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We show that the variational quantum-classical simulation algorithm admits a finite circuit depth
scaling collapse when targeting the critical point of the transverse field Ising chain. The order param-
eter only collapses on one side of the transition due to a slowdown of the quantum algorithm when
crossing the phase transition. In order to assess performance of the quantum algorithm and compute
correlations in a system of up to 752 qubits, we use techniques from integrability to derive closed-
form analytical expressions for expectation values with respect to the output of the quantum circuit. We
also reduce a conjecture made by Ho and Hsieh [W. W. Ho and T. H. Hsieh, SciPost Phys. 6, 029
(2019)] about the exact preparation of the transverse field Ising ground state to a system of equations.
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I. INTRODUCTION

Impressive advances have recently led to the realization
of the first noisy intermediate-scale quantum (NISQ) com-
puters [1–3] and quantum simulators [4–10]. One promising
application of NISQ devices is the simulation of quantum
many-body systems [6,11–16]. Near-term quantum computers
will be limited by the number of qubits and the number of
gates that can be executed with high fidelity, while analog
simulations have to be executed within a typically short coher-
ence time. These restrictions make it challenging to map out
phase diagrams of strongly correlated materials, in particular
in the vicinity of quantum critical points. At these phase tran-
sitions, the correlation length diverges and representing the
system of interest with a finite device necessarily comes with
a loss of accuracy. Instead of pushing computational resources
towards the thermodynamic limit, classical methods typically
make use of data produced by smaller-scale computations and
combine those data points in an informed manner, as it is
done in finite-size [17–20] or finite-bond-dimension scaling
collapses [21].

Similarly, one may ask if data produced by a NISQ
quantum computer can be used to predict the location and
universality class of a critical point with an accuracy that goes
beyond the machine specifications. In this work, we provide
an example where this is indeed possible. More precisely,
we show that the variational quantum classical simulation
(VQCS) [22] algorithm admits a scaling collapse when tar-
geting the critical point of the transverse field Ising model
(TFIM). Instead of finite size or finite entanglement, the depth
of the quantum circuit plays the role of the relevant pertur-
bation away from criticality. To classically benchmark the
performance of the quantum algorithm, we adapt techniques
from integrability to the quantum computation setting. Specif-
ically, the quantum circuit can be mapped to a sequence of
quenches in the TFIM. We show how to describe the state

after a series of such quenches and derive a closed-form an-
alytical expression for expectation values of local Gaussian
observables (like the energy) in a circuit of arbitrary depth
and width. This allows us to optimize the parameters of the
quantum circuit for a number of qubits that is inaccessible
to other classical simulation techniques but within reach of
a NISQ computer.

Importantly, assessing the physics of the optimal state
requires the evaluation of expectation values that are non-
Gaussian or nonlocal. Our key technical contribution is a
framework in which arbitrary observables can be evaluated
classically in polynomial time, provided the circuit is Gaus-
sian. Using this framework, we compute the order parameter
of the optimal circuit. We find that finite-circuit-depth data
of the order parameter collapses on one side of the phase
transition, in the phase that contains the initial state of the
quantum computer. The framework we develop can also be
used as a point of departure for quantum circuit design and to
benchmark quantum devices.

II. MODEL, ALGORITHM, AND METHOD

A. The VQCS algorithm

We study the VQCS algorithm that was put forward in [22]
as an adaptation of the quantum approximate optimization
algorithm (QAOA) [23,24] to quantum simulators. Gener-
ally, the strategy is to split a target Hamiltonian acting on L
qubits as

HT (h) = H1 + hH2, (1)

where the ground state of H1, |ψ1〉, should be easy to initialize
on a quantum computer or simulator. The VQCS ansatz con-
sists in choosing a circuit depth 2p as well as 2p variational
parameters (γ1, β1, . . . , γp, βp) and writing

|ψ (γ , β )〉 = e−iβpH1 e−iγpH2 · · · e−iβ1H1 e−iγ1H2 |ψ1〉 . (2)
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We take the cost function to be the energy density

FL(h; γ , β ) = 1

L
〈ψ (γ , β )|HT (h)|ψ (γ , β )〉 , (3)

where we have made explicit L, the number of qubits that
HT (h) acts on. The VQCS algorithm proceeds by measuring
the cost function on the quantum computer or simulator and
feeding the input to an optimization routine running on a
classical computer. Once the optimal value

FL(h; p) = min
γ ,β

FL(h; γ , β ) (4)

is found, the corresponding quantum states can be prepared at
will using the optimal parameters (γopt, βopt ) and observables
of interest can be measured.

B. Transverse field Ising model

In this paper, we choose as the target Hamiltonian the
TFIM

H1 = −
L∑

i=1

ZiZi+1, (5)

H2 = −
L∑

i=1

Xi, (6)

where X = (0 1
1 0) and Z = (1 0

0 −1) and where periodic
boundary conditions are imposed. To be precise, H1 has two
ground states and we pick |ψ1〉 = |0 . . . 0〉 with Z |0〉 = + |0〉
to initialize the algorithm. The fact that H1 and H2 consist of
local commuting terms has two consequences: (i) The evolu-
tion (2) can be implemented on a digital quantum computer
without Trotterization and (ii) we can simulate the algorithm
directly in the thermodynamic limit. More precisely,

FL(h; γ , β ) = FL′ (h; γ , β ) (7)

for L, L′ � 4p. This is due to the fact that there is an exact
finite light cone for local operators, as illustrated in Fig. 1.
In the regime L � 4p the boundary conditions also become
irrelevant. Therefore, for a given p, a quantum computer with
L = 4p qubits captures the thermodynamic limit exactly and
this is the setting we will later choose in our simulation.1

Besides the energy, we are also interested in the scaling
behavior of the observables

mZ (h; p) = 〈ψ (γopt, βopt)|Zj |ψ (γopt, βopt)〉 , (8)

mX (h; p) = 〈ψ (γopt, βopt )|Xj |ψ (γopt, βopt )〉 , (9)

mXX (�; h; p) = 〈ψ (γopt, βopt )|XjXj+�|ψ (γopt, βopt )〉
− mX (h; p)2, (10)

where the position j is arbitrary due to translation invariance
of both the initial state and the circuit.

