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Experimental observation of a quadrupolar phase via quench dynamics on a spin simulator
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Recently, higher-order topological insulators have drawn much attention from researchers. For chiral-
symmetric one-dimensional systems, the mean chiral displacement, a bulk observable related to the topological
invariant, can distinguish topological states from trivial phases. Naturally, there exists an analogous quality for
the higher-order one. In a previous work [T. Mizoguchi, Y. Kuno, and Y. Hatsugai, Phys. Rev. Lett. 126, 016802
(2021)], the mean chiral quadrupole moment is introduced. Inspired by this work, we investigate the quadrupolar
phase of a higher-order topological insulator on a spin quantum simulator. With focus on a two-particle noninter-
acting Benalcazar-Bernevig-Hughes model, by changing the amplitude of hopping interactions, we first observe
quantum phase transitions from topological phase to trivial phase using a spin simulator experimentally. Since
the mean chiral quadrupole moment has robustness against environmental noise, we also test its dependence on
perturbations. As an exploration of the bulk observable of a higher-order topological insulator, it may provide
one path to investigate arbitrary dimensional systems.

DOI: 10.1103/PhysRevA.104.062615

I. INTRODUCTION

In the last century, Ginzburg-Landau theory has dominated
people’s perception of phase transition [1]. Before the pro-
posal of the two-dimensional Berezinskii-Kosterlitz-Thouless
transition [2] and the discovery of the integer or fractional
quantum Hall effect [3,4], people had gradually realized that
there exist states of matter beyond Landau’s phase transi-
tion theory [5,6]. These are known as topological states of
materials, which can be described by topological invariants
(TIs). Most TIs in physics arise as integrals of some ge-
ometric quantity and only take on integer values [7]. This
means that as long as the geometry of the manifold does not
undergo sudden changes, such as the number of holes, the
TIs will not change. In topological materials, bulk-boundary
correspondence (BBC) is one of the most notable features.
For a d-dimensional topological insulator, it has (d − 1)-
dimensional gapless edge states. It allows one to predict the
edge state of a system based on the knowledge of a bulk
topological invariant. Taking the two-dimensional quantum
Hall effect as an example [8], a series of integer platforms has
been observed experimentally. This is due to the edge states
localized at the tails of one-dimensional (1D) states.
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However, TIs cannot be directly observed from gapped
ground states. According to BBC, they can be detected via
characteristic wave functions of edge states. There are many
different methods to investigate the topological properties of
wave functions. One direct method is to investigate the wave
function at every fixed moment [9,10], e.g., the Chern number
will preserve it in the Chern insulator after quench. Another
way is to investigate band-inversion surfaces in the Brillouin
zone. Liu and coworkers [11,12] noticed that when the initial
state is in the topological trivial phase the topological proper-
ties of the evolution Hamiltonian can be detected via winding
number of band-inversion surfaces, and by considering (d +
1) space-time properties of wave functions, such as measur-
ing dynamical Chern number [13], Hopf links [14,15], and
mean chiral displacement (MCD) [16,17], TIs can be revealed
from time-dependent quantities. For a chiral-symmetric 1D
system, the MCD, which is the polarization weighted by
the eigenvalue of the chiral operator, was introduced to
characterize winding number in the Su-Schrieffer-Heeger
(SSH) model [18,19]. More precisely, it can dictate the
winding number of 1D TIs in AIII and BDI classes [20].
Analogously, Mizoguchi et al. [21] proposed that this method
can be extended to higher-order systems by introducing the
mean chiral quadrupole moment (MCQM), the long-time av-
erage of which can also characterize the topology.

