Table II. This can be inferred from the
excellent agreement for this ratio at all E0 values. This ratio
compares the 6s[3/2]2 state (which is very well LS coupled;
see Table I) to the 6s[3/2]1 state, which is also reasonably
well represented within a single-configuration expansion in
the intermediate-coupling scheme. Raised values of this pa-
rameter will very likely be linked to selective spin-exchange
excitation of the triplet LS components of both states, i.e., the
5p56s 3P2 for level 1 [numerator in r′] and the 5p56s 3P1 for
level 2 [denominator in r′]. This also implies an inhibition in
the direct singlet excitation of the 5p56s 1P1 LS component
of level 2. At E0 = 9.5 eV we see enhanced spin exchange
at θ = 80 ◦, which is well reproduced by theory, except that
experiment (1.86) is about 40% lower than theory (2.61),
indicating reduced spin exchange. However, whereas the the-
oretical r′′ ratio approaches zero at θ → 0◦, the experimental
r′′ ratio appears to differ significantly from that value. This
is important, as it stresses significant spin-exchange processes
are prevalent in Xe at small θ . This was also observed in Kr
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FIG. 5. Same as Fig. 2, but for the r′′′ ratios. See text for discussion.

[38], where the r′′ ratio at small θ was at clearly nonzero
at all E0 values. The presence of nonzero spin exchange for
small θ might explain an “unusual” reversal in the observed
orientation parameters in excitation of the Ne (2p6) 1S0 →
(2p53s) [3/2]1 transition by electrons at E0 = 25 eV at small
θ reported by Hargreaves et al. [48]. For a pure singlet →
singlet excitation by electron impact (direct process), it is well
established that for a rare-gas 1S0 → [3/2]1

1P1 excitation,
the perpendicular angular momentum imparted to the excited
state (L⊥) at small θ should be positive [49]. In contrast, we
found it to be anomalously negative for the resonance excita-
tion of Ne at 25 eV. However, the Ne (2p53s) [3/2]1 state is
a mixed singlet-triplet LS state with an intermediate-coupling
expansion [11]:

(2p53s)[3/2]1 = 0.940(2p5)3s1P1 + 0.340(2p5)3s 3P1. (5)

Thus, it is possible to orient this state also with spin-
angular momentum imparted through the spin-exchange
process from the projectile to the target via an oriented spin-
orbit coupling process in the target, and thereby to produce the
negative L⊥ value observed in [48]. Looking at Fig. 4, we see
that the angular dependence of r′′ changes considerably from
E0 = 9.5 eV to 10 eV. This is due to the role of resonances
below the ionization of 12.13 eV and results in a complicated
picture. See also the angle-integrated cross sections presented
in [39]. Nevertheless, the earlier r′′ measurements of [23] and
the present ones are in excellent agreement with each other
and are not systematically affected by these sharp resonances.
Although our energy resolution is good, it is finite and hence
will wash out some of these effects. In Xe the reduced spin
exchange observed at small θ , compared to that observed
similarly in Kr [28], calls for further improvement of the

DBSR model used so far. At the other E0 values, we see
improved qualitative agreement at E0 values � 15 eV, but
marked quantitative differences in some places (e.g., E0 =
15 eV, θ ≈ 90◦). We note that the experiments are found to
be in excellent agreement with each other across the entire
angular range to within 10% uncertainty. They reproduce the
oscillatory nature of r′′ very well, thereby suggesting this case
as a suitable benchmark.

Figure 5 displays the r′′′ parameter. Like r′′ it contains (cf.
Table I) a significant 6s′[1/2]0 = 0.906 (5p56s3P0) + 0.413
(5p55d3P0) triplet excitation in the numerator. The agreement
between all the three experiments is again excellent as was
the case for r′′, thus making this also a good benchmark ratio.
We see similar oscillations in r′′′ and r′′. The r′′′ error bars
are larger than for r′′ since the excitation of the 6s′[1/2]0 state
(feature m = 3; see Fig. 1), which comprises this ratio, is the
weakest among the levels 1–(4 + 5) in the Xe energy loss
spectrum. At E0 = 12.5 eV (all θ ) and E0 = 15 eV (θ � 50◦)
excellent (quantitative) agreement between experiment and
theory is observed. Elsewhere, the agreement is qualitatively
good. Here theory reproduces the peaks for θ ≈ 30◦ and 90 °
in r′′′ at all E0 values. If one assumes that the higher r′′′ values
imply increased spin-exchange processes, we observe spin
exchange for all θ , including near-forward scattering angles.

VI. CONCLUSIONS

We have presented recent measurements of intensity ratios
r, r′, r′′, and an additional useful ratio r′′′, for electron-impact
excitation of the lowest five excited states of Xe as was done
earlier for Kr [38]. These were compared with earlier Xe ratios
taken in our laboratory [23] and with DBSR calculations for
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e-Xe collisions. The agreement between the present measure-
ments and earlier [23,42] data is very good for r and r′ and
excellent for r′′ and r′′′. This provides confidence in the overall
reliability of the experimental data.

Unfortunately, the overall agreement of the experimental
ratios with the theoretical predictions is not as good as it
was for Kr, and both Ref. [38] and the present work make
suggestions where the DBSR model may need to be im-
proved even further. There is an important motivation for
improving the DBSR theory for electron scattering from mul-
tielectron atomic targets, so that it can be used to model
electron-collision problems with other, even more complex
many-electron targets. New calculations with a further im-
proved target structure and even more coupled states in the
collision part of the problem seem necessary to achieve
the needed progress. Unfortunately, such calculations require
enormous computational effort and cannot be carried out at
this time with our available resources.

We hope that progress in computer power and software will
make this feasible. We also hope that the present work on Xe,
and [38] on Kr, will provide an impetus for theory to further
push benchmark calculations for electron scattering from mul-
tielectron targets with more than two electrons outside of a
structureless core by employing the close-coupling formalism.
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