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Optimizing quantum gates within decoherence-free subspaces
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A scheme for optimizing quantum gates in quantum computation on decoherence-free subspaces using optimal
control theory is presented. Compared with the previous scheme, this scheme possesses the following properties:
(i) efficiency in finding control sequences, specifically in a system without controllable exchange interaction
where the previous method is difficult to handle; (ii) robustness against control errors; and (iii) showing better
performance than the robust GRAPE method under stochastic noise. As an application, we work out the control
sequences for the NOT, quantum phase, and CNOT gates.
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I. INTRODUCTION

The key task in implementing quantum information pro-
cessing is to drive the system to evolve in the way we
want [1,2]. Two challenges prevent the quantum system from
evolving into the target state: the decoherence due to the
uncontrolled interaction between the system and the environ-
ment, and the error produced in the control process [3]. For
instance, in a spin-qubit system, the thermal distribution of
the environmental spins may cause a quasistatic noise field on
the system spins [4]. The coherent evolution of the coupled
nearby environmental spins is another possible source and
causes a stochastic fluctuating noise. Besides the decoherence
caused by the environment, the control error would, unwanted,
change the quantum evolution path. Experimentally, those
errors can come from the linear or nonlinear distortion of input
control sequences by the classical electronic hardware [5,6].
There are several techniques to overcome those obstacles, i.e.,
decoherence-free subspaces (DFSs) [7–20]; quantum optimal
control theory (OCT) [21,22], including the gradient ascent
pulse engineering (GRAPE) method [23–33]; and noise can-
cellation [6,34].

Encoding states in decoherence-free subspaces is an effec-
tive way to protect quantum information from decoherence.
The basic idea of DFS is to make use of the algebraic sym-
metry structure of the interaction between the system and the
environment to store quantum information inside a subspace
where the system undergoes a unitary evolution [10]. A more
detailed analysis of DFS presents us with necessary and suffi-
cient conditions for dynamically stable DFS [35]. The theory
of DFS is extended to time-dependent DFS, where the basis
of DFS is varying with time [36]. A method of implement-
ing universal quantum gates in the DFS has been proposed
in Ref. [11] and has been demonstrated in several physical
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quantum systems [12,16,20,37]. However, this method poses
stringent criteria on the control Hamiltonian of the system.
Thus, these methods have difficulty in finding proper control
sequences to realize an arbitrary quantum gate if the system
does not satisfy the criteria.

The quantum optimal control theory has been used in ef-
forts to engineer quantum systems. Many efficient and robust
quantum control techniques have been discovered in recent
years [22]. A widely used numerical method is GRAPE, as
one of the optimal control designs. The method combines the
numerical optimization method with quantum control, so as to
search the high-fidelity control scheme. The GRAPE method
has been proven to improve the robustness against linear
and nonlinear distortions [5,38–40]. And by multiobjective
optimization, it also possesses robustness against quasistatic
environmental noise [32]. However, it has difficulty dealing
with stochastic environmental noise.

The quantum OCT offers a flexible framework for design-
ing a quantum control process. Useful applications in this field
include optimal control combined dynamical decoupling [41],
closed-loop optimal control using experimental feedback [42],
realization of adiabatic evolution [43], holonomic gates [44],
etc. In this work, we propose a method by combining the idea
of DFS with OCT. We quantify the DFS conditions in the form
of a loss function of the control sequences. As a development
of OCT, we derive the objective function by combining the
loss function with the control fidelity. Furthermore, the control
errors can be suppressed by optimizing averaged objective
function as in the robust GRAPE method. Our method pro-
tects the quantum information process against stochastic noise
by constraining the system to evolve within a DFS for most of
the time during the control process and remove the restric-
tion on the control Hamiltonian [11]. Another advantage is
that the algorithm can automatically give the corresponding
control sequences of the target quantum gate. We numerically
realize the NOT gate, the quantum phase gate, and the CNOT

gate and demonstrate the robustness of our method against
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control errors and quasistatic environmental noises. Moreover,
to show our method possesses robustness against stochastic
noises, we also compare our method with the robust GRAPE
with different noises which have different correlation times.
The simulations show that our method maintains high fidelity
during the whole regime.