Thanks to progress in quantum simulators, experimentally
detecting TIs is accessible in various kinds of platforms, e.g.,
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FIG. 1. Schematic of (a) the SSH model and (b) the BBH model.
(a) The solid and dashed lines represent the long and short bonds
of hopping. When δt < 0 or δt > 0, it corresponds to two distinct
phases in the SSH model. (b) The sites on a square lattice specified
by the position label of the unit cell r = (i, j) or (rx, ry ) and the site
label α = 1, 2, 3, 4. Solid blue and dashed red lines stand for the
intracellular and intercellular hoppings, respectively.

ultracold atoms [22–24], superconductors [25,26], twisted
photons [27], disordered atomic wires [28], and nuclear mag-
netic resonance (NMR) [29]. The MCD has already been
widely used in characterizations of the SSH model and
extended SSH models [16,17,27,30]. Yet, the MCQM has
merely stayed at the primary theoretical stage so far. As the
NMR system has many merits, such as long coherent time and
precise control, it can be regarded as an ideal quantum simula-
tor [31–35] to observe the MCQM experimentally. Hereafter,
we report an experimental observation of the quadrupolar
phase based on the NMR spin simulator.

In this article, we mainly focus on one typical two-
dimensional higher-order topological insulator. First, we
experimentally observe the MCQM oscillations under dif-
ferent intercell and intracell hopping amplitudes. Then we
utilize the MCQM to characterize the phase transition of
the bulk via quench dynamics. Additionally, the feature of
noise dependence is also explored in our experiments. This
article is organized as follows. In Secs. II and III, warming up
from the one-dimensional chiral topological SSH model, the
two-dimensional Benalcazar-Bernevig-Hughes (BBH) model
[36,37] is introduced briefly, which is one type of higher-order
topological insulator with a quantized electric multipole. In
Sec. IV, we show how our experiments are designed and
present the experimental results. Finally, the conclusion and
discussion related to this paper are given in Sec. VI.

II. THE MCD IN THE SSH MODEL

The SSH model describes spinless electrons hopping in a
polyacetylene chain (one-dimensional lattice), with staggered
hopping amplitudes.

As shown in Fig. 1(a), the SSH model can be simply
described by a single-particle Hamiltonian, of the form

HSSH =
N∑

n=1

(t + δt )c†
A,ncB,n +

N−1∑
n=1

(t − δt )c†
A,n+1cB,n + H.c.,

(1)
where c†

A(B),n and cA(B),n are the creation and annihilation op-
erators of the electron on the nth site of A (or B), respectively.
In this model, each unit cell consists of two sites. The hopping

amplitude in the unit cell is t + δt and that between two unit
cells is t − δt .

The SSH model indicates that the polyacetylene actually
has two distinct topological phases. Assuming that t > 0, it
is topologically trivial for δt > 0, but nontrivial for δt < 0,
which means a topological quantum transition occurs at δt =
0. The MCD [16,17], defined as

Cd (t ) =
∑

i

〈ψi(t )|�̂P̂|ψi(t )〉, (2)

is introduced to characterize these two phases, where �̂ is
a chiral operator satisfying �̂2 = 1 and anticommuting with
Hamiltonian H (�̂H = −H�̂). P̂ is the position operator,
acting as P̂|x〉 = x|x〉.

As one typical chiral system, the SSH model can be
characterized by topological invariants, such as the Berry
phase, the Chern number, the nested Wilson loop, and
entanglement-related quantities. In previous work [30], it was
found that in the long-time limit Cd (t → ∞) → ν, where
ν = Tr[�H−1∂qH] is the winding number of the chiral Hamil-
tonian H (q) generating the dynamics after the quench defined
in the quasimomentum space. Therefore, the MCD of a single
particle can be regarded as a topological marker in experi-
ments between different topological phases.

III. THE MCQM IN THE BBH MODEL

As an extension of the theory of dipole moments in crys-
talline insulators to higher multipole moments, Benalcazar,
Bernevig, and Hughes proposed the concept of quantized
electric multipole insulators [36,37], of which the dipole mo-
ment is zero but with quantized quadrupole moment. The
Hamiltonian of the BBH model is given as follows:

HBBH =
∑
〈i, j〉

{[tx + (−1)iδtx]c†
i+1, jci, j

+ [ty + (−1) jδty]c†
i, j+1ci, j} + H.c., (3)

where c†
i, j and ci, j denote the creation and annihilation oper-

ators of spinless fermions on the site (i, j). tx and ty are the
transfer integrals between the nearest-neighbor pairs of sites
as shown in Fig. 1(b). There are two types of hopping in the
x and y direction such as tx ± δtx and ty ± δty, which corre-
spond to intercellular and intracellular hoppings, respectively.

