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Quantum remote sensing under the effect of dephasing

Hideaki Okane ,1,2 Hideaki Hakoshima,3 Yuki Takeuchi,4 Yuya Seki ,3 and Yuichiro Matsuzaki3,*

1Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST),
1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

2Department of Physics, Kindai University, Higashi-Osaka, 577-8502, Japan
3Device Technology Research Institute, National institute of Advanced Industrial Science and Technology (AIST),

Central2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
4NTT Communication Science Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan

(Received 31 July 2020; revised 8 October 2021; accepted 23 November 2021; published 10 December 2021)

The quantum remote sensing (QRS) is a scheme to add security about the measurement results of a qubit-based
sensor. A client delegates a measurement task to a remote server that has a quantum sensor, and eavesdropper
(Eve) steals every classical information stored in the server side. By using quantum properties, the QRS provides
an asymmetricity about the information gain where the client gets more information about the sensing results
than Eve. However, quantum states are fragile against decoherence, and so it is not clear whether such a QRS
is practically useful under the effect of realistic noise. Here, we investigate the performance of the QRS with
dephasing during the interaction with the target fields. In the QRS, the client and server need to share a Bell pair,
and an imperfection of the Bell pair leads to a state preparation error in a systematic way on the server side for
the sensing. We consider the effect of both dephasing and state preparation error. The uncertainty of the client
side decreases with the square root of the repetition number M for small M, which is the same scaling as the
standard quantum metrology. On the other hand, for large M, the state preparation error becomes as relevant as
the dephasing, and the uncertainty decreases logarithmically with M. We compare the information gain between
the client and Eve. This leads us to obtain the conditions for the asymmetric gain to be maintained even under
the effect of dephasing. Then, we can quantify how much information the client can gain while preserving the
information asymmetricity.
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I. INTRODUCTION

Quantum properties such as a superposition and entangle-
ment are considered as resource for information processing
[1–7]. Quantum computation provides a faster calculation
than the classical one [1–4]. Quantum cryptography guaran-
tees a security during the transmission of information [5–7].
A hybrid architecture between these two schemes has been
also discussed, which is called a blind quantum computation
(BQC) [8–12]. The BQC provides a client with a way to del-
egate the quantum computation task to a remote server. Here,
the client only has the primitive quantum device that cannot
perform the full quantum computation, while the server has
the quantum device to implement any quantum computation.
The important point of the BQC is to protect the privacy of the
client’s information such as input, output, and algorithm from
the server.

A quantum sensor has been widely investigated as another
application of quantum mechanics. A superposition of a qubit
acquires a relative phase affected by weak external fields, and
we can efficiently obtain the information of the fields from
the measurements on the qubit. Such a qubit-based sensor is
useful to detect magnetic field, electric field, or temperature
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[13–18]. Also, by using the entanglement between qubits,
the sensitivity to the target field can be enhanced [19–23].
Furthermore, the use of the quantum system at the nanoscale
is expected to improve the spatial resolution of the target field
[24,25].

As a further development of quantum metrology, inter-
disciplinary approaches between quantum metrology and
the other quantum technology have been discussed in
Refs. [26–45]. By using the quantum error correction which
has been developed in the field of quantum computation [46],
the sensitivity to the target field in the presence of noise
can be enhanced [26–31]. Also, a quantum phase estimation
algorithm [47], which can estimate a phase of an eigenvalue of
a unitary operator U , is combined with the quantum sensing
to improve the precision and the dynamic range of the sensor
[32,33]. Moreover, a quantum phase estimation algorithm pro-
vides a way to perform the projective measurements of energy
without detailed knowledge of the Hamiltonian [34,35]. By
constructing a network of the quantum metrology, the possi-
bility to enhance the estimation precision at each location has
been discussed in Refs. [36,37]. Aside from these interdisci-
plinary approaches, when one sends the data obtained by the
quantum metrology to the remote site, quantum cryptography
is used for secure communication as in Refs. [38–45].

Recently, quantum remote sensing (QRS) [48,49] has
been proposed and demonstrated as a new interdisciplinary
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approach in which the concept of BQC is applied to quantum
metrology. Similarly to the BQC, the QRS enables the client
to delegate a task of the quantum metrology safely. Here, the
client has the device that can only measure a single-qubit
quantum state, while the remote server has a sensitive quan-
tum sensor to measure a target field. Even if Eve attacks the
server’s device to steal every classical information recorded
at the server, Eve should not obtain the information about the
target fields. For this purpose, a Bell state shared between the
client and the server plays an important role for the protection
of the information on the measured target field. Also, this
protocol of the QRS is experimentally demonstrated with an
optical setup in Ref. [49]. However, an experimental demon-
stration of the QRS with solid-state systems has not been
implemented yet.