II. THEORY OF QUANTUM GATE PROTECTED BY DFS

A. System and control Hamiltonian

We consider a quantum system S made of qubits. The
system is coupled to an environmental bath B and the total
Hamiltonian is given by

H (t ) = [H0 + HC (t )] ⊗ IB + IS ⊗ HB + HI , (1)

where H0 (HB) is the system (bath) Hamiltonian, HC (t ) is the
time-dependent control Hamiltonian acting on the system, IS

(IB) is the identity operator on the system (bath), and HI is the
system-environment interaction Hamiltonian.

Generally, the control Hamiltonian can be expressed as

HC (t ) =
∑

α

hα (t )Hα, (2)

where Hα is the αth part of the control Hamiltonian, and hα (t )
is the corresponding time-dependent control field amplitude.
Assume also that the interaction can be written as

HI =
∑

α

Sα ⊗ Bα, (3)

where Sα (Bα) acts solely on the system (bath). The evolution
of the density matrix ρ of an open system is given by the
Markovian master equation [45]

ρ̇ = −i[HS (t ), ρ] + LD[ρ], (4)

where we neglect the Lamb shift Hamiltonian of the system,
so the unitary evolution is given by the time-dependent sys-
tem Hamiltonian HS (t ) = H0 + HC (t ). The decoherence of
the system depends on

LD[ρ] = 1

2

∑
α

γα ([Sαρ, S†
α] + [Sα, ρS†

α]), (5)

where γα is coefficient of the diagonalized decoherence oper-
ator {Sα}.

B. DFS condition and the objective function

The condition for generic DFS was proposed in Ref. [11]
by defining that the dissipative part of the Markovian mas-
ter equation is zero. However, a further study has proven
that the condition is neither sufficient nor necessary. A DFS
H̃DFS is defined as a subspace of an open system with
Hilbert space H̃ such that all states ρ(t ) in the DFS fulfill
∂t Tr[ρ2(t )] = 0, for ∀t � 0, with Tr[ρ2(0)] = 1 [35]. From
this definition, it has been proven that the subspace H̃DFS =
Span{|ψ1〉 , |ψ2〉 , . . . |ψM〉} is a DFS iff [35,36]

(i) Sα |ψ j〉 = cα |ψ j〉 ( j = 1, . . . , M; α = 1, . . . , K);
(ii) H̃DFS is invariant under Heff = HS + i

2

∑
α γα (c∗

αSα −
cαS†

α ).

The evolution of a system that satisfies the DFS conditions
is given by

ρ̇ = −i[Heff, ρ]. (6)

Tr[ρ2(0)] = 1 means that the state of the system is pure for
t = 0. It can be easily met because the state of the system is
always initialized into a pure state in an experiment.

Condition (i) provides a criterion to find a DFS that every
basis {|ψi〉} of H̃DFS should be a common eigenstate of all Sα .
Let H̃DFS⊥ denote the orthogonal complement space of H̃DFS

in H̃ and be spanned by {|φ1〉 , |φ2〉 , . . . |φL〉}. The system’s
Hilbert space H̃ is the direct sum of the two subspaces: H̃ =
H̃DFS ⊕ H̃DFS⊥ , and accordingly, the projective operator � on
the system Hilbert space is the direct sum of projectors on
H̃DFS and H̃DFS⊥ : � = �DFS ⊕ �DFS⊥ .

Condition (ii) is the DFS preserving condition. It ensures
that the system on H̃DFS driven by Heff does not evolve out of
the subspace during the total control time τ . We rewrite the
condition as

〈φi|U (t ) |ψ j〉 = ri j (t ) = 0

(i = 1, . . . , L; j = 1, . . . , M; 0 � t � τ ), (7)

where U (t ) = T exp[−ih̄
∫ t

0 Heff(t ′)dt ′]. In order to quantify
this condition, we define a loss function 
1,


1 = 1

τ

∫ τ

0

∑
i j

ri j (t )r∗
i j (t )dt

= Tr

(
1

τ

∫ τ

0
U (t )�DFS⊥U †(t )�DFSdt

)
� 0. (8)

Then Eq. (7) is equivalent to 
1 = 0. So by minimizing 
1,
condition (iii) can be fulfilled.