1Empirically, we find that L, L′ � 2p + 2 is sufficient for (7) to
hold.

FIG. 1. Quantum circuit (2) for p = 1. The expectation value
of the energy density h involves only those qubits that are within
the light cone (dotted). Here UX (β ) = exp(iβX ) and UZZ (γ ) =
exp(iγ Z ⊗ Z ). A similar circuit provides the gradient

C. Exact solution of the quantum circuit

General techniques suffer from a cost per optimization step
that is exponential in the system size, limiting the availabil-
ity of data to L � 20. To study the fate of the algorithm
closer towards the scaling limit, we turn to techniques from
integrability. As we show in Appendix A, the energy F ,
magnetization m, and overlap φ of |ψ (γ , β )〉 with the exact
ground state of the target Hamiltonian admit closed-form
expressions.

In order to present these results, let us introduce the se-
quence of functions f j (k) for j = 0, . . . , 2p that satisfy the
recurrence relation

f0(k) = 0,

f2 j+1(k) = e−4iγ j+1
1 − i tan(k/2) f2 j (k)

f2 j (k) − i tan(k/2)
,

f2 j (k) = e−4iβ j
1 + i tan(k/2) f2 j−1(k)

f2 j−1(k) + i tan(k/2)
.

(11)

We then define

fproj(k) = iKh0(k) + f2p(k)

1 + iKh0(k) f2p(k)
,

with Kh0(k) = tan
1

2

[
arctan

h − cos k

sin k

+ arctan
1

tan k

]
,

εh(k) =
{

2
√

1 + h2 − 2h cos k, k �= 0
−2(1 − h), k = 0,

(12)
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as well as the sets

NS =
{

2π (n + 1/2)

L
, n = −L/2, . . . , L/2 − 1

}
,

R =
{

2πn

L
, n = −L/2, . . . , L/2 − 1

}
,

(13)

and NS+, R+ ⊂ NS, R the subsets of strictly positive el-
ements. Then the energy density FL(h; γ , β ) of the state
|ψ (γ , β )〉 is

FL(h; γ , β ) = 1

2L

∑
k∈NS∪R

εh(k)
| fproj(k)|2

1 + | fproj(k)|2

− 1

4L

∑
k∈NS∪R

εh(k).

(14)

This expression for the energy density holds in arbitrary finite-
size L. As for the overlap with the ground state, an exact
formula is given in Appendix A.

In the thermodynamic limit L → ∞, the X magnetization
is given by

mX (h; p) = 1 − 1

π

∫ π

−π

|g2p(k)|2
1 + |g2p(k)|2 dk, (15)

with

g2p(k) = 1 − i tan(k/2) f2p(k)

f2p(k) − i tan(k/2)
. (16)

The connected XX -magnetization correlation is given by

mXX (�; h; p) =
∣∣∣∣ 1

π

∫ π

−π

g2p(k)e−ik�

1 + |g2p(k)|2
∣∣∣∣
2

−
∣∣∣∣ 1

π

∫ π

−π

|g2p(k)|2e−ik�

1 + |g2p(k)|2
∣∣∣∣
2

. (17)

The Z magnetization is expressed as a Fredholm determinant

mZ (h; p) = det(Id − J ). (18)

Here J (λ,μ) is the function defined on [0, π ] × [0, π ],

J (λ,μ) = 2

π

ρ(λ) sin λ

f2p(λ)

1

cos λ − cos μ

×
[
−
∫ π

0

f2p(k) sin k

cos λ − cos k
dk − −

∫ π

0

f2p(k) sin k

cos μ − cos k
dk

]
,

(19)

where −
∫

denotes an integral in principal value and

ρ(k) = 1

2π

| f2p(k)|2
1 + | f2p(k)|2 . (20)

Finally, if the algorithm is initialized in |+ · · · +〉 with
X |+〉 = |+〉, then the relations (11)–(17) hold true with
f0(k) = 1

i tan(k/2) in (11) and with (14) multiplied by 2 and
summation only in NS. Crucially, all of these quantities can
be computed in time and memory that scale as polynomials in
p. Equations (11)–(20) are the central result of this paper.

A few comments are in order. First, as shown in
Appendix B, one can generalize the exact solution to allow
for rounds of exp(it

∑L
j=1 YjYj+1) gates in the quantum circuit
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FIG. 2. Difference between the optimal energy density in the
thermodynamic limit FL (h; γ , β ) after p steps and the exact ground-
state value, as a function of p, for h = 1 (middle blue circles),
h = 0.9 (lower red circles), and h = 1.1 (upper green circles). The
inset shows the behavior π

12p2 for h = 1.

(2). Second, in the case where the algorithm is initialized in
|+ · · · +〉, it was conjectured in [22] that the ground state in
finite-size L can be exactly prepared with p = L/2 steps. In
our formalism, this conjecture translates to the statement that,
for f0(k) = 1

i tan(k/2) , the system of L/2 equations fproj(k) = 0,
k ∈ NS+, for L real unknowns γ1, β1, . . . , γp, βp admits at
least one solution. Third, as explained in Appendix C, as
a by-product of our calculations we obtain the solution to
the long-standing problem of the full time evolution of the
order parameter after a quantum quench in the Ising model
[25–38]. Fourth, while we focus on the ground state in the
main text, it is possible to target excited states using a vari-
ant of (A28). Finally, to find the optimal solution, we use a
Broyden-Fletcher-Goldfarb-Shanno algorithm, supplying the
gradient of (14), for which an analytic formula is available.

III. RESULTS

All of the following results are given for the effective
thermodynamic limit L = 4p.