In the actual experiment, the channel noise for the Bell
state shared between the client and the server is inevitable,
and the effect of the noise should be considered. A random-
sampling test is one of the ways to guarantee the quality of
the Bell pair that was potentially damaged by such a noise
channel. The random-sampling test ensures the lower bound
for the fidelity between the actual state and the Bell state
generated in the experiment, as shown in Ref. [48]. This
channel noise leads to a systematic error for the uncertainty of
the qubit frequency δωC for the client side due to a deviation
of the initial state in the quantum metrology of the server side.
Moreover, by assuming that Eve can know information on the
error of the state preparation due to the channel noise, the ratio
between the uncertainties of the client and Eve is evaluated in
Ref. [48].

In this paper, we consider the effect of dephasing in the
QRS. Dephasing is one of the typical noises in the solid-state
systems, and there are many previous researches about how
dephasing affects the quantum sensing [13,20–23]. On the
other hand, in the QRS, we should consider not only the
dephasing, but also the systematic error caused by imperfect
initial state preparation. Due to the systematic error, the uncer-
tainty δωC does not decrease in proportion to 1/

√
M where M

denotes the number of the repetitions. Additionally, the effect
of dephasing degrades the coherence of the qubit, and so it is
important to optimize the interaction time between the qubit
and target magnetic fields, which is determined by a tradeoff
relationship between other parameters. In particular, due to
the existence of the systematic error of the state preparation,
such an optimization becomes highly nontrivial. In the QRS
protocol under the effect of dephasing, we have found that the
optimized interaction time tgreed to minimize the uncertainty
δωC depends on the repetition number M and the error rate of
the state preparation ε. We investigate how the increase of the
repetition number M changes the behavior of the uncertainty
δωC with the optimized interaction time tgreed. Also, due to the
optimization of the sensing time t , the uncertainty approaches
to zero even for a finite ε as the repetition number M increases.
In quantum metrology, an optimization of the sensing time is
typically important to improve the sensitivity. For example,
to beat the standard quantum limit with entangled sensors
under the effect of decoherence, such an optimization of the
interaction time is crucial [21,22,50,51].

Moreover, we calculate the uncertainty of the qubit fre-
quency δωE for the Eve, and compare this with δωC.

FIG. 1. A schematic diagram to explain the outline of the QRS.
We consider the case that the client delegates a task of measuring
magnetic fields to the remote server with a quantum sensor. (a) First,
after the Bell pair is shared between the client and the server, the
client measures the Bell pair and obtains the data s j ∈ {0, 1} to
identify the initial state of the quantum sensing (|+〉 or |−〉) in the
server side. The server performs the quantum sensing with the initial
state described above, and sends the obtained data mj ∈ {0, 1} to the
client. (b) By using both data {s j} and {mj}, the client can estimate the
amplitude of target magnetic fields. On the other hand, even if Eve
attacks the server side and steals the data {mj}, she cannot estimate
the target field due to the lack of the data {s j}, which contains the
information on the initial states prepared for performing the quantum
sensing.

Our results show the conditions for the asymmetric gain
δωC/δωE < 1 to be maintained even under the effect of de-
phasing. Moreover, we can quantify how much information
the client can gain while preserving the information asym-
metricity.

The rest of this paper is organized as follows: Section II re-
views the QRS. Section III introduces models of the dephasing
and state preparation error. Section IV analytically calculates
the uncertainties of the estimation for the client and Eve.
Section V optimizes the interaction time to minimize the
client’s uncertainty, and shows the numerical results of the un-
certainty for the client and the ratio between the uncertainties
for the client and Eve. Section VI summarizes our results.

II. QUANTUM REMOTE SENSING

In this section, we explain the basic idea of the QRS as
shown in Fig. 1. For simplicity, let us assume that a perfect
Bell pair is available between the client and server (although
we will relax this condition later). The flow of the QRS is as
follows:

(1) The Bell state |�+〉 ≡ (|00〉 + |11〉)/
√

2 is shared be-
tween the client and the server.

(2) The client measures his/her part of the Bell state by σx

base to prepare the initial state |+〉 or |−〉 for the server side
where |±〉 ≡ (|0〉 ± |1〉)/

√
2.

(3) The server performs the standard Ramsey-type quan-
tum metrology (as shown in Appendix A) with the initial state
|+〉 or |−〉 to measure the target field, and sends the results to
the client.

(4) Repeat the steps 1–3, M times.
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FIG. 2. The protocol of the QRS with realistic noise. In this
protocol, the state shared between the client and the server may
deviate from the ideal Bell state, and the fidelity between these two
states is evaluated by random-sampling test. Also, we consider the
effect of dephasing during the quantum sensing.