Now we consider the task that the evolution of the system
U (τ ) approaches a target propagator UT on a DFS. The entan-
glement fidelity between the target gate and the evolution of
the system is another quantity in optimization [46,47] and we
define 
2 as


2 = |Tr[U †
T U (τ )]|2

Tr(�DFS)2
. (9)

When 
2 reaches its maximum after a control process, the
evolution U (τ ) acquires a maximum overlap with the target
gate UT in the DFS.

Combining 
1 and 
2, we set the objective function
O({hα (k)}) as

O({hα (k)}) = 
2 − λ · 
1

= |Tr[U †
T U (τ )]|2

Tr(�DFS)2

− λ · Tr

(
1

τ

∫ τ

0
U (t )�DFS⊥U (t )†�DFSdt

)
,

(10)
where λ is a positive parameter. In practice, the total control
time τ is discretized in N equal steps of duration �t = τ/N ,
during which the control field amplitudes are constant. Denote
hα (k) as the amplitude of the αth control Hamiltonian Hα

during the kth step. Therefore, the control sequences {hα (k)}
that maximize the objective function O({hα (k)}) will drive the
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system to the target evolution while preserving the evolution
within DFS for most of the time in the control process. The
computing method for the integral in Eq. (10) is given in
Appendix A.

C. Robustness against control error

The control Hamiltonian given in Eq. (2) is only the ideal
case. Errors from the quasistatic fluctuation of electronic de-
vices contribute to the distortions of the control amplitudes
[31]. The timescale of the linear deviation δ is much longer
than our single control process, so we can take it as a ran-
dom constant. The control Hamiltonian with errors can then
be expressed as HC (t, δ) =∑α (1 + δ)hα (t )Hα . The previ-
ous work has shown that δ follows a Lorentzian distribution
p(δ) = γ /π (δ2 + γ 2), where γ is the scale parameter of the
half-width at half maximum of this distribution [31].

Denote O({hα (k)}, δ) as the corresponding objective func-
tion of control sequences for an error δ. To suppress δ, we
optimize the average objective function defined as

O({hα (k)}) =
∫

dδ p(δ)O({hα (k)}, δ). (11)

In the practical implementation of the optimization, we dis-
cretize the continuous distribution function p(δ). Equation
(11) turns into discrete summation:

O({hα (k)}) =
∑

δ

p(δ)O({hα (k)}, δ). (12)

We use the algorithm described in Appendix B to optimize the
control sequences.

III. REALIZATION OF OPTIMIZED QUANTUM GATE
WITH DFS IN QUANTUM COMPUTATION

Considering the example of the spin qubit system, we as-
sume that all qubits are coupled to the same bath [48], which
is known as a collective model. The interaction Hamiltonian
can be expressed as

HSB =
∑
i,α

(σ i
α ) ⊗ Bα =

∑
α

Sα ⊗ Bα

(i = 1, . . . , N ; α = I, X,Y, Z ).

(13)

It has been found that, for most of the quantum systems,
the longitudinal relaxation time of qubits is several orders of
magnitude longer than the transverse. So that the pure dephas-
ing effect is a major influence on many quantum systems [17].
This implies that the spin-bath interaction can be written as

HSB =
∑

i

σ i
z ⊗ Bz

= Sz ⊗ Bz. (14)

The following examples are considered as pure dephasing
collective models..

A. NOT gate and quantum phase gate

To illustrate our method, we consider an example of
two physical qubits in an NMR system [18]. The system

Hamiltonian has the form

H0 = ω0

2

(
σ 1

z + σ 2
z

)+ π
(
ν1σ

1
z + ν2σ

2
z + Jσ 1 · σ 2/2

)
, (15)

where ω0 is the Zeeman splitting, the frequency shift is � =
ν2 − ν1 = −137.5 Hz, and the J-coupling constant is J =
5.7 Hz. The control Hamiltonian, describing the interaction
between the qubits and the applied radiofrequency (RF) field,
is written as

HC (t ) = �(t )
2∑

i=1

{
cos[ωRFt + φ(t )]σ i

x + sin[ωRFt + φ(t )]σ i
y

}
,

(16)
where �(t ) is the amplitude of the RF pulse, ωRF is
the frequency of the RF pulse, and φ(t ) is the phase.
With ωRF = ω0 + πν1, we take the rotating frame R̂(t ) =
e−i( ω0

2 +πν1 )(σ 1
z +σ 2

z )t . In the frame, the system Hamiltonian and
the control Hamiltonian are expressed as