The topological nature of the Hamiltonian HBBH has been
well investigated in the literature. For simplicity, we set tx =
ty = t , δtx = δty = δt and define ta = t − δt and tb = t + δt .
When |ta| �= |tb|, the system is gapped at half filling. The half-
filled ground state is topologically trivial (nontrivial) when
|ta| > |tb| (|ta| < |tb|). In order to capture the properties of
the topological phase in the BBH model quantificationally, the
MCQM is introduced as

Cq(t ) = 〈�(t )|Q|�(t )〉, (4)

wherein Q = ∑
r,α rxry�̂αnr,α is the quadrupole operator, a

pair of indices r = (rx, ry) is the position of the unit cell,
and �(t ) is the wave function after quench dynamics. The
site-resolved particle density is defined as ni = c†

i ci, which is
all we need to measure in actual experiments.
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Analogously, �̂α is the eigenvalue of the chiral operator, a
factor similar to �̂ in the MCD heuristically. It takes +1 for
α = 1, 3 and −1 for α = 2, 4, which makes the contributions
from the negative-energy bands and those from the positive-
energy band additive, otherwise they may cancel each other.
In one special case, for the two-particle BBH model [21],
C̄q = 0 indicates the trivial phase, and C̄q = 1/2 indicates the
topological phase, where C̄q stands for the long-time average
of Cq(t ).

In a nutshell, the MCQM can be regarded as an extension
of the MCD to characterize the two-dimensional second-order
topological insulator. To make the MCQM well defined, the
unit cells and sublattices need to be fixed at the beginning,
since it depends on the the choice of the frame.

IV. EXPERIMENTAL DESIGN

This model consists of four degrees of freedom, two for
sites and the other two for cells. Since each qubit is equivalent
to a two level system, i.e., one degree of freedom, these four
degrees of freedom can be encoded into a four-qubit quan-
tum simulator, 13C-iodotrifluoroethylene (C2F3I) dissolved in
d-chloroform [38–44], as shown in Fig. 2(a).

It has one 13C nucleus and three 19F nuclei as four qubits.
The four unit cells c = {I, II, III, IV} are encoded into the
subspace of the F2 and F3 qubits. In each sublattice cell, there
are four sites s = {1, 2, 3, 4} encoded with the 13C and F1

qubits. According to this coding rule, each particle has its own
position coordinate (c, s).

We investigate the two-particle BBH model of 4 × 4 unit
cells on the Bruker Ascend 600-MHz spectrometer (14.1 T)
equipped with a cryoprobe (20-K helium gas) at room tem-
perature (298 K). Under the condition of weak-coupling
approximation, the internal Hamiltonian of the NMR system
is given as

HNMR = −
4∑

i=1

ωiI
z
i +

4∑
i=1,i< j

2πJi j I
z
i Iz

j , (5)

where ωi/2π is the Larmor frequency of the ith spin; Iz
i and

Iz
j are the z-direction spin bases of the ith and jth nucleus,

respectively; and Ji j is the scalar coupling between them.
More chemical property details about the C2F3I molecule are
given in Fig. 2(b).

Naturally, the nuclei are governed by the Boltzmann dis-
tribution, which cannot be observed directly. We use the line
selection technique to drive thermal equilibrium state ρeq =
I⊗4/16 + ε(γCIz

1 + γFIz
2 + γFIz

3 + γFIz
4 ) into the pseudopure

state (PPS) [31,45–47]

ρPPS = 1 − ε

16
I⊗4 + ε|0000〉〈0000|, (6)

where I⊗4 stands for the tensor product of four 2 × 2 iden-
tity operators, the polarization ε ≈ 10−5, and γC (γF) is the
gyromagnetic ratios of the 13C (19F) nuclei. The first term of
Eq. (6) is always neglected [48], since it has no contribution
to the experimental signal. The second term evolves under an
rf field following the Hamiltonian propagator.