Due to the σx measurement of the Bell state by the client
in step 2, the information on the initial state for the quantum
sensing is not known to the server. On the other hand, both
of the σx measurement results at step 2 and quantum sensing
results at step 3 are available for the client, and so the client
can obtain the information on the target field. On the other
hand, even if Eve attacks the server side and steals the quan-
tum sensing results, she cannot estimate the target field due to
the lack of the information on the initial states. In this sense,
the QRS protocol certainly guarantees the privacy of the client
under the condition that the Bell pair is prepared perfectly.

III. NOISE MODEL

In order to investigate realistic situations in our protocol,
we should consider both decoherence and state preparation
error as shown in Fig. 2, and we introduce these two noise
models in this section. It is worth mentioning that, in the previ-
ous research [48], only state preparation error was considered.
We assume that the initial state in the server side may deviate
from the ideal state |+〉. In addition to the imperfect state
preparation, we include the effect of dephasing during the
interaction with the target magnetic fields, which is considered
as one of the major obstacles for quantum metrology.

First, let us explain a noise model to describe dephasing in
our protocol [52,53]. Our Hamiltonian is written as

H (t ) = H0 + H1(t ), (1)

H0 = h̄ω

2
σz, (2)

H1(t ) = h̄λ f (t )σz, (3)

where ω denotes the qubit frequency, λ denotes the coupling
strength between the qubit and the environment, and f (t )
denotes the classical random variable to express a stochastic
noise. The Hamiltonian H0 describes the Larmor precession
of the qubit to measure the qubit frequency ω. It is worth
mentioning that there is a linear relationship between the qubit
frequency ω and the target field amplitude B (that the client
wants to measure) such as ω ∝ B. This means that the accurate
estimation of ω provides that of the amplitude of the target

fields. The Hamiltonian H1 describes the dephasing of the
qubit caused by the environmental noise. To take into account
two typical noise processes, we consider the following corre-
lation functions on the classical random variable f (t ):

f (t ) = 0, (4)

f (t ) f (t ′) =
{
τcδ(t − t ′), white noise

1, low-frequency noise
(5)

where τc and δ(t − t ′) denote a correlation time and a Dirac
delta function, respectively, and the overline means an en-
semble average for the random variable f (t ). In Eqs. (4) and
(5), the noise signal in our model is assumed to be a white
noise or a low-frequency noise, which frequently appears in
the standard quantum metrology. As shown below, the white
noise (low-frequency noise) causes the linearly (quadratically)
exponential decay in the nondiagonal terms of the density
matrix.

Based on our noise model, we solve the time evolution
equation for the density operator:

ih̄
dρ(t )

dt
= −[ρ(t ), H (t )]. (6)

In the interaction picture, Eq. (6) is rewritten as follows:

ih̄
dρI(t )

dt
= −[ρI(t ), H1(t )], (7)

ρI(t ) = eiH0t/h̄ρ(t )e−iH0t/h̄, (8)

where the initial state is ρ(0) = I
2 + ∑

i=x,y,z
ri
2 σi, and ri de-

notes the expectation value for the Pauli matrix σi to satisfy
the condition

r2
x + r2

y + r2
z � 1. (9)

By solving Eq. (7) and taking the average of the solution, we
can get the density matrix with the effect of dephasing:

ρI(t ) = 1 + e−g(t )

2
ρI(0) + 1 − e−g(t )

2
σzρ

I(0)σz, (10)

g(t ) =
{

2λ2τct = t/T2, white noise

2λ2t2 = (t/T2)2, low-frequency noise
(11)

where g(t ) denotes a decay rate representing a linear or
quadratic function of time for each noise process. The cou-
pling constant λ and the correlation time τc are replaced by
the decoherence time T2 for each noise process. The second
term in the right-hand side of Eq. (10) describes a phase-flip
term which decreases the off-diagonal elements of the density
matrix.

Second, we assume that the state preparation is not perfect
due to errors in a quantum channel between the client and
the server. To evaluate the quality of the state preparation, we
utilize the random-sampling test [54,55] as with the original
QRS [48] (see also Appendix B). As an advantage of this test
compared with the quantum-state tomography, it does not re-
quire any independent and identically distributed property on
samples, i.e., it works for any time-varying quantum-channel
noise. Under the success of the random-sampling test, it pro-
vides us with a two-qubit state ρtgt between the client and the
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server such that

〈�+|ρtgt|�+〉 � 1 − ε (12)

with high probability, where a finite value ε denotes an error
rate that is determined by the number of Bell pairs consumed
in the random-sampling test. Since the client measures his or
her part of ρtgt in the σx basis, Eq. (12) means that an initial
state ρ(0) such that

〈+|ρ(0)|+〉 � 1 − ε (13)

is prepared at the server’s side in the QRS. Note that, as
described in the original QRS [48], we can assume that the
outcome of the client’s σx-basis measurement is always +1
that corresponds to the projection onto |+〉. If the measure-
ment outcome is −1, then the state is supposed to be prepared
in |−〉. However, the client can relabel the basis from |−〉
to |+〉. For example, if the client interprets the measurement
result of σy as the other way around such as +1 (−1) is
interpreted as −1 (+1), this is mathematically equivalent to
perform σz operation on the initial state before the state in-
teracts with the magnetic fields, as described in the original
QRS [48].