A. Energy

The optimal parameters γ , β are fed into (14) to obtain the
energy of the lowest-energy state that can be prepared with the
quantum computer after p steps. The energy density is then
compared to the known value in the thermodynamic limit,

F∞(h) = − 1

2π

∫ π

0
εh(k)dk. (21)

The results are plotted in Fig. 2 for three different values of
the magnetic field h = 1, h < 1, and h > 1. We observe the
leading behavior

FL(h; γ , β ) − F∞(h) =
⎧⎨
⎩

Ae−λp if h < 1
π

12p2 if h = 1
B
p if h > 1,

(22)
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(a) (b)

(c) (d)

FIG. 3. (a) Magnetization in the X direction at the optimal angles
at circuit depth p as a function of h. Larger values correspond to
larger circuit depths. (b) Connected correlation of the magnetization
in the X as a function of � for optimal angles at h = 1. The line
curving down at larger � corresponds to p = 188. (c) Susceptibility
in the X direction at the optimal angles at circuit depth p as a function
of h. Larger values correspond to larger circuit depths. (d) Logarith-
mic divergence of the susceptibility at h = 1. The logarithm is with
respect to base 10. The lines guide the eye.

with A, B, λ some h-dependent constants. The factor π
12 is

observed with precision ∼10−5. For h � 1, if we rescale the
Hamiltonian by a factor 1/h, the constant B reaches a finite
value.

We recall that the energy density of the exact ground state
in finite-size L would converge to its value in the thermody-
namic limit exponentially fast for h �= 1, while at h = 1 the
energy difference would have the leading behavior −πvF c

6L2 with
vF = 2 the Fermi velocity and c = 1

2 the central charge of the
conformal field theory describing the critical point [39–41].
We remark that for h � 1 the behavior (22) is qualitatively the
same in terms of the circuit depth p. In particular, the behavior
at the critical point could suggest a general leading-order
correction of πvF c

12p2 .
However, for h > 1 we observe a slowdown of the algo-

rithm that bears similarities with adiabatic slowdown near
criticality [42]: Adiabatically evolving across a critical point
typically requires time ∼1/�2 if � is the smallest gap of
the system. Since the quantum computer is initialized in the
symmetry-broken phase of the Ising model and the circuit
respects the symmetry, a slowdown when targeting h > 1 is
expected. Conversely, when we initialize the computation in
the paramagnetic |+ · · · +〉 state, the reverse scaling (22) is
observed: The energy density converges exponentially fast for
h > 1, as π

12p2 for h = 1 and is proportional to 1/p for h < 1.

B. The X magnetization

We plot in Fig. 3 the expectation value mX (h; p) of the X
magnetization and its susceptibility χX (h; p) = ∂hmX (h; p) at
optimal parameters (γ , β ) at circuit depth p, as a function of
h. We observe a logarithmic divergence 2

π
log p of χX (h; p)

at h = 1, signaling a phase transition. The susceptibility is
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FIG. 4. (a) Magnetization in the Z direction at the optimal angles
at circuit depth p as a function of h. Larger circuit depth corresponds
to smaller mZ . (b) One-sided collapse of the magnetization curves
for 50 linearly spaced points between h = 0.95 and h = 1, using the
optimized exponents (see the text).

indeed known to diverge at the critical point with critical
exponent α = 0 [43].

We also show in Fig. 3 the expectation value mXX (�; h; p)
of the connected XX -magnetization correlation at the criti-
cal point h = 1, as a function of the distance �. The exact
known value is mexact

XX (�) = 4
π2

1
4�2−1 [44]. With a circuit depth

p = 188, this exact value is well reproduced for � � 20 and
the critical exponent 2 is observed up to � ≈ 30. Our data for
various values of p suggest that the correlation length, defined
as the minimum distance � for which mXX (�)/mexact

XX < 1/e,
scales linearly as 0.44p. We remark that while being pro-
portional to the effective system size L = 4p, this correlation
length is smaller than the effective correlation length of the
finite-size ground state which we have computed to behave
as 0.44L. This suggests that it is difficult to create long-range
correlations with a VQCS or QAOA-like algorithm.

C. The Z magnetization and finite-circuit-depth scaling

We now discuss the scaling of the order parameter,
mZ (h; p). The exact value in the thermodynamic limit is
known to be (1 − h2)1/8 for h � 1 and 0 for h > 1 [44].
The behavior of mZ (h; p) at optimal parameters (γ , β ), as
shown in Fig. 4, is qualitatively similar to the ground-state
magnetization in finite-size L due to the finite light cone
introducing a length scale less than or equal to 4p. As we have
observed in the preceding section, the correlation length ξ (p)
of the optimal states at circuit depth p is significantly smaller.
Nevertheless, since ξ is linear in p, we expect the convergence
in p and ξ to be characterized by the same exponents.

If the circuit reproduces the finite-size ground state suf-
ficiently well, one may estimate the critical exponents by
directly adapting finite-size arguments to obtain a scaling
hypothesis for finite circuit depth scaling: Denoting by ν

the critical exponent associated with the divergence of the
correlation length ξ ∼ |h − hc|−ν close to the critical point
hc and by β the critical exponent of the Z magnetization
mZ (h; p) ∼ |h − hc|β , there exists a scaling function ϕ such
that for large p and h close to hc,

mZ (h; p)pβ/ν = ϕ((h − hc)p1/ν ). (23)
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There is however an important difference with finite-size
scaling. We observed in Sec. III A that the convergence of the
energy density as a function of p is qualitatively similar to
that in finite-size L for h < hc and h = hc only. For h > hc the
quantum circuit retains knowledge of the initial state and the
behavior in terms of the circuit depth significantly differs. As a
consequence, one should generally expect finite-circuit-depth
scaling to follow finite-size scaling only before the critical
point. Having established hc = 1 from the X susceptibility,
optimizing the collapse using pyfssa [45] yields β = 0.122
and ν = 0.99, in good agreement with the known values
βexact = 0.125 and νexact = 1, and such a one-sided collapse
is indeed observed for those values (see Fig. 4).