H0 = π
(
�σ 2

z + Jσ 1 · σ 2
)
,

HC (t ) =
∑
α=x,y

hα (t )
(
σ 1

α + σ 2
α

)
,

(17)

where hx(t ) = �(t ) cos φ(t ) and hy(t ) = �(t ) sin φ(t ).
We choose a DFS of the system spanned by {|01〉 , |10〉},

where |0〉 and |1〉 are the eigenstates of the Pauli matrix σz, and
encode the logical one qubit in the DFS as {|0̃〉 = |01〉, |1̃〉 =
|10〉}. Note that Sz |ψ〉 = 0 for all |ψ〉 in H̃DFS. This implies
that i

2

∑
α γα (c∗

αSα − cαS†
α ) = 0; hence, Heff = HS (t ) = H0 +

HC (t ).
The NOT gate GNOT in basis of {|0̃〉 , |1̃〉} is expressed as

GNOT = |0̃〉 〈1̃| + |1̃〉 〈0̃|

=

⎛⎜⎝0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞⎟⎠,
(18)

and the phase gate GP is expressed as

GP = |0̃〉 〈0̃| + i |1̃〉 〈1̃|

=

⎛⎜⎝0 0 0 0
0 1 0 0
0 0 i 0
0 0 0 0

⎞⎟⎠.
(19)

The control sequences are robust against control error by
using the average objective function, Eq. (12). Rewrite the av-
erage objective function in the following discrete summation
form:

O({hα (k)}) =
∑

δ

p(δ)

{
1

Tr(�DFS)2
|Tr[UTU (N, δ)]|2

− λ

N

N∑
k=1

U (k, δ)�DFS⊥U †(k, δ)�DFS

}
, (20)

where the evolution of the system is

U (k, δ) =
1∏

j=k

exp

{
−i

τ

N

(
H0 +

∑
(1 + δ)hα ( j)Hα

)}
.

(21)
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We set τ = 20 ms and N = 100. To guarantee the DFS
conditions, we set λ = 0.1. The maximum intensity of the
control sequences is set to be 1π kHz, and the discrete dis-
tribution is expressed as

p(δ) =
⎧⎨⎩0.3, δ = −5%,

0.4, δ = 0%,

0.3, δ = 5%.

(22)

The control sequences of GNOT and GP can be found by
our method, by setting UT to be GNOT and GP, respectively.
Then by maximizing the target function O({hα (k)}), we can
optimize control sequences of the NOT gate and the phase
gate, respectively. The wave forms of our control sequences
are shown in Appendix D [Figs. 7(a) and 7(b) and Figs. 8(a)
and 8(b)].

First, we test the performance of gates designed by our
method in the presence of quasistatic environmental noise and
a linear deviation of control amplitudes. The Hamiltonian we
use to simulate the evolution of the system can be expressed
as

H (t, δ, βz ) = H0 + (1 + δ)HC + Szβz, (23)

where the control error amplitude is δ, and βz is the environ-
mental noise strength. We calculate the fidelities defined in
Eq. (9) of the control sequence designed by our method. The
results are shown in Figs. 1(a) and 2(a). For the purpose of
comparison, we also gain the control sequences of the robust
GRAPE [23]. Details are shown in Appendix C. The control
sequences are shown in Appendix D [Figs. 7(c) and 7(d) and
Figs. 8(c) and 8(d)]. The results are shown in Figs. 1(b) and .
2(b). The typical T ∗

2 of the NMR system is about 500 ms, so
βz is mostly distributed within [−2, 2] Hz. The control error
is mostly distributed in [−0.5%, 0.5%] [31]. The fidelities
of the NOT gate and the phase gate by both our method and
robust GRAPE are above 0.9992 if −2 Hz � βz � 2 Hz and
−0.5% � δ � 0.5%. The results imply that both our method
and robust GRAPE satisfy requirements for experiment under
quasistatic errors. Beyond quasistatic errors, our method is
robust against stochastic noises which also play roles in the
decoherence effect.