The quench dynamics [49,50] can be extracted by the uni-
tary time evolution of the many-body wave function under the

FIG. 2. Experimental design and characteristics of the C2F3I
molecule. (a) The four-qubit quantum simulator is divided into two
subspaces, encoding the cells {I, II, III, IV} and the sites {1,2,3,4} in
the two-particle BBH model. (b) The molecule chemical parameters
of 13C-iodotrifluorethylene dissolved in d-chloroform. The table lists
the chemical shifts (diagonal, in hertz) and J couplings (off-diagonal,
in hertz), respectively. Relaxation time T2 (in seconds) is also listed in
the last column. (c) Quantum circuit to realize the observation of the
quadrupolar phase in the BBH system. In the Evolution module, the
initial positions of the two particles are represented by green circles.
The diagram in the dash-dotted line box shows the construction of
the quench Hamiltonian Hq. The solid (dashed) bonds stand for ta/tb

(−ta/ − tb) of the hopping amplitude.

quench Hamiltonian Hq:

|�(t )〉 = e−iHqt |�0〉. (7)

Herein, we set h̄ = 1. As shown in Fig. 2(c), the opposite
corners at the center of the system are occupied by two par-
ticles initially, with position coordinates (I, 3) and (III, 1).
According to our encoding rule, the initial state of these two
particles happens to be the Bell state in the subspace of first
(13C) and third (19F2) qubits:

|�0〉 = |0204〉 ⊗ (|0113〉 + |1103〉). (8)

The initial state can be generated by the composition of
Hadamard and controlled-NOT (CNOT) gates.

As our objective is to demonstrate the feasibility of de-
tecting the higher-order topology on our NMR simulator,
we hereby focus exclusively on noninteracting models for
simplicity, leaving the effect of interactions for future study.
The quench Hamiltonian Hq of the noninteracting two-
particle BBH model with which we are concerned is depicted
in the Evolution module of Fig. 2(c). It includes three commu-
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tative terms, intracell part Ha, intercell part Hb, and disorder
part Hw, as follows:

Hq = Ha + Hb + Hw, (9)

where

Ha =ta
∑

c

(c†
c,1cc,2 + c†

c,3cc,4 + c†
c,1cc,4 − c†

c,2cc,3) + H.c.,

(10)

Hb = tb
∑

c

(c†
c+ex,1

cc,2 + c†
c+ex,3

cc,4

+ c†
ccc+ey,1cc,4 − c†

c+ey,2
cc,3) + H.c., (11)

and

Hw =
∑

i∈[c,s]

wic
†
i ci. (12)

We set the length of the sublattice cells to be unity, and
ex and ey are unit vectors in x and y directions, respectively.
With the dynamical process, the two particles hop randomly
in the nearest-neighbor sites, and ta (−ta) and tb (−tb) are

the strength of intracell and intercell hopping amplitudes. The
summation index (c, s) in Eqs. (10) and (11) is under the open
boundary condition. For the I and IV cells, c + ex means the
II and III cells. In the same vein, for the I and II cells, c + ey

means the III and IV cells. In Eq. (12), coefficient wi is the
strength of ith site disorder potential chosen randomly within
the amplitude of [−w,w].

In order to implement the quench dynamics of Hq on a
spin quantum simulator, we employ the Jordan-Wigner trans-
formation to map this fermionic system into a collection of
qubits. It is a natural way in that a given fermionic mode with
or without occupied states is just analogous to a spin qubit
with two possible states {|0〉, |1〉}. For spinless fermions, the
fermionic creation operator corresponds to a string of Pauli
operators c†

j = σ
†
j

⊗ j−1
i=1 σ z

i and the fermionic annihilation

operator c j = (c†
j )

†, where the Pauli creation and annihila-
tion operators σ± = (σ x ± iσ y)/2 and σα

j (α = x, y, z) are the

Pauli matrices. The anticommutation relations {c j,s, c†
l,s′ } =

δ j,lδs,s′ , {c†
j,s, c†

l,s′ } = {c j,s, cl,s′ } = 0, c†
j c j+1 = σ

†
j σ

−
j+1, and

c†
j c j = σ

†
j σ

−
j = (I + σ z

j )/2 are easily satisfied. After this
transformation, the quench Hamiltonian Hq of Eq. (9) can be
rewritten as

Hq =
∑

c

ta(σ †
c,1σc,2 + σ

†
c,3σc,4 + σ

†
c,1σc,4 − σ

†
c,2σc,3) + H.c.