IV. UNCERTAINTY OF THE ESTIMATION UNDER
THE EFFECT OF DEPHASING

In this section, we calculate the uncertainty of the estima-
tion under the effect of dephasing. First, by using the solution
of Eq. (10), we can derive the uncertainty δωC for the client
when we perform σy measurement to extract the information
of ω. The projection operator of σy measurement in the inter-
action picture is written as

P I
y(t ) = [

1 + σ I
y (t )

]
/2, (14)

σ I
y (t ) = eiH0t/h̄σye−iH0t/h̄. (15)

We substitute Eqs. (10) and (14) for the probability P,

P = Tr
[
ρI(t )P I

y(t )
] 	 x(t ) + y(t )ωt + z(t )ω2t2, (16)

x(t ) = 1

2
+ 1

2
rye−g(t ), (17)

y(t ) = rx

2
e−g(t ), (18)

z(t ) = − ry

4
e−g(t ), (19)

where we assume ωt 
 1 in the right-hand side of Eq. (16).
This assumption is valid if the qubit frequency ω is small
and the interaction time t , which is typically the order of the
decoherence time T2, is short. Since one of the main purposes
of the quantum sensing is to measure small target field, such
an assumption is practical for many cases. We calculate the
uncertainty δωC (δωE), which is the uncertainty of the esti-
mation of the target qubit frequency evaluated by the client
(Eve). It is worth mentioning that the client does not know
the precise form of the initial state. Based on the assumption
that the client only knows the fidelity of the initial state with
lack of information about rx, ry, and rz, we can calculate the

uncertainty for the client as described in Appendix C:

δωC = eg(t )

t
√

M

√
1 + (M − 1)r2

y e−2g(t ). (20)

The parameter ry in Eq. (20) originates from the imperfect
state preparation and is constrained by the finite fidelity of
Eq. (13). To consider the worst case, we choose rx and ry to
maximize δωC. Since the uncertainty of Eq. (20) is maximized
by rx = 1 − 2ε and ry = 2

√
ε(1 − ε), we obtain the following

upper bound for the uncertainty:

δωC � eg(t )

t
√

M

√
1 + 4(M − 1)ε(1 − ε)e−2g(t ) ≡ δω

(U )
C . (21)

In the expression of δω
(U )
C , there is a clear deviation from the

central limit theorem that predicts the decrease of δω
(U )
C by√

M by increasing the repetition number due to the systematic
error for the state preparation. Actually, for a fixed time t ,
the uncertainty will converge to a nonzero value in the limit
of large M [δω(U )

C → 2
√

ε(1 − ε)/t]. In the next section,
however, we show that, by using the optimized time tgreed to
minimize the uncertainty, δω

(U )
C slowly converges to zero in

the limit of large M.
Next, we calculate the uncertainty δωE for Eve. To consider

the worst case, we impose two conditions on the calculation
of the uncertainty of Eve. The first condition is that Eve is
not affected by dephasing. This means that Eve can obtain
information on the environment and know when the phase-flip
error occurs. So, the time evolution of the density matrix
ρE(t ) of Eve is described only by the free Hamiltonian H0.
The second condition is that Eve knows the information on
the error of the state preparation. This means that the qubit
frequency ω is estimated based on the precise knowledge of
the initial state ρE (0) = I

2 + ∑
i=x,y,z

Ri
2 σi. The initial state

ρE (0) is constrained by the following fidelity:

F (I/2, ρE ) = 1
2 + 1

2

√
1 − R2 � 1 − ε, (22)

R2 = R2
x + R2

y + R2
z . (23)

Under the these assumptions, the uncertainty δωE is given as
(see Appendix C for detailed calculation),

δωE = 1

t

√
1 − R2

y

MR2
x

. (24)

Since there is no systematic error from the state preparation
in Eq. (24), the uncertainty δωE decreases by increasing the
repetition number M, which follows the central limit theo-
rem. Again, in order to consider the worst case, we minimize
the uncertainty δωE by choosing Rx = 2

√
ε(1 − ε) and Ry =

Rz = 0,

δωE � 1

2t
√

Mε(1 − ε)
≡ δω

(L)
E . (25)

To compare the amount of the information obtained by the
client and Eve, we take the ratio of δω

(U )
C to δω

(L)
E ,

δω
(U )
C /δω

(L)
E = 2eg(t )

√
ε(1 −ε)[1 + 4(M − 1)ε(1 − ε)e−2g(t )].