D. Structure of the optimal solutions

A key performance metric for variational quantum algo-
rithms is the structure of the resulting energy landscape: An
algorithm can only yield exponential speedup if the classical
optimizer does not need to call the quantum subroutine too
often and if local minima can be avoided. In this section we
describe the structure of the solutions (γ , β ) that minimize
the energy density in the thermodynamic limit at fixed p.
We note that one can always add a multiple of π/2 to any
of the angles without changing the state, so one can choose
that they lie in [0, π/2[. We observe that for a circuit depth
p, there are 2p different sets of optimal angles (γ , β ) that
yield exactly the same energy density in the thermodynamic
limit L � 4p. This structure has been checked for p � 5, and
we conjecture that it holds true for all p. One half of those
minima are accounted for by the invariance of the energy
under mapping γ j → π/2 − γ j and β j → π/2 − β j for all
j, as can be seen by direct inspection of (14). Characterizing
the remaining solutions is the goal of the remainder of this
section.

Empirically, we find that the expectation values of the X
magnetization and the mode occupation numbers are identi-
cal in all of the “branches.” In particular, the absolute value
| fproj(k)| is branch independent. These observables share a
common trait: After a Jordan-Wigner mapping from the spin
to fermionic degrees of freedom (cf. Appendix A), they cor-
respond to quadratic fermion operators. Other observables
such as the Z-magnetization or the XX -magnetization cor-
relations vary among the different branches (cf. Fig. 5). In
particular, the phase of fproj(k) depends on the branch. This
branch dependence translates into the fact that at fixed finite
p, the optimal energy for the TFIM Hamiltonian coupled to
the observable of study would be discontinuous at vanishing
coupling parameter.

For h < 1, the distributions of expectation values become
more and more peaked for p → ∞ and converge to the same
value among the different branches, reflecting the fact that
all solutions converge to the same state. However, for h > 1,
our data suggest that this convergence could depend on the
observable. While this convergence is observed to hold for the
XX -magnetization correlation, our numerics suggest that, for
h > 1, the different branches could have different Z magneti-
zation even in the p → ∞ limit.

To summarize this section, the energy landscape pro-
duced by the quantum circuit at depth p is exponentially

(a) (b)

FIG. 5. Histogram of the Z magnetization mZ of the optima
obtained from 250 000 (80 000) random initializations of the opti-
mization for p = 15 (p = 25) and targets (a) h = 0.9 and (b) h = 1.1.
The higher peak corresponds to p = 25 in (a) and to p = 15 in
(b). The angles are each initialized uniformly at random in [0, π/2].
The average over all samples is denoted by 〈mZ〉. For h = 0.9, mZ

converges to the ground-state magnetization, while, across the phase
transition at h = 1.1, such convergence is not observed for p � 25.

degenerate. Apart from some observables that are quadratic
in the fermions, generic observables differ between different
optima. If the target Hamiltonian is in the same phase as the
initial state, these expectation values converge to the ground-
state expectation value.

E. Preparation time

An attractive property of the VQCS algorithm is the fact
that it is amenable to analog quantum simulation. In this case,
the parameters (γ , β ) are interpreted as real times and the
main criterion for the feasibility of the algorithm is the total
time

T (p) =
p∑

j=1

γ
j

opt +
p∑

j=1

β
j
opt, (24)

where all γ
j

opt and β
j
opt are assumed to be in [0, π/2[. If

T (p) ∝ p, then the same scaling relation (23) holds, with p
replaced by T . Since the optimal solution is not unique (cf.
Sec. III D), we take T (p) to be the average total time over
different branches. Numerically, we find that, on average,
〈β j

opt〉, 〈γ j
opt〉 ∼ π/4 such that T (p) ∼ π

2 p. This is maximal
in the sense that for every solution with T (p) > π

2 p, there
exists a solution with T ′(p) = π p − T (p) < π

2 p, and so one
can impose T (p) � π

2 p.

IV. DISCUSSION AND OUTLOOK

We have shown that data obtained from small-scale quan-
tum computers or simulators can be used in an informed way
to accurately estimate the location and universality class of a
quantum critical point. To this end, we have taken the perspec-
tive of quantum computation as a series of quenches and used
techniques from integrability to obtain closed-form expres-
sions for the output of the VQCS algorithm. These methods
exceptionally allowed us to reach the quantum regime of
the VQCS and QAOA algorithms, otherwise inaccessible to
classical simulations and as of today still difficult to access
with actual quantum computers. The existence of this exact
solution to QAOA opens invaluable possibilities of testing and
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benchmarking the algorithm, as well as of gaining intuition
about its output such as the angles γ and β.

While these methods were necessary to argue about com-
putations with more than ∼20 qubits, they raise the question
if similar scaling behavior extends to nonintegrable target
Hamiltonians. We stress that the outcome of the quantum
circuit is classically tractable independent of the target Hamil-
tonian, as long as the circuit is Gaussian. In this context,
especially 2 + 1D quantum critical points would be interest-
ing to investigate since a number of both digital and analog
quantum devices naturally realize a two-dimensional architec-
ture, while conformal data are hard to come by.

Regarding the slowdown of the algorithm across the phase
transition, one may allow the circuit to break the symmetry
of the target Hamiltonian, including gates like exp(iδZ ). This
may allow the computation to circumvent the critical point,
potentially improving the scaling collapse (23).

Naturally, circuits providing quantum advantage on NISQ
devices will not be Gaussian and designing such circuits is
a major challenge. The energy landscape may be sufficiently
hostile that a random initialization and optimization proce-
dure is bound to fail; instead, usual contemporary approaches
include only a small number of parameters relying on phys-
ical insight like the adiabatic theorem, coupled-cluster wave
functions, imaginary-time evolution, or dynamical mean-field
theory [46–66]. Adding a new, classically tractable ansatz
to the toolkit may provide another useful starting point for
quantum circuit design.

