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Circular dichroism is a widely used technique for investigating optically chiral molecules, especially for
biomolecules. It is thus of great importance that these parameters be estimated precisely so that the molecules
with desired functionalities can be designed. In order to surpass the limits of classical measurements, we need to
probe the system with quantum light. We develop the quantum Fisher information matrix (QFIM) for precision
estimates of the circular dichroism and the optical rotary dispersion for a variety of input quantum states of light
that are easily accessible in the laboratory. The Cramer-Rao bounds for all four chirality parameters are obtained
from the QFIM for (a) single photon input states with a specific linear polarization and for (b) NOON states
having two photons with both either left polarized or right polarized. The QFIM bounds, using quantum light,
are compared with bounds obtained for classical light beams, i.e., beams in coherent states. Quite generally,
both the single-photon state and the NOON state exhibit superior precision in the estimation of absorption and
phase shift in relation to a coherent source of comparable intensity, especially in the weak-absorption regime. In
particular, the NOON state naturally offers the best precision among the three. We compare QFIM bounds with
the error sensitivity bounds, as the latter are relatively easier to measure whereas the QFIM bounds require full

state tomography.
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I. INTRODUCTION

The estimation of physical quantities is a central theme
in scientific experiments and industrial enterprises. To en-
able the development of modern metrological appliances and
state-of-the-art technology, devising schemes for improving
and optimizing the precision is of critical importance. The
core objective of precision measurements has given rise to
the field of quantum estimation which makes use of sophis-
ticated quantum light sources such as squeezed states [1,2],
entangled photon pairs [3,4], single-photon sources [5—7], and
so on. There are, however, inherent theoretical challenges to
extracting full information about any parameter of interest. To
quantify theoretical constraints to parameter estimation, the
Fisher information method [8,9] is used to obtain a lower
bound to the precision of a classical measurement, known
as the Cramér-Rao bound. This classical method has been
generalized to the quantum formalism [10-17]. The quantum
Fisher information (QFI) involving a set of parameters yields
the absolute lower bound to the measurement uncertainties
with respect to a specific input state, which is independent of
the measurement setup. With the bulk of quantum resources
available, quantum estimation has been applied to many ex-
periments. In particular, the advent of single-photon detectors
[18,19] has provided the logistic framework for implementing
measurements of the QFL.

In this paper, we demonstrate how suitable choices of
quantum input, integrated with single-photon detectors aimed
at measuring the QFI, can yield an enhanced estimation of
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the physical parameters relevant to circular dichroism (CD).
CD is a well-established technique that studies the differences
in light-matter interaction in an optical medium between the
left- and right-circularly polarized components. As a practical
technique, this has tremendous importance in the study of
biomolecules and other scientific fields. It has applications in
probing tiny molecules, including biological macromolecules,
such as proteins, nucleic acids, carbohydrates, etc. CD can be
used to unveil the secondary structure of a protein, which, in
turn, will shed light on the protein’s function [20-23]. More
intricate structural details of biomolecules, like antibodies
[24-26], can be investigated through CD than by analyzing
the optical rotatory dispersion spectrum. CD of a single cell
can be measured as a function of the position in the cell cycle
[27] and is sensitive to molten globule intermediates which
might be involved in the folding process [28]. Thus, it can
be used to assess the structure and stability of the protein
fragments. Inorganic chiral nanoparticles or quantum dots,
which are expected to work as artificial proteins for chiral
catalysis or inhibition of specific enzymes, have been shown
to demonstrate size-dependent CD absorption features [29].
Interestingly, the technique can even be observed remotely at
astronomical distances, which might prove contributory to the
search of extraterrestrial life [30].