Stochastic noises widely exist in different quantum sys-
tems. For the NMR system, the stochastic noises come from
a wide range of molecular motions. The timescales of noises
depend on the motional mechanisms and run from fractions
of a picosecond, through nanoseconds, milliseconds, to many
seconds [4]. In order to test the performance of the control
sequences under stochastic noises which have different corre-
lation times, we employ a classical model [49,50]:

HSB = Szβ(t ), (24)

where β(t ) is a Gaussian distributed random variable with
〈β(t )〉 = 0 and

√
〈β(t )2〉 = 2.5 Hz. For β(t ) with the noise

correlation time tcor [51], we simulate the noise by extracting
the random number β(i) from the Gaussian distribution as
a constant noise during [(i − 1)tcor, itcor]. τ/tcor are set to be
integers. We calculate the fidelities with τ/tcor ranging from 1
to 100. The noise is static during the control process if τ/tcor

is choosen to be 1, and the noise changes for every time step
of the control sequences if τ/tcor be 100.
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FIG. 1. The fidelities for the NOT gates searched by our method
and robust GRAPE, in the presence of quasistatic environmental
noise and the linear distortion. The x axis represents the environ-
mental noise strength, the y axis represents the control error, and the
fidelities for the gates are depicted in the color jets. (a) The fidelities
for our method. (b) The fidelities for robust GRAPE.

Figures 3 and 4 show the fidelities of the two methods for
the NOT gate and the phase gate, respectively. The fidelities of
the control sequences for the NOT gate searched by our method
are not less than 0.997 in noise with τ/tcor ranging from 1
to 100, and the fidelities for the phase gate are not less than
0.998. The fidelities of the gates by robust GRAPE collapse
in noise with correlation time which lies in the intermediate
regime.

From the comparisons of the two protocols in the above
simulations, we demonstrate that our method has performance
similar to that of robust GRAPE against quasistatic decoher-
ence noises and quasistatic control errors. However, in the
case of stochastic noise, our method works better than robust
GRAPE.

B. CNOT gate

We use four physical qubits in an NMR system [52] to
implement the CNOT gate. The system Hamiltonian has the
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FIG. 2. The fidelities for phase gates searched by our method and
robust GRAPE, in the presence of quasistatic environmental noise
and linear distortion. The x axis represents the environmental noise
strength, the y axis represents the control error, and the fidelities
for the gates are depicted in the color jets. (a) The fidelities for our
method. (b) The fidelities for robust GRAPE.

form

H0 =
4∑

j=1

(ω0 − πν j )σ
j

z +
4∑

j<k

π

2
Jjkσ

j
z σ k

z , (25)

where ω0 is the Zeeman splitting and the chemical shifts νi

and the J-coupling Jjk are given by the diagonal and off-
diagonal elements in Table I [52]. The control Hamiltonian is
written as

HC (t ) = �(t )
4∑

i=1

{
cos[ωRFt + φ(t )]σ i

x

+ sin[ωRFt + φ(t )]σ i
y

}
. (26)

Given ωRF = ω0, the corresponding system Hamiltonian
and the control Hamiltonian in the rotating frame R̂(t ) =

0 20 40 60 80 100
/t

cor
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1

F
id

el
it

y

DFS protected
robust GRAPE

FIG. 3. The fidelities for NOT gates searched by our method and
robust GRAPE, in stochastic noise of different correlation times. The
red broken line shows the fidelities for our method, and the blue
broken line shows the fidelities for robust GRAPE. The x axis is the
ratio of the control time τ and the correlation time of the noise tcor.

e−iω0(σ 1
z +σ 2

z +σ 3
z +σ 4

z )t are expressed as

H0 = −
4∑

j=1

πν jσ
j

z +
4∑

j<k

π

2
Jjkσ

j
z σ k

z ,

HC (t ) =
∑
α=x,y

hα (t )
(
σ 1

α + σ 2
α + σ 3

α + σ 4
α

)
,

(27)

where hx(t ) = �(t ) cos φ(t ) and hy(t ) = �(t ) sin φ(t ).
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FIG. 4. The fidelities of phase gates searched by our method and
robust GRAPE, in a stochastic noise of different correlation times.
The red broken line shows our method, and the blue broken line
shows robust GRAPE. The x axis is the ratio (τ/tcor) of the control
time τ and the noise correlation time tcor.
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TABLE I. C1 to C4 denote four qubits. The chemical shifts νi

and the J-coupling Jjk are given by the diagonal and off-diagonal
elements in (Hz).