+
∑

c

tb(σ †
c+ex,1

σc,2 + σ
†
c+ex,3

σc,4 + c†
cσc+ey,1σc,4 − σ

†
c+ey,2

σc,3) + H.c. +
∑

i∈[c,s]

wi(I + σ z
i )/2, (13)

which is directly used to realize the evolution process.
The original plain idea is to decompose the evolution

process Uq = e−iHqt into single-qubit rotations Rx,y,z(φ) and
multiqubit controlled rotations, e.g., the CNOT gate. However,
because of the complexity of Hq, we turn to realize the
dynamical process by shaped rf pulse sequences, which are
optimized by the gradient ascent pulse engineering (GRAPE)
algorithm [51,52]. The rf control Hamiltonian of the four-
qubit NMR simulator is

Hcon = BC
x σ 1

x + BC
y σ 1

y +
4∑

k=2

(
BF

x σ
k
x + BF

y σ
k
y

)
, (14)

where pairs of {BC
x,y, BF

x,y} are the parameters to be optimized
in the gradient-based search process. In our experiment, the
whole dynamical process is implemented with 1500 slices of
a 20-μs square wave pulse, and each slice acts as a unitary
operator Ui(t ) = e−i(Hq+Hcon )t . The fidelity of the optimized
pulse is over the average of 0.995, concerning the imperfec-
tion of the pulse sequence.

Although the C2F3I molecule provides four qubits as a
quantum simulator, only the first qubit in the carbon channel
is friendly for readout. Fortunately, the first qubit (13C) holds
enough information to calculate the MCQM. At the end of
dynamical evolution, the bulk topology of the quadrupolar
phase can be extracted from the expectation value of 〈σ C

z 〉
of the first qubit. More details related to the measurement
process are given in the Appendix.

V. RESULTS AND DISCUSSION

We assume the system is clean without any disorder po-
tentials, only taking hopping terms into consideration. First,
we study the MCQM of the two-particle model of different
sizes of cells, with the numerical results shown in Fig. 3(a).
The ratio |ta|/|tb| is changed incrementally by step 0.1 within
the range of [0,3]. The total evolution time of every quench
dynamical process is 100 s, and we record the evolution by
every 0.1 s, then average Cq(t ) to get long period mean value
C̄q = limT →∞(1/T )Cq(t )dt . It was found that, with size of
cells increasing, the slope of C̄q at the transition point becomes
sharper than with the smaller size and the critical point tends
to be 1.

Experimentally, with the change of the ratio of hop-
ping amplitudes |ta|/|tb| in a sequence of the second-order
arithmetic progression [0, 0.1, 0.3, 0.6, 1.0, 1.5, 2.1, 2.7], the
MCQM oscillates differently. We exhibit three different
oscillation behaviors in Figs. 3(b)–3(d), corresponding to
|ta|/|tb| of the value 0.1, 1.0, and 2.1. The total evolution
time is 30 s with a step size of 0.1 s. Based on these exper-
imental results, it is easy to obtain the long period average
C̄q as sketched in Fig. 3(e). Just like the prediction from the
theoretical work, we have observed the system gradually goes
through the topological phase into the trivial phase. In the
topological phase (|ta|/|tb|=0.1), Cq(t ) performs standard cos-
inusoidal oscillation and C̄q is 0.50 ± 0.01. Conversely, in the
trivial phase (|ta|/|tb|=2.1), Cq(t ) displays irregular periodic
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FIG. 3. Theoretical and experimental results of the MCQM in different parameters. (a) Numerical study of the topological phase transition
in different sizes of 2 × 2, 4 × 4, 6 × 6, 8 × 8, and 10 × 10 cells. Experimental oscillation behaviors in different cases of (b) Topological
phase (|ta|/|tb|=0.1). (c) Critical point (|ta|/|tb|=1.0). (d) Trivial Phase (|ta|/|tb|=2.1). The grey dashed lines are the value of C̄q. (e) The
experimental time-averaged C̄q as a function against the ratio of hopping amplitude |ta|/|tb|. Setting tb = 1.0, the value of ta is varied following
the second-order arithmetic progression 0, 0.1, 0.3, 0.6, 1.0, 1.5, 2.1, 2.7.

oscillations violently where C̄q is 0.02 ± 0.00 approaching
to zero.