We also mention that, for large p, VQCS can mimic adi-
abatic evolution, yet the optimal evolution times we find at
large p do not generally bear the structure of Trotterized
adiabatic time evolution. Our techniques could be adapted to
study the behavior of quasiadiabatic trajectories in the large-p
limit more generally.

Furthermore, it would be interesting to investigate the fate
of this particular algorithm under noise. In the presence of an
exponentially degenerate optimization landscape, small inac-
curacies may even be beneficial by lifting degeneracies, while
the linear depth of the algorithm circumvents an exponential
slowdown due to noise-induced barren plateaus [67]. We leave
these questions to future work.
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APPENDIX A: THE X AND ZZ GATES

1. Solution of the TFIM

We first recall a number of results on the diagonalization
of the TFIM that can be found in Appendix A of [29] and that
we briefly summarize here for self-completeness. The TFIM
is defined as

H (h) = −
L∑

j=1

ZjZ j+1 + hXj, (A1)

with periodic boundary conditions. It is diagonalized by per-
forming a Jordan-Wigner transformation on the spin operators
into fermions {c j, c†

l } = δ jl ,

Xj = 1 − 2c†
j c j, Zj = (c j + c†

j )
j−1∏
l=1

(1 − 2c†
l cl ), (A2)

followed by a Bogoliubov transformation of the Fourier
modes

c(k) = 1√
L

L∑
j=1

ei jkc j (A3)

into fermionic operators {αh; j, α
†
h;l} = δ jl ,

c(k) = cos
θh

k

2
αh;k + i sin

θh
k

2
α

†
h;−k,

c†(k) = −i sin
θh

k

2
αh;−k + cos

θh
k

2
α

†
h;k, (A4)

where θh
k is defined by

eiθh
k = h − eik

√
1 + h2 − 2h cos k

. (A5)

The Hamiltonian conserves the parity of N̂ = ∑L
j=1 c†

j c j and
so splits into two sectors, called Neveu-Schwartz (NS) and
Ramond (R). If N̂ is even the momentum k in (A3) takes
values in NS, while if N̂ is odd it takes values in R, both sets
being defined in (13). Denoting by |0〉R,NS

h the vacuum state
in these two sectors, the eigenstates of H (h) then read, for
k ⊂ NS or k ⊂ R,

|k〉h ≡ α
†
h;k1

· · · α†
h;km

|0〉R,NS
h , (A6)

with m even in the NS sector and odd in the R sector. The
Hamiltonian H (h) is then expressed as

H (h) =
∑
k∈NS

εh(k)α†
h;kαh;k

+
∑
k∈R

εh(k)α†
h;kαh;k − 1

2

∑
k∈NS,R

εh(k), (A7)

with εh(k) defined in (12) and where the last sum of this
expression is performed on NS or R according to the sector
of the states on which the Hamiltonian is applied.

For h > 1 the ground state is |0〉NS
h . For h < 1 the two

lowest-energy levels are |0〉NS
h and α

†
h;0|0〉R

h and their energy
difference is exponentially small in the system size L. At
h = 0, the ground state is exactly twofold degenerate and its
corresponding eigenspace is generated by |0〉⊗L and |1〉⊗L,
with |0〉 and |1〉 the two eigenvectors of Z with eigenvalues 1
and −1. Their sum is in NS and so is proportional to |0〉NS

0 ;
their difference is in R and so is proportional to α

†
0;0|0〉R

0 .
Hence one can choose the arbitrary phase of the vacuum states
so that the state |ψ1〉 introduced below (6) is

|ψ1〉 = |0〉NS
0 + α

†
0;0|0〉R

0√
2

. (A8)
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As it will be useful, we will denote pair states in the NS
sector by

|k̄〉 = |k ∪ (−k)〉, (A9)

with k ⊂ NS+, and pair states in the R sector by

| ¯̄k〉 = |k ∪ (−k) ∪ {0}〉, (A10)

with k ⊂ R+.

2. Coherent states

Given a magnetic field h, a complex number A, and a
function f , we define the so-called (fermionic) coherent states

�NS
h (A, f ) = A

∑
k⊂NS+

[∏
k∈k

f (k)

]
|k̄〉h,

�R
h (A, f ) = A

∑
k⊂R+

[∏
k∈k

f (k)

]
| ¯̄k〉h. (A11)

The initial state |ψ1〉 can be written as a sum of two coherent
states in different sectors

|ψ1〉 = �NS
0 (1, 0) + �R

0 (1, 0)√
2

. (A12)

The crucial observation of our paper that allows us to derive
the exact formulas given in Sec. II C is that a coherent state
stays coherent if one changes the magnetic field h to another
magnetic field h̃. Namely, we prove the following.

Lemma 1. Let h, h̃ be two arbitrary magnetic fields. We
have

�NS
h (A, f ) = �NS

h̃ (Ã, f̃ ), (A13)

with

Ã = A
∏

k∈NS+

1 + iKh̃h(k) f (k)√
1 + K2

h̃h
(k)

(A14)

and

f̃ (k) = iKh̃h(k) + f (k)

1 + iKh̃h(k) f (k)
, (A15)

where we defined

Kh̃h(k) = tan
θ h̃

k − θh
k

2
. (A16)

We have an identical formula in the R sector.
Proof. We know the relations between the vacuum states at

h and h̃, derived in [29],

|0〉NS
h =

∏
k∈NS+

⎡
⎣1 + iKh̃h(k)α†

h̃;−k
α

†
h̃;k√

1 + K2
h̃h

(k)

⎤
⎦|0〉NS

h̃ , (A17)

as well as the relations between creation operators at different
magnetic fields

αh;k = cos
θ h̃

k − θh
k

2
αh̃,k + i sin

θ h̃
k − θh

k

2
α

†
h̃,−k

. (A18)

This allows us to write, for r ⊂ NS+,

|r̄〉h = 1∏
k∈NS+

√
1 + K2

h̃h
(k)

∏
r∈r

[iKh̃h(r) + α
†
h̃;−r

α
†
h̃;r

]

×
∏

k ∈ NS+
k /∈ r

[1 + iKh̃h(k)α†
h̃;−k

α
†
h̃;k

]|0〉NS
h̃ .