(26)
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This ratio is crucial for the QRS. When this ratio is less than 1,
the client obtains more information than Eve, which is the goal
of the QRS. It is worth mentioning that this rate monotonically
increases against the increase of the time.

In the following subsections, we investigate the behavior
of the uncertainty δω

(U )
C and the ratio δω

(U )
C /δω

(L)
E in the

variation of the repetition number M. The repetition number
M is defined as

M = T

tp + t + tr
, (27)

where tp (tr) denotes the preparation (readout) time of the state
and T is the total time of the experiment. If the preparation
time and the readout time are much slower than the interaction
time (tp, tr � t), we obtain

M 	 T

tp + tr
, (28)

and the repetition number M becomes independent of the
interaction time t . On the other hand, if the preparation time
and the readout time are much faster than the interaction time
(tp, tr 
 t), the repetition number M can be approximated
as

M 	 T

t
. (29)

We consider these two cases in Secs. V A 1 and V B.

V. OPTIMIZATION OF THE CLIENT’S UNCERTAINTY

In order to investigate the condition for the asymmetric
gain to be maintained δω

(U )
C /δω

(L)
E < 1, in this section we

evaluate the uncertainty δω
(U )
C and the ratio δω

(U )
C /δω

(L)
E when

the initialization and readout are slow (Sec. V A 1) and
fast (Sec. V B), respectively. To this end, in each subsection,
we optimize the interaction time to minimize the uncertainty
δω

(U )
C (and the ratio δω

(U )
C /δω

(L)
E in Sec. V B). Especially, we

call the strategy as greed or safe:

Optimize the client uncertainty δω
(U )
Cgreed :

for a better sensitivity with the client

Optimize the ratio of δω
(U )
C /δω

(L)
Esafe :

for a safer protocol

Hereafter, and we denote the optimized time as tgreed or
tsafe, for the optimization of the uncertainty δω

(U )
C or the

ratio δω
(U )
C /δω

(L)
E , respectively. Since the ratio δω

(U )
C /δω

(L)
E

monotonically increases against the increase of the time, the
optimized time of tsafe becomes 0 for the slow initialization
and readout. So, we consider the safe strategy only for the
case of the fast initialization and readout. Since there are many
combinations of possible scenarios considered below, the re-
sults of our protocol are summarized in the last part of each of
Secs. V A 1 and V B.

exact (white noise)

exact (low frequency noise)

M 1 (white noise)

M 1 (low frequency noise)

M 1 (white noise)

M 1 (low frequency noise)

100 1000 104 105 106 107
M

2

3

4

Tgreed /T2

FIG. 3. Plots of the optimized time tgreed against the repetition
number M with ε = 0.001 (which is used for the state preparation
error throughout this section). The solid blue (orange) line denotes
the exact solution of the optimized time tgreed in Eq. (30) for the
white noise (low-frequency noise). The optimized time tgreed for the
white noise is larger than that for the low-frequency noise. Also, the
approximated form (32) of the optimized time tgreed in the limit of
Mε 
 1 for the white noise (low-frequency noise) is plotted as the
dashed blue (orange) line. Similarly, the approximated form (33) of
the optimized time tgreed in the limit of Mε � 1 for the white noise
(low-frequency noise) is plotted as the dashed-dotted blue (orange)
line.

A. Slow initialization and readout

1. Optimization of the interaction time

Here, we calculate the optimized time tgreed to minimize
the uncertainty δω

(U )
C in the case of Eq. (28), and fix the

parameter ε of the state preparation error as ε = 0.001. By
solving d (δω(U )

C )/dt = 0 with respect to t , we obtain

tgreed/T2

=
⎧⎨
⎩

1 + 1
2W [8(M − 1)ε(1 − ε)e−2], white noise√

1+W [4(M−1)ε(1−ε)e−1]
2 , low-frequency noise

(30)

where W (x) is a Lambert W function, by which the inverse
solution to x = yey is written as y = W (x). The asymptotic
form of the Lambert W function is given as follows:

W (x) 	
{

x (x 
 1),

ln
(

x
ln(x)

)
(x � 1).