C1 C2 C3 C4

C1 1705.5
C2 41.64 14 558
C3 1.46 69.72 12 330.5
C4 7.04 1.18 72.36 16 764

We employ the DFS of the direct product of two two-qubit
DFSs given in Sec. III A: |0̃〉 = |01〉 and |1̃〉 = |10〉, where |0〉
and |1〉 are eigenstates of σz. The first logical qubit is encoded
on C1 and C3, and the second logical qubit is encoded on C2
and C4. In this representation, the two-qubit logical qubits are
written as

|0̃0〉 = |0011〉 , |0̃1〉 = |0110〉 ,

|1̃0〉 = |1001〉 , |1̃1〉 = |1100〉 .
(28)

Therefore, Heff = HS (t ) = H0 + HC (t ) for the same reason
discussed in Sec. III A. In this basis, the CNOT gate is ex-
pressed as

GCNOT = |0̃0〉 〈0̃0| + |0̃1〉 〈0̃1| + |1̃0〉 〈1̃1| + |1̃1〉 〈1̃0| .
(29)

The total control time τ = 20 ms and N = 100. Set λ =
0.05 for the DFS condition, and the maximum intensity of
the control sequences is set to be 15π kHz. By optimizing
{hα (k)} to maximize O({hα (k)}), the algorithm gives the
control sequences of GCNOT. The wave forms of the control
sequences hx(k) and hy(k) are given in Figs. 9(a) and 9(b). To
simulate the performance of the CNOT gate, the Hamiltonian
with quasistatic environmental noise and control deviation can
be written as

H (t, δ, βz ) = HC (t ) + (1 + δ)HC + Szβz. (30)

We calculate the fidelities of the GCNOT gate searched by our
method as shown in Fig. 5(a). In comparison, we also find the
control sequences of the GCNOT by robust GRAPE. The wave
forms of control sequences are given in Figs. 9(c) and 9(d).
We evaluate the fidelities and depict them in Fig. 5(b). The
typical noise βz and the control error δ has been discussed in
Sec. III A. The fidelities of the CNOT gate by our method and
robust GRAPE are above 0.991 if −2 Hz � βz � 2 Hz and
−0.5% � δ � 0.5%.

In the simulation with different noises of different cor-
relation times, we employ a classical noise model of pure
dephasing as in Eq. (24), where β(t ) is a Gaussian distributed
random variable with 〈β(t )〉 = 0 and

√
〈β(t )2〉 = 2.5 Hz. The

fidelities of the control sequences by our method are not less
than 0.99, as shown in Fig. 6. From the results, our method
shows better performance against stochastic noise than robust
GRAPE.

IV. CONCLUSION

In summary, we put forward a scheme for optimizing
quantum gates combining the idea of DFS with OCT, by
generalizing and quantifying the conditions for implementing
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FIG. 5. The fidelities of CNOT gates searched by our method and
robust GRAPE, in the presence of quasistatic environmental noise
and linear distortion. The x axis represents the environmental noise
strength, the y axis represents the control error, and the fidelities
of the gates are depicted in the color jets. (a) The fidelities for our
method. (b) The fidelities for robust GRAPE.

a quantum gates on DFS. Our method is robust against qua-
sistatic control errors in a natural way. Moreover, our method
provides efficiency to find control sequences on systems that
the previous method found difficult to handle, by constraining
the system to evolve on the DFS for most of the time of the
control process but allowing a tiny time to leave from the DFS.
As demonstrations of our method, we calculate the control
sequences of the NOT, the quantum phase, and the CNOT gates.
We also show that our method is better in robustness against
stochastic noise than robust GRAPE by numerical simula-
tions.
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FIG. 6. The fidelities of CNOT gates searched by our method and
by robust GRAPE, in a stochastic noise of different correlation times.
The red broken line shows our method, and the blue broken line
shows robust GRAPE. The x axis is the ratio (τ/tcor) of the control
time τ and the noise correlation time tcor.
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APPENDIX A: METHOD OF CALCULATING INTEGRAL

To compute Eq. (10), we set the following operators:

A(t ) =
∫ t

0
U (t )IDFS⊥U (t )†dt, (A1)

B(t ) = Ȧ(t ) = U (t )IDFS⊥U (t )†. (A2)

Hence, the derivative of B(t ) is

Ḃ(t ) = −i{[Hs + HC (t )] · B(t ) − B(t ) · [Hs + HC (t )]}
= −i[HS (t ) · B(t ) − B(t ) · HS (t )].