Classical ellipsometry utilizes the polarization of light to
study the reflection amplitude and the phase shift between the
reflected and the incident light from a material medium [31].
Here, we contextualize the theory of quantum estimation to
the study of CD by measuring the transmission characteristics
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FIG. 1. Left- and right-handed circularly polarized light fields
undergo differential transmissions through a chiral medium, as char-
acterized by distinct absorption and phase-shift rates. The detectors
can include polarizers before them.

of a chiral medium. As shown in Fig. 1, four parameters
characterize this chiral interaction process: The dimensionless
net absorption coefficients for the two circularly polarized
light waves (o4, o), and the corresponding dimensionless
net phase shifts (¢4, ¢_). Equivalently, one can treat the
sums and differences of these pairs, by introducing a new pa-
rameter family, X; = (a4 +@-)/2, Xy = (04 —«_)/2, ¥ =
¢+ + ¢d_,and A = ¢, — ¢_, where we assume that v, > or_
and ¢, > ¢_. All these parameters are functions of the longi-
tudinal dimension of the medium. The standard ellipsometry
provides measurements of the four chirality parameters: o,
o_, ¢, and ¢_. In particular, circular dichroism is given
by the parameter X; and the optical rotary dispersion (ORD)
is given by A. The Stokes polarimetry can also be used to
obtain the complete polarization state of the output beam. The
classical results on parameter estimation are limited by the
standard quantum noise limit which can be surpassed by
the use of quantum light such as squeezed light [32]. Clearly
we need to use quantum light for precision estimates of the
chirality parameters for both CD and ORD. For quantum
inputs we need to do complete state tomography [33,34].
A scheme for ellipsometry with twin photons produced by
the spontaneous parametric down-conversion (SPDC) was in-
troduced as a self-referenced method without any calibrated
source or a detector [35-37], which manifested a sizable im-
provement through the use of entangled quantum states. The
method was based on the intensity correlations between the
output twin beams. But the sensitivity of the measurement
scheme was not discussed. Several other studies have shown
advantages of using squeezed light in phase measurement
[38,39]. Ellipsometry with classically correlated beams is dis-
cussed in Ref. [40].

We briefly outline the organization of the paper here. In
Sec. II, we summarize the key features of the QFIM. In
Sec. III, we introduce the master equation to obtain the quan-
tum state of the output field in terms of the input state. The
master equation is needed as a chiral system is an open sys-
tem. In Secs. IV, V, and VI, we apply the QFIM method
and obtain the Cramér-Rao bounds for the uncertainties and
the correlations of chiral parameters with coherent light, a
linearly polarized single-photon Fock state, and a NOON state
produced in a collinear type-II SPDC process, respectively.
We compare the obtained bounds for the different states and
plot them against the absorption sensitivities of a standard
intensity measurement, thereby illustrating the remarkably
precision offered by the NOON state in the estimation of cir-
cular dichroism. In Sec. VII, we highlight how the sensitivity
in the determination of the relative phase shift is doubled upon

using the NOON state as compared to a single-photon Fock
state.

II. SUMMARY OF KEY FEATURES OF THE QUANTUM
FISHER INFORMATION MATRIX

In the estimation of an unknown parameter X, the mea-
surement uncertainty or sensitivity of X is always bounded
as 86X > \/FQ_ T (X), which constitutes the Cramér-Rao bound
for a single-parameter measurement. Here, the QFI Fp(X)
is defined by Fp(X) = Tr[pL?], where the symmetric loga-
rithmic derivative (SLD) matrix L follows from the equation
22 = 1(Lp + pL), with p being the density matrix of the
system. In practice, one needs to determine several parameters
which characterize the physical system, each of which suffers
from similar kinds of sensitivity constraints. If we consider a

comprehensive set of parameters {X;}, fori = 1,2, ..., N, the
SLD for each parameter would be obtained from the equation
dbp _ 1

ax = 5(Lip + pL;). The generalized quantum Fisher infor-
mation, now expressed as a matrix QFIM, is constructed from

elements given by
F;({X;}) = STr[p(LiL; 4+ L;L))]. (D

The whole SLD matrix would generally contribute to the
sensitivity of determining a specific parameter. The modified
Cramér-Rao bound Cov(X;, X;) > [F XDl ; then yields
the lower bound on the sensitivity of X; to be