We also found that the experimental results perform a
little deviation from theoretical prediction when |ta|/|tb| is
in the transition interval, and each data point has a rela-
tively larger error bar. The deviation accumulates from the
systemic and accidental errors. It is inevitable that the pre-
cision of the NMR spectrometer is limited to instrument noise
from internal electronics and instability of the environment.
More importantly, the Initialization and Evolution modules
are realized by 1500 slices of a 20-μs shaped square pulse
sequence optimized by the GRAPE technique with the fi-
delity of 0.995, and the total duration time τ is up to 0.3 s.
Roughly taking the decoherence effect into consideration,
the dynamics evolution of the ith slice can be written as
ρ(ti+1) = εU †

i ρ(ti )Ui. For each qubit, the Kraus representa-
tion of the decoherence channel can be described as ε(ρ) =
E0ρE†

0 + E1ρE†
1 , where E0 = √

γI, E1 = √
1 − γ σz with the

parameters γ = [1 + exp(−τ/T ∗
2 )]/2. In addition, the mea-

surement errors also make a few contributions to the deviation,
including the instrument resolution and imperfection readout
pulse. It is worth mentioning that in the absolute topological
or trivial phase region the effect of noise is not significant,
which indicates that the MCQM is an ideal indicator to reveal
phase transition against experimental perturbations. Overall,
experimental accuracy based on cosine similarity defined as
(a · b)/(||a|| · ||b||) is about 97.59%, conforming to theoreti-
cal expectations.

Furthermore, the phase transition indicated by C̄q is pretty
smooth as expected, rather than a steep jump around the
critical point |ta|/|tb| = 1.0. On the one hand, it is due to
the limited size of 2 × 2 cells. On the other hand, it is
a typical property of dynamical states [21]. Since ground
states are usually characterized by the jump of the quan-
tized topological number, there exists a sharp jump when it
goes through different phases. These dynamical properties
can be utilized to discriminate the dynamical states from the
ground states.

Moreover, we inject the Gaussian noise [53–55] with
strength w into the Hamiltonian Hq of the noninteracting two-
particle BBH model (ta = −0.3, tb = −1.0) to study disorder
potential dependence properties of the MCQM. The noise
is generated randomly obeying the Gaussian distribution of
N (μ, σ ) ∼ N (0,w). We repeat the dynamical oscillation pro-
cess with the same noisy strength for five turns as a group to
observe behaviors of the MCQM in different noise strengths.
As shown in Fig. 4, for weak (w = 0.2), moderate (w = 0.6),
and strong (w = 1.0) strength cases, the oscillations of Cq(t )
behave similarly in the short-time range within 10 s. It is easy
to understand that the particles do not reach the boundary in
a short time. However, when evolution time t is over 10 s, it
oscillates differently as the boundary effect contributes more
disorder. With the increasing of noise strength, the average

FIG. 4. The dynamical behaviors of the MCQM in weak (w =
0.2), moderate (w = 0.6), and strong (w = 1.0) noise strength.
Dashed lines are the average MCQM in five turns of experiments,
and the shaded area is the distribution interval correspondingly
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C̄q deviates from the theoretical value 0.4171 obviously. The
Cq(t ) for the weak strength noise has a slim appearance. But
for the strong noise case, it appears bloated, which means it
has a greater uncertainty.

These results show that the MCQM can be an experimen-
tal indicator of the bulk topology when the noise is within
reasonable strength range. Even in the case of strong noise, it
is still effective in a short period of time. And for a larger
BBH system, the effective period range may be extended
reasonably.