(A19)

We deduce from this the formula for the overlaps between two
pair states at different magnetic fields

h̃〈q̄|r̄〉h =
∏

k∈q⊥r iKh̃h(k)∏
k∈NS+

√
1 + K2

h̃h
(k)

, (A20)

where q ⊥ r = q ∪ r − (q ∩ r). The overlap between |r̄〉h and
|q〉h is zero if q is not a pair state. We now obtain

�NS
h (A, f ) =

∑
q⊂NS

|q〉h̃ h̃〈q|�NS
h (A, f ) = A

∑
q⊂NS+

∑
r⊂NS+

[∏
r∈r

f (r)

]
h̃〈q̄|r̄〉h|q̄〉h̃

= A∏
k∈NS+

√
1 + K2

h̃h
(k)

∑
q⊂NS+

[∏
q∈q

[iKh̃h(q)]
∑

r⊂NS+

∏
r∈r

×
{ f (r)

iKh̃h (r) if r ∈ q

iKh̃h(r) f (r) if r /∈ q

]
|q̄〉h̃

= A∏
k∈NS+

√
1 + K2

h̃h
(k)

∑
q⊂NS+

⎡
⎢⎢⎢⎢⎢⎣
∏
q∈q

[iKh̃h(q)]
∏
q∈q

(
1 + f (q)

iKh̃h(q)

) ∏
k ∈ NS+

k /∈ q

[1 + iKh̃h(k) f (k)]

⎤
⎥⎥⎥⎥⎥⎦|q̄〉h̃

= Ã
∑

q⊂NS+

[∏
q∈q

f̃ (q)

]
|q̄〉h̃, (A21)

with Ã, f̃ defined in Lemma 1. �
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3. Energy and overlap

We note that the time evolution of a coherent state
�NS

h (A, f ) with the Hamiltonian H (h) is directly given by

e−itH (h)�NS
h (A, f ) = �NS

h (Ã, f̃ ), (A22)

with

f̃ (k) = e−2itεh (k) f (k), Ã = Ae−itENS
, (A23)

and ENS the energy of the vacuum state |0〉NS
h . A similar

relation holds in the R sector. Thus, applying 2p times Lemma
1 successively with h = ∞ and h = 0, one finds

|ψ (γ , β )〉 = �NS
0 (ANS

2p , f2p) + �R
0 (AR

2p, f2p)√
2

, (A24)

with f2p given by the recurrence (11) and ANS,R
2p by

ANS,R
2p = exp

[
−iL

(
p∑

j=1

β j + γ j

)]
2p−1∏
j=0

∏
k∈NS,R+

×
[

sin
k

2
+ i(−1) j cos

k

2
f j (k)

]
. (A25)

In order to compute the expectation value of H (h) of this state
and the overlap with the ground state at magnetic field h, one
performs another change of basis to h,

|ψ (γ , β )〉 = �NS
h

(
ANS

proj, fproj
) + �R

h

(
AR

proj, fproj
)

√
2

, (A26)

with fproj(k) given in (12) and

ANS,R
proj = ANS,R

2p

∏
k∈NS,R+

1 + iKh0(k) f2p(k)√
1 + Kh0(k)2

. (A27)

Under this form, the formula for the energy (14) is readily de-
duced. One also obtains the following formula for φ(h; γ , β ),
the overlap with the exact ground state:

φ(h; γ , β ) = exp

[
−iL

(
p∑

j=1

β j + γ j

)]
φNS(h; γ , β )√

2
,

φNS(h; γ , β ) =
p−1∏
j=0

∏
k∈NS+

[
sin

k

2
+ i cos

k

2
f2 j (k)

]

×
[

sin
k

2
− i cos

k

2
f2 j+1(k)

]

×
∏

k∈NS+

1 + iKh0(k) f2p(k)√
1 + K2

h0(k)
. (A28)

One notes that the overlap with the spontaneously symmetry
broken ground state is given by

φ(h; γ , β ) = exp

[
−iL

(
p∑

j=1

β j + γ j

)]

× φNS(h; γ , β ) + φR(h; γ , β )

2
, (A29)

with φR defined similarly to φNS with products in R+.

4. The X magnetization

The magnetization in the X direction is the simplest to
determine, since X is local in terms of the fermions c j . One
first writes the state |ψ (γ , β )〉 as a sum of two coherent states
at h = ∞. Using the Jordan-Wigner transformation (A2) and
the Bogoliubov transformation (A4), one has

〈Xi〉 = 1 − 2

L

∑
k∈NS

〈α†
∞;kα∞;k〉, (A30)

where 〈·〉 denotes an expectation value in the coherent state
�NS

∞ (A, f ). A similar formula holds in the R sector. Using
then

〈α†
∞;kα∞;k〉 = | f (k)|2

1 + | f (k)|2 , (A31)

one obtains the formula (15) in the thermodynamic limit. The
formula (17) for the connected correlation of the magnetiza-
tion in the X direction is obtained in a similar way.