8X; = JIF'{XiD1jj- ()

Note that the sensitivity bound is determined in terms of the
diagonal element of the inverse matrix F~!, which is con-
tingent on all the elements of the QFIM. For simplicity, we
can introduce the sensitivity bound matrix (SQFIM) defined
by Si; =+/(F~!);;. Based on this formulation, we could
estimate the sensitivities of chiral parameters in a standard
ellipsometric setup for various input states of light. Following
the QFI formalism, the sensitivity bounds for the absorption
rate of a single mode of the field have been evaluated with
both a Gaussian state [41,42] and non-Gaussian states such
as a Fock (photon number) state [43,44]. The Fock state has
turned out to be an optimal choice for the estimation. At zero
temperature, the sensitivity derived from ordinary intensity
fluctuations saturates the QFI bound for the single absorption
mode with a Fock state input. For an output intensity of
the form N(a), the error sensitivity of the parameter « is
determined in a single experiment via the relation §o = % ,
where (8N)> = (N?) — (N)?. However, when multiple un-
known parameters are connected to the propagation dynamics
of light, the estimation uncertainty of any particular parameter
is not independent of the others and is related, as was seen,
by the QFI matrix (QFIM) [45—48]. A pertinent question is:
are there measurements which can optimize the bounds for
two parameters at the same time. Crowley et al. [49] inves-
tigated the measurements of both phase and absorption of a
single mode and found that there is a trade-off between the
simultaneous measurement of phase and absorption; i.e., if
scheme is optimized for absorption measurements, then it is
not optimal for phase. We also note that Ref. [48] considers
the optimum measurement of only the absorption parameters
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and thus works with a 2 x 2 Fisher matrix. In this paper, we
focus on initial states of fields which are now easily accessible
in the laboratory, rather than studying the question when a
measurement is optimal. And we work with a 4 x 4 Fisher
matrix as we consider all four parameters associated with the
propagation of light through anisotropic medium.

III. THE EVOLUTION OF DENSITY
MATRIX OF THE FIELDS

The transport properties of the electromagnetic field in a
medium follow from Maxwell’s equations and are determined
by the refractive index of the medium. At the classical level,
the absorption and the phase shift of light through the medium
are encoded in the output field amplitude which is related
to the input amplitude as sy = e~ "'g;,. In the quantum
mechanical prescription, the evolution of the system is de-
scribed by the master equation for the density matrix p of
light. For a single-mode input, the phase shift by itself is
described as a unitary process via the von Neumann equation
%—f = —i[H, p], where H = fata, and a denotes the Bosonic
annihilation operator for the light field. The process of absorp-
tion needs recourse to the master equation for a damped field,

ie.,

ap .
2 _igldt o] —
o ifla'a, p]

y(pa‘a —2apa’ +a'ap), (3)
where the time dependence also can be considered as medium-
length dependence as [ = tc. Owing to the independence of
the two processes, the two dynamical equations can be super-
posed to yield a simple solution akin to the classical result,
(a(t)) = e~""~7"(a(0)). More generally, for a chiral medium,
in which the photon transfer is sensitive to the input polariza-
tion, the full master equation would be expressed as

ap . ;
— =—if[a}ay, p] —

: %a,pa}, +ala,p)

Y+ (paia+ -

y_(paT_a_ — 2a_,0ai + aia_p).
4)

—i0_[a a_, p] —

Here, v+ = —In(1 —a4)/(2t) and O+ = ¢/t are the
damping and phase-shift rates pertaining to the two circular
polarization directions, a+ and al are the annihilation and cre-
ation operators of photons obeying the commutation relation
[as, al] =1, withay = %(aH = iay ). The four parameters
o+ and ¢4 were introduced earlier in Sec. I. For a known
initial state p(0), the density matrix p(¢) at time ¢ can be
straightforwardly calculated from the master equation. Sub-
sequently, the necessary SLDs, L;, Ls, La, and Ly, can be
computed at anX arbltrary time in terms of the derivatives
"a”)g) ag)}g)’ "a’;((’ , "”(’) In the next few sections, we
present explicit solut1ons for several input states of interest
and demonstrate how quantum sources outperform classical
light by furnishing improved sensitivity bounds. Specifically,
we consider a coherent state, a single-photon state, and a
two-photon entangled state to establish this result.