VI. CONCLUSION

In conclusion, we utilize the mean chiral quadrupolar mo-
ment to study the topology of chiral two-dimensional systems,
showing the useful techniques of quantum simulators. We
first observe the MCQM on a spin simulator and record
its phase transition via quench dynamics. We also test its
noise-dependent characters, verifying its robustness against
moderate noise. The idea Mizoguchi et al. [21] proposed is
verified experimentally. Meanwhile, we propose the idea of
applying the MCQM onto other platforms. With regard to
the experimental characterization of the MCQM in bosonic or
anyonic systems, it is also an intriguing topic for future study.
What is more, we may pave the way to extend similar ideas to
arbitrary dimensional topological systems [56].

Note added. Recently, we found one relevant work [57]
based on superconducting circuits to study the BBH model.
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APPENDIX: TRANSLATION OF 〈σC
z 〉 INTO THE MCQM

In our four-qubit quantum simulator, the wave function
can be written as |�〉 = [a1, a2, · · · , a16]†, ai ∈ [0, 1], which
means the probability of existence at each site. Thus a density
matrix of 16 × 16 dimension correspondingly is shown as

below:

ρ =

⎡
⎢⎢⎣

a∗
1a1 a∗

1a2 · · · a∗
1a16

a∗
2a1 a∗

2a2 · · · a∗
2a16

...
...

. . .
...

a∗
16a1 a∗

16a2 · · · a∗
16a16

⎤
⎥⎥⎦

16×16

. (A1)

It follows that Cq(t ) = 〈�(t )|Q|�(t )〉, where the
quadrupolar is

Q =
∑
r,α

rxry�̂αnr,α = rxry(nI,1 − nI,2 + nI,3 − nI,4)

+ rx+1ry(nII,1 − nII,2 + nII,3 − nII,4)

+ rxry+1(nIII,1 − nIII,2 + nIII,3 − nIII,4)

+ rx+1ry+1(nIV,1 − nIV,2 + nIV,3 − nIV,4). (A2)

The value of r = (rx, ry) will influence the amplitude of
dynamical oscillation behaviors of the MCQM. However, it
does not change the long-time average C̄q. Without loss of
generality, we set r = (rx, ry) = (1, 1), and the cells {I, II, III,
IV}={(1,1), (1,2), (2,1), (2,2)}. Notice here we have just the
coordinates of the unit cells, but nothing with our coding rules.
The measurement operator of the readout process is

P̂ = σz ⊗ I2 ⊗ I2 ⊗ I2

= (|0〉〈0| − |1〉〈1|) ⊗ (|0〉〈0| + |1〉〈1|)⊗3

= |0〉〈0| ⊗ (|0〉〈0| + |1〉〈1|)⊗3 − |1〉〈1| ⊗ (|0〉〈0|
+ |1〉〈1|)⊗3, (A3)

which can extract the diagonal information from the density
matrix ρ f of the final state after quench dynamics. The popu-
lation of diagonal elements in ρ f happens to the site-resolved
particle density. Explicitly, nI,1 = a∗

1a1, nI,2 = a∗
2a2,..., nIV,3 =

−a∗
15a15, nIV,4 = −a∗

16a16.
Here we take the measurement operation of P|0001〉 as an

example:

P|0001〉 =|0〉〈0| ⊗ |0〉〈0| ⊗ |0〉〈0| ⊗ |1〉〈1|

= I2 + σz

2
⊗ I2 + σz

2
⊗ I2 + σz

2
⊗ I2 − σz

2

=(I2I2I2I2 − I2I2I2σz + I2I2σzI2 − I2I2σzσz+
I2σzI2I2 − I2σzI2σz + I2σzσzI2 − I2σzσzσz+
σzI2I2I2 − σzI2I2σz + σzI2σzI2 − σzI2σzσz+
σzσzI2I2 − σzσzI2σz + σzσzσzI2 − σzσzσzσz )/16.

(A4)
Only the x or y components of the first qubit can be read out

directly in the NMR system of the C2F3I molecule. For other z
components, we can apply π/2 rotation pulse R2,3,4

x,y (π/2) on
other qubits to make it along the x/y axis. Based on this, after
multiple measurements, we can calculate the MCQM utiliz-
ing Eq. (A2) from the expectation value of 〈σz〉 of the first
qubit (13C).
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