(31)

We will use this approximation of Lambert W function to
calculate an uncertainty in details. In our setup, when either
Mε 
 1 or Mε � 1 is satisfied, the approximation becomes
valid. So the validity of the approximation depends on the
value of Mε. Such an asymptotic form provides an intuition
of the asymptotic behavior of the optimized time tgreed, the
uncertainty δω

(U )
C , and the ratio δω

(U )
C /δω

(L)
E . It is worth men-

tioning that, depending on the value of M that is a constant
determined from experimental conditions, we need to vary the
interaction time t for the optimization of the uncertainty.

In Fig. 3, we show the plot of the optimized time tgreed in
terms of M. As the repetition number M with the fixed param-
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eter ε increases, the optimized time tgreed increases, which is
different from the standard quantum metrology. This behavior
comes from a competition between the two contributions of
dephasing to the uncertainty δω

(U )
C in Eq. (21). As the first

contribution of dephasing, there is an overall factor eg(t ) that
exponentially increases the uncertainty δω

(U )
C as the interac-

tion time increases, which is typical in the standard quantum
metrology. On the other hand, as the second contribution of
dephasing, there is a factor of ε(1 − ε)e−2g(t ) that suppresses
the systematic error due to the imperfect state preparation in
Eq. (21), which appears in our protocol unlike the standard
quantum metrology. Hence, in our protocol, the optimized
time tgreed in Eq. (30) is adjusted to control the competition
between the two contributions for the minimization of the
uncertainty δω

(U )
C .

For the regime of Mε 
 1, by using the asymptotic form
of Eq. (31), the optimized time tgreed becomes approximately

tgreed/T2 	
{

1, white noise
1√
2
, low-frequency noise.

(32)

This is the same as the optimized time of the standard quantum
metrology introduced in Appendix A. This is because since
the term (M − 1)ε(1 − ε) of the state preparation error in
Eq. (21) is negligible in the regime of Mε 
 1, the uncertainty
δω

(U )
C in Eq. (21) is reduced to that of the standard quantum

metrology. On the other hand, for the regime of Mε � 1, by
using Eq. (31), the asymptotic behavior of the optimized time
tgreed is written as

tgreed/T2

	
⎧⎨
⎩

1
2 ln

( 8(M−1)ε(1−ε)
ln [8(M−1)ε(1−ε)e−2]

)
, white noise√

1
2 ln

( 4(M−1)ε(1−ε)
ln [4(M−1)ε(1−ε)e−1]

)
, low-frequency noise.

(33)

The asymptotic behavior of the optimized time tgreed in Mε �
1 is represented as the logarithm of Mε.

2. Uncertainty of the estimation with the optimized time

Next, by using the optimized time tgreed, we consider the
uncertainty δω

(U )
C . By substituting the optimized time tgreed

of Eq. (30) for the expression in Eq. (21), the uncertainty
δω

(U )
C with the optimized time tgreed can be obtained. If the

interaction time is determined independently of M, the sensi-
tivity would converge to a finite nonzero value in the limit of
large M due to the systematic error in the state preparation, as
mentioned in Eq. (21). On the other hand, when we optimize
the interaction time, the optimization time logarithmically
increases against M, as we mentioned. Such an optimization
provides us with a better sensitivity such that the uncertainty
of the estimation can asymptotically approach zero by increas-
ing M. Also, in order to investigate the effect of the deviation
from the optimized time tgreed, we discuss the uncertainties
with the interaction time t around the optimized time tgreed in
Appendix E 1.

In Fig. 4, the uncertainty δω
(U )
C for the white noise (low-

frequency noise) is plotted as the solid blue (orange) line
with respect to M. In order to understand the behavior of this
uncertainty, we use the approximated form of the optimized

exact (white noise)

exact (low frequency noise)

M 1 (white noise)

M 1 (low frequency noise)

M 1 (white noise)

M 1 (low frequency noise)

100 1000 104 105 106 107
M

0.05

0.10

0.50

1

T2 c

FIG. 4. Plots of the uncertainty δω
(U )
C with the optimized time

tgreed (that is plotted in Fig. 3) in terms of the repetition number M.
The solid blue (orange) line denotes the exact uncertainty δω

(U )
C of

Eq. (21) with the optimized time tgreed of Eq. (30) for the white noise
(low-frequency noise). The uncertainty for the white noise becomes
smaller than that for the low-frequency noise in large M. Also, the
approximated uncertainty δω

(U )
C of Eq. (34) in the limit of Mε 
 1

for the white noise (low-frequency noise) is plotted as the dashed
blue (orange) line. Similarly, the approximated uncertainty δω

(U )
C of

Eq. (35) in the limit of Mε � 1 for the white noise (low-frequency
noise) is plotted as the dashed-dotted blue (orange) line.

time in the limit of Mε 
 1 and Mε � 1 for the calculation
of the approximated uncertainty, and we obtain the following:

(Mε 
 1) :

T2δω
(U )
C 	

{ e√
M

, white noise√
2e
M , low-frequency noise

(34)

(Mε � 1) :

T2δω
(U )
C 	

⎧⎪⎪⎨
⎪⎪⎩

4
√

ε(1−ε)

ln
(

8(M−1)ε(1−ε)
ln [8(M−1)ε(1−ε)e−2]

) , white noise

2
√

2ε(1−ε)

ln
(

4(M−1)ε(1−ε)
ln [4(M−1)ε(1−ε)e−1]

) , low-frequency noise.