IV. BOUNDS ON THE MEASUREMENTS OF CD
PARAMETERS WITH CLASSICAL LIGHT |ag, By)

The simplest method of precision measurement of CD
parameters is via the estimation of intensity fluctuations.
Classically, the uncertainty of an ellipsometric parameter X
translates into a fluctuation in the output intensity which
is connected to the former through the propagation of un-
certainty. For a functional dependence Iy = lou (X, fin), we

8 out
have 6X = i ’[ e In the case of classical light, we prove

that the magnitudes of SXd and 8X, obtained from intensity
measurements that saturate the Cramér-Rao bound. Classical
light with two polarizations is described by the coherent state
|a) | B)v, which can be recast as
o —if
> , &)

a+ip
V2 >+ V2

in the basis of eigenstates of a.. Since this is a product state,
the solution to the master equation in this case reads p(t) =

[V (D) (W (1)], where

¥ (0)) =

V(1)) =

(a +iB) — . _l(w>

® (a—iﬁ),/l_%e_wt> . =04t (6)

Thus, the coherent input goes over into a coherent output,
albeit with modified amplitude and phase. Using this solu-
tion, we first calculate sensitivities as obtained by intensity
fluctuations. As sketched in Fig. 1, the input light first goes
through the measured sample and then a polarization analyzer,
so that we can detect a certain polarized output. For the pair
of measured intensities I corresponding to the two polariza-
tions, we have the absorption difference X; = (I; — I_)/Ny
and the net absorption X; = 1 — ({4 + 1_)/Ny, where Ny is
the input photon number, as for simplicity, we set the relative
phase between « and g zero, thus |o & if|> = |a|? + |B|%.
The sensitivities then unfold as

8Xs = v/(811)% + (81 — 2Cov(I, I_)/Ng,  (7)

X, = V/(SL)* + (1) +2Cov(Iy, I-)/No,  (8)
both of which reduce to

1—X,

§X; = 86X, =
d s NO

©))

Next, we calculate the bound by following the approach
outlined in Sec II. We obtain the corresponding SLDs at time
t as

1 1
—aia_,_ ———a’
(I —oay) 1—-ao)

1 . 1
Li=———ala ——a_a + Ny, (11)
(I—ap) ™7 (I—a)
s = —2ilGg, pl, Gy = (@,ay +a'a ), (12)

Ly = a-, (10)

Ly = =2i[Ga, p), Ga = (alay —ala ). (13)
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The derivation of these SLDs is shown in Appendix A. This
leads us to the QFIM

Faa  Fy
Fds F:vs
F = ’
Fan  Fxa
Fxpn Fxsx
where
No(1 — X;)
Fia=Fy= ——F——5,
(1 - Xs) - Xd
Fap =Fxy = No(1 = Xj),
Fyy = NoXq Fop = —NoXy.  (14)
Us = X7 X2 A = —NoXy.

The empty spaces within the matrix in Eq. (14) indicate
null matrices, the derivation of which is shown in Appendix
B. Being a block-diagonal matrix, its inverse F~! also pos-
sesses a block-diagonal structure, implying that upon using
the coherent state as an input, the Cramér-Rao bounds for the
absorption and the phase shift would be independent of each
other. The obtained sensitivity bounds are listed below:

5, i = 8K,y = [ (15)
d,min — s,min — N() )
Xu
Cov(Xy, Xy) = —, (16)
No
1 1—X,
3 X min = 8Amin = ]Vom’ (17)
1 X,
Cov( X, N)= ———F——. (18)

No (1 —X,)> — X7

It follows immediately that the sensitivities obtained via
intensity measurements coincide with the Cramér-Rao bounds
(14) entailed by the QFIM method, and thus sensitivity
bounds saturate Cramér-Rao bounds. This is important as we
can perform a very simple measurement on intensity fluctu-
ations which would yield the same result as the full 4 x 4
Fisher information matrix.