5. The Z magnetization

The magnetization in the Z direction is more delicate, since
Z is nonlocal in terms of the fermions. First, one notes that
since the operator Z changes the sector, one has

mZ (h; p) = �[
�R

0

(
AR

2p, f2p
)†

Zj�
NS
0

(
ANS

2p , f2p
)]

= �
[(

AR
2p

)∗ ∑
q⊂R+

∏
q∈q

[ f2p(q)∗]F (q)

]
,

(A32)

with

F (q) = R
0 〈 ¯̄q|Zj�

NS
0

(
ANS

2p , f2p
)
. (A33)

Expressing �NS
0 (ANS

2p , f2p) in terms of energy eigenstates, one
obtains a sum over the full Hilbert space of matrix elements
of the Zj operator between two eigenstates, also called form
factors. Their explicit expression is known and takes a partic-
ularly simple form at h = 0 [29,68–71],

R
0 〈q ∪ {0}|Z�|k〉NS

0

= exp

[
i�

(∑
q∈q

q −
∑
k∈k

k

)]

× (−i)N

LN

∏
j< j′ sin

q j−q j′
2

∏
j< j′ sin

k j−k j′
2∏

j, j′ sin
q j−k j′

2

, (A34)

with N the number of elements of q and k. If this number
differs in the two states then the form factor vanishes. In our
case, the two states have to be pair states, and in this case one
has the Cauchy determinant representation [38]

R〈 ¯̄q|Z�|k̄〉NS = (−4)N

L2N
(det C)2

N∏
j=1

sin q j sin k j, (A35)

with N the number of elements of q, k > 0 and with the matrix

Ci j = 1

cos qi − cos k j
. (A36)
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Let us fix a q ⊂ R+ with N particles. One has then

F (q) = ANS
2p

N!

(−4)N

L2N

×
∑

k1,...,kN ∈NS+

(det C)2
N∏

j=1

[sin q j sin k j f2p(k j )].

(A37)

We now prove the following lemma [38], using techniques
introduced in [72].

Lemma 2. Given two functions f (λ,μ) and g(λ,μ), a set
K , and two sets of numbers {λi}N

i=1, {μ j}N
j=1, we have the

relation ∑
k1,...,kN ∈K

det
i, j

[ f (λi, k j )] det
i, j

[g(ki, μ j )]

= N! det
i, j

[∑
k∈K

f (λi, k)g(k, μ j )

]
. (A38)

Proof. We write

det
i, j

[ f (λi, k j )] det
i, j

[g(ki, μ j )] = det
i, j

[
N∑

s=1

f (λi, ks)g(ks, μ j )

]

=
∑

σ∈SN

(−1)σC′
1σ (1) · · ·C′

Nσ (N ),

(A39)
with C′

i j = ∑N
s=1 f (λi, ks)g(ks, μ j ). Then

det
i, j

[ f (λi, k j )] det
i, j

[g(ki, μ j )]

=
∑

s1,...,sN ∈{1,...,N}

∑
σ∈SN

(−1)σ f (λ1, ks1 )g(ks1 , μσ (1) )

· · · f (λN , ksN )g(ksN , μσ (N ) ). (A40)

Now, if si = s j , changing σ into σ (i j) exactly multiplies
the summand by −1, which makes this contribution vanish.
Hence

det
i, j

[ f (λi, k j )] det
i, j

[g(ki, μ j )]

=
∑

τ∈SN

∑
σ∈SN

(−1)σ f (λ1, kτ (1) )g(kτ (1), μσ (1) )

· · · f (λN , kτ (N ) )g(kτ (N ), μσ (N ) ). (A41)

One can now perform the sum over k1, . . . , kN . The result is
independent of τ , which gives the N! in the lemma and the
determinant formula. �

Using Lemma 2, we obtain

F (q) = ANS
2p det B, (A42)

with

Bi j = 4

L2

∑
k∈NS+

sin qi f2p(k) sin k

(cos qi − cos k)(cos q j − cos k)
. (A43)

In our case, f2p(k) obtained from (11) is a regular function of
k. Hence, in the thermodynamic limit L → ∞ we obtain (see

[38])

Bi j = f2p(qi )δi j − 2 sin qi

πL(cos qi − cos q j )

×
[
−
∫ π

0

f2p(k) sin k

cos qi − cos k
dk − −

∫ π

0

f2p(k) sin k

cos q j − cos k
dk

]

+O(L−2). (A44)

If i = j the second term is understood as being the derivative
obtained when qi → q j .

Let us denote by ρ(q) the so-called root density of q when
L → ∞, namely, the function such that ρ(q)dqL is the num-
ber of elements in q between q and q + dq. It follows that one
has the Fredholm determinant formula

F (q) = ANS
2p

∏
q∈q

[ f2p(q)] det [Id − J[ρ]][1 + O(L−1)],

(A45)
with

J[ρ](λ,μ) = 2

π

ρ(λ) sin λ

f2p(λ)

1

cos λ − cos μ

×
∫ π

0

[
f2p(k) sin k

cos λ − cos k
− f2p(k) sin k

cos μ − cos k

]
dk.

(A46)

We now return to (A32), which is a weighted sum of the
root-density-dependent quantity det [Id − J[ρ]] over all the
eigenstates. We have the following lemma, using ideas of [73].

Lemma 3. Let F [q] be a function of q and f (k) a function.
We define

〈F 〉 = 1∏
k∈NS+ [1 + | f (k)|2]

∑
q⊂NS+

F [q]
∏
q∈q

[| f (q)|2]. (A47)

If F [q] = F [ρ] depends only on the root density ρ of q in the
thermodynamic limit, then

〈F 〉 = F [ρs] + o(L0), (A48)

with

ρs(k) = 1

2π

| f (k)|2
1 + | f (k)|2 . (A49)

Proof. Let us first treat the particular case where in the
thermodynamic limit F depends only on r, the number of
elements of q divided by L. We introduce the generating
function

�(α) = 1∏
k∈NS+[1 + | f (k)|2]

∑
q⊂NS+

∏
q∈q

[(
1 + α

L

)
| f (q)|2

]
.