(35)

These approximated uncertainties reproduce the behaviors of
the exact uncertainties in the regime of either Mε 
 1 or
Mε � 1 as shown in Fig. 4. Equation (34) shows that the
uncertainty decreases in proportion to 1/

√
M as long as the

systematic error in the state preparation is negligible, which
is the same as the standard quantum metrology introduced in
Appendix A. However, as the repetition number M increases,
the solid line of the exact uncertainty deviates from the dashed
line of the approximate uncertainty in Eq. (34). This shows
that the effect of the state preparation error in the uncertainty
of Eq. (21) becomes relevant in the increase of M. It should
be noted that the solid blue line and orange line intersect at
the point where Mε ∼ O(1) is satisfied. For the large M, the
uncertainty δω

(U )
C for the white noise or the low-frequency

noise is proportional to 1/ ln(Mε) or 1/
√

ln(Mε), respec-
tively, as shown in Eq. (35). So, in the limit of large M, the
uncertainty for the white noise decreases faster than that for
the low-frequency noise.
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exact (white noise)

exact (low frequency noise)

M 1 (white noise)

M 1 (low frequency noise)

M 1 (white noise &
low frequency noise)

100 1000 104 105 106 107
M

0.5

1

5

10

c
(U)/ E

(L)

FIG. 5. Plots of the ratio δω
(U )
C /δω

(L)
E with the optimized time

tgreed (that is plotted in Fig. 3) in terms of the repetition number M.
The solid blue (orange) line denotes the exact ratio δω

(U )
C /δω

(L)
E of

Eq. (26) with the optimized time tgreed of Eq. (30) for the white noise
(low-frequency noise). The ratio for the white noise is larger than that
for the low-frequency noise. Also, the approximated ratio (36) in the
limit of Mε 
 1 for the white noise (low-frequency noise) is plotted
as the dashed blue (orange) line. Similarly, the approximated ratio
(37) in the limit of Mε � 1 for the white noise (low-frequency noise)
is plotted as the dashed-dotted red line. The ratio becomes more than
1 around when the repetition number M becomes more than 105,
which shows the conditions for the asymmetric gain δωC/δωE < 1
to be maintained.

3. Ratio between client’s uncertainty and Eve’s uncertainty

In order to investigate how much the information is ob-
tained by Eve, we compare the two uncertainties δω

(U )
C and

δω
(L)
E with the optimized time tgreed to minimize the un-

certainty δω
(U )
C . By substituting the optimized time tgreed of

Eq. (30) for the ratio δω
(U )
C /δω

(L)
E in Eq. (26), we obtain the

ratio with the optimized time. In Fig. 5, we plot the ratio
δω

(U )
C /δω

(L)
E for the white noise (low-frequency noise) as the

solid blue (orange) line in terms of the repetition number M.
The ratio becomes more than 1 around when the repetition
number M becomes more than 105. This means that the client
has less information than Eve where the QRS does not provide
a suitable asymmetric information gain for the client.

Similarly to the analysis of the uncertainty δω
(U )
C , we con-

sider the asymptotic behaviors of the ratio δω
(U )
C /δω

(L)
E in the

limit of Mε 
 1 and Mε � 1. By using the asymptotic forms
of the optimized time tgreed in Eqs. (32) and (33), we obtain
the approximated ratio δω

(U )
C /δω

(L)
E for the regime of Mε 
 1

and Mε � 1 as follows:

(Mε 
 1) :

δω
(U )
C /δω

(L)
E 	

{
2e

√
ε(1 − ε), white noise

2
√

eε(1 − ε), low-frequency noise
(36)

(Mε � 1) :

δω
(U )
C /δω

(L)
E 	

{
4ε(1 − ε)

√
M, white noise

4ε(1 − ε)
√

M, low-frequency noise.
(37)

From this analytical form, we can conclude that it is possible
to obain an asymmetric information gain (where the ratio is
smaller than 1) as long as ε

√
M � 1 is satisfied for Mε � 1.