V. BOUNDS ON THE MEASUREMENTS OF CD
PARAMETERS WITH QUANTUM LIGHT:
SINGLE-PHOTON STATE |1, Oy)

Here, we demonstrate that a single-photon Fock state
provides better sensitivity than the coherent state in the mea-
surement of the absorption rate with a minimum uncertainty in
the input photon number, thereby yielding a definite advantage
in estimating the chiral coefficients. Taking the direction of
the single photon’s polarization as horizontal, the input state
reads |1)y|0)y = %(|1)+|O)_ 4 10)4[1)_). The sensitivity
obtained from the intensity measurement can be similarly
derived via the method invoked in Sec. I'V. With the input field
[1)10)y, the corresponding expressions stand as

85Xy = /1 —X, — X2, (19)
85X, = V(1 = X)X, (20)

Next, we study the bound obtained from the QFIM.

From the master equation, we obtain the density matrix at
time ¢ as

1
p(t) =51 —ap)lly, 0-)(1y, 0]

1
+ 5(1 —a )[04, 1-)(04, 1|

iA
+ SV =T = a1y, 005, 1|

efiA
+ V(=) —a )0y, 1)1, 0
+ X104, 0-){04, 0_], Q1)

where the time dependence (length dependence) is implicit
in the variables X;, X;, and A. Fock states have no absolute
phase; thus, the sum of two phase shifts X does not appear
in the equation. Nevertheless, we can study the absorption
and the phase-shift difference. The L;, L;, and La are 3 x 3
matrices. A calculation of the SLDs from the density matrix
yields

—1 1
L, = diag| ——,——,0}, (22)
l—ay 1—a_
L, = di ! LI (23)
S= ]a ’—7_ 9
B\l 1—a ' X,
2T =T —a ) ie
L = DA o)) i e
(—a)+d-a) 0

The notation diag(ay, ..., ay) is the N x N diagonal ma-
trix whose entries are the N elements ay, ..., ay. The SLDs
for the absorption rates are diagonal. We then find the SQFIM
to be

Faa  Fyy
F = Fds Fss s
Fan
where

> 1—-X;

dd = ,

(I —ap( —a)
1-X, 1

b= 0 e —a) T X
21 —ap)(—a)

S (l—ap)+ (1 —a)
T U—an(-a)

This is also block-diagonal as the phase shift is not re-
lated with absorption in this case. This leads to the following

bounds:
SXd,min =4/ 1 _XY - Xdz’ (26)
3Xs,min = v/ (1 — Xp)X, 27

Cov(Xy, X;) = —XXq, (28)

Fan

Fys (25)

062613-4



QUANTUM FISHER INFORMATION BOUNDS ON ...

PHYSICAL REVIEW A 104, 062613 (2021)

(a)

6Xs 1.0‘

02 03 04 05 06 07 08
s X s

FIG. 2. (a) §X; as a function of X,; and X;. (b)—(e) For a clearer vision, we also plot 6X; as a function of X; for different values of X,: (b)
X; = 0.005, (c) X; =0.05, (d) X; = 0.1, and (e) X; = 0.2. In each plot, the top-most (purple) curve is §X; obtained for the coherent state
lay, Oy), the next one (blue) from the top-most is obtained from the state |1y, Oy), the curve (pink) just above the bottom-most is obtained
from the intensity measurement with |1, 1y), while the bottom-most (red) curve is obtained from the QFIM of |14, 1y). (f). §X; as a function
of o, and «_, in which the top (red) and bottom (green) curves are obtained from the QFIM of |14, 1y) and |1, 1_), respectively.