(A50)
By differentiating with respect to α, we see that

〈r j〉 = �( j)(0) + O(L−1). (A51)

In addition, performing the summation on q, we obtain

�(α) =
∏

k∈NS+

[
1 + α

L

| f (k)|2
1 + | f (k)|2

]
. (A52)
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From this we find, for any j,

〈r j〉 =
(∫ π

0
ρs(k)dk

) j

+ O(L−1). (A53)

As any regular function on [0, π ] can be approximated by a
polynomial with arbitrary precision provided its degree is high
enough, this establishes the result of the lemma when F is a
function of r only.

Let us now divide [0, π ] into m windows Wk = [ π
m (k −

1), π
m k] for k = 1, . . . , m and consider F [r1, . . . , rm] a func-

tion of q that in the thermodynamic limit depends only on
rk , the number of elements of q in Wk divided by L. By
introducing �(α1, . . . , αm) as in (A50) with α replaced by αk

where k is such that q ∈ Wk , we get similarly

〈
r j1

1 · · · r jm
m

〉 =
(∫

W1

ρs

) j1

· · ·
(∫

Wm

ρs

) jm

+ O(L−1). (A54)

Hence the lemma holds whenever F is a function of r1, . . . , rm

only. Since any regular functional of ρ can be approximated
with arbitrary precision by such a function F provided m is
large enough, the lemma holds for general F [ρ]. �

Using (A45) in (A32) and Lemma 3, one obtains the for-
mula (18) for the Z magnetization in the thermodynamic limit.

APPENDIX B: COHERENT GATES

In this Appendix we show that exp(it
∑L

j=1 YjYj+1) gates
can be incorporated in the quantum circuit considered in this
paper, while still staying exactly solvable.

1. Change of Pauli matrices

Given a set of Pauli matrices X,Y, Z , the operators defined
by the rotation

X ′ = −X, Y ′ = Z, Z ′ = Y (B1)

give another set of Pauli matrices. The Ising Hamiltonian
becomes

H (h) = −
L∑

j=1

Y ′
jY

′
j+1 − hX ′

j . (B2)

Performing a Jordan-Wigner transformation as in (A2) with
fermions c′

j , one finds the relation

c′
j = i(−1) jc†

j , (B3)

which results in

c′(k) = ic(π − k)†. (B4)

This results in the following relation for the corresponding
α′

h;k in (A4),

α′
−∞;−k = −sgn(k)α∞;π−k . (B5)

We deduce that the coherent states �NS,R′
h (A, f ) built from

these new fermions satisfy

�NS
∞ (A, f ) = �NS′

−∞(A, f̃ ), (B6)

with

f̃ (k) = f (π − k). (B7)
An identical transformation holds in the R sector. By using
Lemma A, one can thus transform a coherent state at mag-
netic field h in the original set of Pauli matrices into another
coherent state at magnetic field h̃ in the new set of Pauli
matrices. In particular, at h = 0, this allows us to apply a
exp(it

∑L
j=1 YjYj+1) gate to the state of the model.

2. Set of coherent gates

We obtain that the state of the quantum computer
is exactly tractable whenever it is initialized in a su-
perposition of coherent states (A11) and time evolved
with the gates exp(it

∑L
j=1 Xj ), exp(it

∑L
j=1 YjYj+1), or

exp(it
∑L

j=1 ZjZ j+1) in any order. We call this set of gates
coherent gates since they all map a coherent state onto a
coherent state.

To present the transformation rules, without loss of gen-
erality one can assume by linearity that it is initialized in
a unique coherent state, and since Lemma A shows that all
magnetic fields h are equivalent, one can assume that this
coherent state is prepared with h = ∞. Hence we assume it
is initialized in

|ψ〉 = �NS
∞ (A, f ), (B8)

with A a complex number and f a function on [0, π ]. Under
the application of any coherent gates, the state stays coherent
but its parameters are changed

exp

(
it

L∑
j=1

� j

)
|ψ〉 = �NS

∞ (Ã, f̃ ), (B9)

with

f̃ (k) = e−4it f (k) if � j = Xj,

f̃ (k) = −i tan(k/2)(1 − e−4it ) + [1 + tan2(k/2)e−4it ] f (k)

tan2(k/2) + e−4it + i tan(k/2)(1 − e−4it ) f (k)
if � j = YjYj+1,

f̃ (k) = i tan(k/2)(1 − e−4it ) + [1 + tan2(k/2)e−4it ] f (k)

tan2(k/2) + e−4it − i tan(k/2)(1 − e−4it ) f (k)
if � j = ZjZ j+1.

(B10)
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APPENDIX C: THE Z MAGNETIZATION
AFTER A QUANTUM QUENCH

In this Appendix we show how the techniques developed
in this paper can be applied to quantum quenches in the Ising
model [26–38]. This problem consists in initializing the state
of the system |ψ (t )〉 in the ground state of H (h0) at magnetic
field h0 and time evolving it at t > 0 with the Hamiltonian
H (h) at another magnetic field h.

Using (A17) derived in [29], one finds that the time-
evolved state is

|ψ (t )〉 = �NS
h (ANS, ft ) + �R

h (AR, ft )√
2

, (C1)

with

ANS,R = 1∏
k∈NS,R+

√
1 + K2

hh0
(k)

,

ft (k) = iKhh0 (k)e−2itεh (k). (C2)

The difficulty encountered before is that the form factors of Zj

between eigenstates of H (h) are rather complicated [29,68–
71] and do not allow for a resummation of the one-point
function of Zj when expressed as a spectral sum. The idea
is thus to perform a change of basis to h = 0, with Lemma 1,

|ψ (t )〉 = �NS
0 (ÃNS, f̃t ) + �R

0 (ÃR, f̃t )√
2

, (C3)

with

ÃNS,R
t = ANS,R

∏
k∈NS,R+

1 + iK0h(k) ft (k)√
1 + K2

0h(k)
,

f̃t (k) = iK0h(k) + ft (k)

1 + iK0h(k) ft (k)
. (C4)

Then one obtains exactly the formula (18) for the Z magneti-
zation after the quench, with f2p replaced by f̃t .
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