(A3)

We introduce Liouville space (L space) and the Liouville super
operator described in Refs. [53,54]. We then define a Liou-
ville super operator L in terms of the Hamiltonian operator
[HS (t ) = H†

S (t )]:

L (t ) = HS (t ) ⊗ I − I ⊗ HS (t ). (A4)
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FIG. 7. Control sequences of GNOT. (a) and (b) The control
sequences of hx and hy by our method. (c) and (d) The control
sequences of hx and hy by robust GRAPE. The total control time
τ = 20 ms and is equally divided into 100 steps for both schemes.

The operators A(t ) and B(t ) in Hilbert space corresponds to
vectors in L space such that

A(t ) ↔ ||A(t )〉〉 , B(t ) ↔ ||B(t )〉〉 . (A5)

From Eqs. (A1)–(A3), the dynamical equation of A(t ) and
B(t ) can be rephrased in Liouville space as

d

dt

(||A(t )〉〉
||B(t )〉〉

)
=
(

0 I ⊗ I

0 −iL (t )

)(||A(t )〉〉
||B(t )〉〉

)
. (A6)
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FIG. 8. Control sequences of Gphase. (a) and (b) The control
sequences of hx and hy by our method. (c) and (d) The control
sequences of hx and hy by robust GRAPE. The total control time
τ = 20 ms and is equally divided into 100 steps for both schemes.
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FIG. 9. Control sequences of CNOT gate. (a) and (b) The control
sequences of hx and hy by our method. (c) and (d) The control
sequences of hx and hy by robust GRAPE. The total control time
τ = 20 ms and is equally divided into 100 for both schemes.

So we can calculate the integrals by(||A(τ )〉〉
||B(τ )〉〉

)
= T exp

[∫ τ

0

(
0 I ⊗ I

0 −iL (t )

)
dt

](||A(0)〉〉
||B(0)〉〉

)

=
∏

k

{
exp

[(
0 I ⊗ I

0 −iL (tk )

)
�t

]}(||A(0)〉〉
||B(0)〉〉

)
.

(A7)

APPENDIX B: ALGORITHM OF OPTIMIZING
OBJECTIVE FUNCTION

The optimization procedure is based on the gradient as-
cending and is described as the following:

(i) Set the target gate UT , and guess the initial control
amplitude {hα (k)}.

(ii) Calculate O({hα (k)}), and determine whether
O({hα (k)}) reaches the setting value.

(iii) If yes, stop and return {hα (i)}, otherwise compute
∂

∂hα (i) O({hi(t )}).

(iv) Update to hα (k) = hα (k) + ε ∂
∂hα (k) O({hα (k)}).

(v) Go to step (ii).
The Optimization Toolbox of MATLAB provides another

method to work out {hα (k)} by optimizing O({hα (k)}).

APPENDIX C: PROTOCOL FOR ROBUST GRAPE

We present the protocol of GRAPE to design the control
sequences of a quantum gate. In the existence of quasistatic
environmental noise βz and the control error δ, the real evo-
lution of the system is U (N, δ, βz ) =∏1

j=N exp{−i τ
N [H0 +∑

α (1 + δ)hα ( j)Hα + βzSz]}. To suppress βz and δ, we cal-
culate the average fidelities between the target operation UT

and the evolution U (N, δ, βz ):

O′({hα (k)}) =
∫

dδ

∫
dβz p(δ)p(βz )

|Tr[U †
TU (N, δ, βz )]|2
Tr(�DFS)2

,

(C1)
with errors considered in Eq. (23). In practical implementation
of the algorithm, the continuous distribution is replaced by
discrete distribution. p(δ) is given in Eq. (22). We take the
distribution of the environmental noise βz as

p(βz ) =

⎧⎪⎨⎪⎩
1/3, βz = 5 Hz,

1/3, βz = 0 Hz,

1/3, βz = −5 Hz.

(C2)

Then we can use the algorithm described in Appendix B to
find the control sequences.

APPENDIX D: WAVE FORMS OF CONTROL SEQUENCES

The wave forms of the control sequences are presented in
Figs. 7, 8, and 9.
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