Mm:\/(l—anw —a) 09
20—a)(l—a.)

A plot of §X; in Fig. 2 brings out the advantage of using
the single-photon Fock state as an input compared to the
coherent state. Clearly, the single-photon state renders a no-
table improvement in comparison to the coherent state in the
weak-absorption regime. It stands to reason that an input state
with lower fluctuation in the photon number yields a better
sensitivity. As X; — 0, 6X; becomes vanishingly small, while
the corresponding sensitivity bound for a coherent state levels
off to 1 when a mean photon number of unity is considered.
However, improvements in the estimation sensitivity of the
chiral absorption-rate difference 6X,; are not as substantial as
those for either of the absorption rates .. This sensitivity can
be improved by the administration of a two-photon entangled
state as an input, as we illuminate in the next section.

Note that the sensitivity obtained from intensity fluctua-
tions reaches the lower bounds §X; min and 6X; min expressed
in Egs. (26) and (27). This shows that the simple intensity
measurements in this case are already optimal. Thus, the
results predicted from the Fisher information matrix can be
tested by measurements of intensity fluctuations.

VI. BOUNDS ON THE MEASUREMENTS OF CD
PARAMETERS WITH QUANTUM LIGHT:
NOON STATE %(m, 0_) —10,,2_))

Using a type-II SPDC, one can generate entangled pho-
ton pairs with perpendicular polarizations. We choose the
input state to be |1)g|1)y. Transformed into the £ basis, it
becomes Jii(|2+, 0_) — |04, 2_)), which embodies a typical

two-photon NOON state. In this case, the intensity measure-
ment yields a sensitivity of

85Xy =1/ —an)+ (T —a)+2(1 —a (1 —a ).
(30)

8%, = L/ —a) + (1 —a) —2(1 — a1 —a ). (31)

Upon solving the master equation for this input, we obtain
the evolved density matrix as

p(t) = 3(1 —ay)?|24,0-)(24,0|
+ 31 —a)*0,,2.)(04,2|
— 3¢5 (1 —a)(1 —a-)[24, 0-)(04, 2|
— 3¢ —ay)(1 —a)|04,2-)(24, 0|
+ oy (I —ay)lly, 0-) (14,0
+ o (1 —a_)|04, 1-)(04, 1]

+ 3@ +a?)l04, 0-)(04, 0], (32)
along with the SLDs
-2 2 1—2
L; = diag , , - ;
l—oy 11— oar(l—oay)
1 —20_ 2Xy
- : 2. (33)
a(1—a_) X2 +X;
-2 -2 1-2
Ly = diag , , o )
l—oy 1—a- oy(l —ay)
1 —2a_ 2X; (34)
a-(l—a ) X24+X7)
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FIG. 3. (a) §X; as a function of X; and X;. (b)—(e) For a clearer vision, we also plot §X; as a function of X, for different values of X,: (b)
X, = 0.005, (c) X; = 0.05, (d) X; = 0.1, and (e) X; = 0.2. In each plot, the top-most (purple) curve is §X,; obtained for the coherent state
lar, Oy ), the next one (blue) from the top-most is obtained from the state |1, Oy). The curve (pink) just above the bottom-most is obtained
from the intensity measurement with |14, 1y), while the bottom-most (red) curve is obtained from the QFIM of |14, 1y). In panels (b)—(d), the
top two curves are almost overlapping. (f) §X,; as a function of o, and «_, in which the top (red) and bottom (green) curves are obtained from

the QFIM of |1y, 1y) and |1, 1_), respectively.

40— —ao)
S (l—o )+ (1 —a)?

: HI2A
xdiag[(_ie_im e ),0,0,0}. (35)

One can see that L, has a form similar to that of the single-
photon input state, but the dependence on A is increased by 2.
This results in a twofold enhancement of the sensitivity in A.
In particular, we find that the QFIM is given by

La

Fia  Fyq
F = Fds F;‘s s
Fan
where
1 — 20, )? 1 —20_)? 4x2
Fdd :4+ ( +) ( ) d 5
ar(l—ay) o (l—a2) X24+X;
Fo—dt (1- 20{+)2 (1- 20(_)2 4XV2 ’
or(l—ay) a(l—a) X2+X7
8(1 — g )?(1 —a_)?
Fan = > 5>
T-ap)+d—-a)
4X.X,  (1—2a,)? (1 —2a )
= - . (36)
XP+X; ay(l—oy) o (l—-a)

The formulas for SQFIM and the resulting sensitiv-
ity bounds are too complicated and not very insightful.
Figures 2 and 3 capture the essential features. Clearly, the
direct measurement of the QFI predicts a much better sen-
sitivity than the intensity-fluctuation measurement. Further,

the QFI method, in this case, would grant more precise in-
formation compared to the single-photon input, especially
in the weak-absorption region for §X; (Fig. 3). As X; — 0,
86Xy — 0 for the NOON state input, while this uncertainty ap-
proaches 1 for a single-photon input. Using the idea that Fock
states are optimal for absorption measurements, we can obtain
38X, and 8X; assuming the input state is |14, 1_) [43,44,48]
and get a bound for this particular two photon input state,
Joar (I —ay)+a_(1 —a_)/2. Considering all of these as-
pects, we conclude that the use of the SPDC-generated NOON
state would be considerably advantageous in the estimations
of both the net absorption X; and the absorption difference X,
in weakly absorbing samples.

We have shown that the bounds stipulated by the QFIM
are lower than the sensitivities obtained by intensity measure-
ments for the NOON state. The whole density matrix here
bears on the QFIM, and we need to measure all the coefficients
in the density matrix. In Eqgs. (21) and (32), the diagonal
terms can be measured by single-photon detectors, and by
means of projective measurements introduced in Sec. VII, we
can infer the off-diagonal terms via fidelity estimations. The
magnitudes and the phases of these off-diagonal terms would
be given by the respective amplitudes and frequencies of the
fringes.

There is also the advantage of using the NOON state to
obtain a better achievable sensitivity of the relative phase
8 Amin. As shown in Fig. 4, at the weak-absorption limits
X, — 0 and X; — 0, the NOON state has an improvement of
V2 to the coherent state with the same input average photon
number or an improvement of 2 to the single-photon state.
In Sec. VII, we propose an alternative method based on the
projective measurement for the estimation of A.
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6Amin
1.5
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FIG. 4. §Apin as a function of oy and «_. The top-most (blue)
curve is obtained from the state |1y, Oy ), which is the same as the
coherent state |oy, fy) with an average photon number of 1. The
middle (orange) curve is obtained from the QFIM of the coherent
state |y, Bv) with an average photon number of 2. The bottom-most
(green) curve is obtained from the state |1, 1y).

VII. PROJECTIVE MEASUREMENTS TO OBTAIN
ORD OR RELATIVE PHASE

Though the sensitivity of the phase difference §A cannot
be obtained from intensity measurements for Fock states or
the NOON state, we are still able to study the same through
the information encoded in the density matrix p(¢). As shown
in Egs. (21) and (32), only the off-diagonal terms contain
the phase parameter A. The fidelity, i.e., the degree to which
that the output state resembles the input state, defined as
(Vin| Pout| ¥in), can provide information about A by virtue of
the off-diagonal terms in the density matrix. For the single-
photon state, upon projecting p(¢z) to the state |1p,0y) =
%@(l 14,0_) 4 |04, 1_)), the fidelity is calculated as

F=11-X+/0-X2-X]cosa]l, (37

where the cross terms in p(¢) contribute to a cos A term
in Fi, which results in a fringe pattern. The pattern can be
Fourier transformed to enable an estimation of A. Similarly,
we obtain the fidelity with the NOON state input, |1y, 1y) =

75(124.02) =104, 2-)). as
B =30 -X)+X;+[(1 —X,)> —X;]cos2A}, (38)

where the cross terms now contribute to a fringe pattern with
double the frequency. The sensitivity in the estimation of A is
consequently doubled to the preceding scenario.

VIII. CONCLUSIONS

In summary, we have computed the Cramér-Rao bounds
relevant to the estimation of chiral parameters for three
different input states: A coherent state, |ay, Bv); a single-
photon Fock state, |1y, 0y); and a NOON state, |1y, 1y).
Unsurprisingly, the measurement sensitivities for the coher-
ent state imposed by the Cramér-Rao bound coincide with
the precision obtained through intensity measurements. The
single-photon input state reveals a large improvement in the
measurement of the net absorption rate, compared against
the coherent states. Particularly, we find that §X; — O in the
weak-absorption regime, i.e., X; — 0. The effect is manifestly
quantum. Further improvements in both the net absorption
rate X; and the CD absorption difference X; are achieved by

using the NOON state. Both the Cramér-Rao bounds 8 X, min
and §X; min become vanishingly small for this choice of input
as X; — 0, implying infinite theoretical improvement in this
limit. This is to be contrasted against a coherent state with
the same input photon number, for which the sensitivity §X,
approaches a constant nonzero number, 1/1/2. It is useful to
note that the sensitivities from ordinary intensity measure-
ments also yield relatively better results for quantum sources
for the estimation of X, which lie close to the lowest bounds
when the absorption is weak. Since such schemes are widely
in practice, this gives us a readily accessible mechanism to
exploit the utilities of these light sources. However, when
the absorption rate is higher, the QFIM method leads to a
more significant improvement, allowing us to achieve better
precision by measuring the QFIM. With all this in mind, we
conclude that the use of the quantum NOON state, generated
by the SPDC, would be a desirable choice to measure circular
dichroism with enhanced precision.
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APPENDIX A: DERIVATION OF THE SLDS WITH THE
COHERENT STATE INPUT

We give a detailed derivation. For simplicity, we use the

coherent state |8) = e~31B” > %lk) to study a sample with

a single absorption rate of ¢ = 1 — e~/

in this case is
] N . N
B_f = —y(pa‘a —2apd’ +d'ap).
Coherent states remain coherent after damping, p(¢) =
|Be ") (Be~""|. We write it on the Fock state bases as

. The master equation

(AL)

e_(m+”)ytﬁm,3*"

2,2yt
p(t) =e 1Pl —————Im)(n| (A2)
Z vm!n!
and apply g—g = g—; %—f on the matrix element p,,,:
00m 1
o [ A+ m) =281 (A3)
Jo 2

Comparing it with 2—5 = %(L,o + pL), the term propor-
tional to (m + n) can be obtained by p,u,,(L1)pn = 10, and
(L1)mpPpn = MPyn, leading to L; = e*'a’a. And the other
term, —|B|?omn, is @ constant number acting on p,,,, which

leads to the constant part L, = —|8|? in L. Thus, we have

1
L=L1+L2=1

a‘a—|B>. (A4)

APPENDIX B: THE OFF-DIAGONAL ELEMENTS OF THE
QFIM WITH THE COHERENT STATE INPUT

The off-diagonal elements between absorption and phase
shifts of the QFIM in Eq. (14) are zero. We show a derivation
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of Fy a for example. Equation (1) reads as

Fyn = 3Tr[p(LgLs + LaLy)] (B1)

for F; o, where L; and L, are defined in Eqs. (10) and
(13). The right-hand side of Eq. (B1) can be calculated

as
TrpLaLa + pLaLg]
= =2iTr[pLsGap] + 2iTr[pLapG 4]
= 2iTr[pGapLy]l + 2iTr[ppGaLal
= —2iTr[p[Ls, Gall = 0, (B2)

since Tr[ABC] = Tr[BCA] and [L;, GA] = 0. This would ap-
ply also to the other three off-diagonal coefficients.
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