There is a good agreement between the exact solution and
approximated solution in Fig. 5. As shown in Fig. 5, the
ratio δω

(U )
C /δω

(L)
E is independent of the repetition number for

a small M because the state preparation error is negligible.
As the repetition number increases, the uncertainty of Eve
becomes proportional to 1/

√
M, while the client can decrease

the uncertainty only logarithmically against M. Due to this,
the ratio of the uncertainty increases for a larger M as shown
in Fig. 5. Also, it is worth mentioning that, in the large limit
of M, the decoherence factor of g(t ) disappears from Eq. (26),
and so the ratio of the uncertainty of the white noise asymp-
totically approaches the same as that of the low-frequency
noise.

4. Discussion and summary

Here, we discuss how much precision can be obtained by
the client while preserving the information asymmetricity in
our protocol. As seen from Fig. 5, the ratio of the uncertainties
between the client and Eve is less than 1 when the repetition
number M is less than around 2 × 104 (3 × 104) with ε =
0.001 for the white noise (low-frequency noise). In the region
of the repetition number M, from Fig. 4, the client gains the
information with the uncertainty δω

(U )
C < 0.05/T2 (0.07/T2)

for the white noise (the low-frequency noise). This consider-
ation is important for the application of our protocol because
we would like to know the client’s uncertainty in the range
that the information asymmetry between the client and Eve
is realized. Additionally, if the client wants to obtain more
precision under the information asymmetry, the smaller ε is
required for increasing the repetition number M. In Table I, we
summarize the results of our protocol where the preparation
time and the readout time are long.

B. Fast initialization and readout

In this section, we consider the case of the repetition num-
ber M approximated as Eq. (29) while we set M as Eq. (28) in
the previous subsection. The uncertainty δω

(U )
C and the ratio

δω
(U )
C /δω

(L)
E are rewritten as follows:

δω
(U )
C = eg(t )

√
tT

√
1 + 4(T/t − 1)ε(1 − ε)e−2g(t ), (38)

δω
(U )
C /δω

(L)
E

= 2eg(t )
√

ε(1 − ε)[1 + 4(T/t − 1)ε(1 − ε)e−2g(t )],
(39)

where T denotes the total experimental time. In this section,
we fix the parameter ε of the state preparation error as ε =
0.0001 when we plot the figures.

1. Optimization of the interaction time

We can minimize δω
(U )
C of Eq. (38) with respect to t .

Moreover, we can also minimize the ratio δω
(U )
C /δω

(L)
E as

well as the uncertainty δω
(U )
C due to the dependence of M

on 1/t , while the ratio δω
(U )
C /δω

(L)
E monotonically increases

against t when M is independent of t as shown in Eq. (26).
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TABLE I. Summary of the results in our protocol where the initialization and the readout are slow. Here, δω
(U )
C denotes an upper bound

of the client uncertainty, δω
(L)
E denotes a lower bound of the uncertainty of Eve, tgreed denotes an optimized interaction time with the magnetic

fields, M denotes the number of the repetitions, g(t ) denotes the decay rate, and ε denotes an error rate in a state preparation. The optimized
time for the uncertainty, the uncertainty with the optimized time, and the ratio of the uncertainties with the optimized time are expressed as
the exact formula and the approximation in Mε 
 1 and Mε � 1. The optimization is performed to minimize the estimate uncertainty of the
client, which we call a greed strategy. The upper row and the lower row in the table correspond to the white noise and the low-frequency noise.

Mε 
 1 Exact Mε � 1

tgreed/T2
1

1/
√

2

1 + 1
2W [8(M − 1)ε(1 − ε)e−2]√

{1 + W [4(M − 1)ε(1 − ε)e−1]}/2

1
2 ln( 8(M−1)ε(1−ε)

ln[8(M−1)ε(1−ε)e−2]
)√

1
2 ln( 4(M−1)ε(1−ε)

ln[4(M−1)ε(1−ε)e−1]
)

T2δω
(U )
C |t=tgreed

e/
√

M√
2e/M

T2e
g(tgreed )

tgreed
√

M

×
√

1 + 4(M − 1)ε(1 − ε)e−2g(tgreed )

4
√

ε(1 − ε)/ ln( 8(M−1)ε(1−ε)
ln[8(M−1)ε(1−ε)e−2]

)

2
√

2ε(1 − ε)/ ln( 4(M−1)ε(1−ε)
ln[4(M−1)ε(1−ε)e−1]

)

δω
(U )
C /δω

(L)
E |t=tgreed

2e
√

ε(1 − ε)
2
√

eε(1 − ε)
2eg(tgreed )

×
√

ε(1 − ε)[1 + 4(M − 1)ε(1 − ε)e−2g(tgreed )]
4ε(1 − ε)

√
M

By solving d
dt (δω(U )

C ) = 0 with respect to t , we obtain the
following equation of the optimized time tgreed for the white
noise and the low-frequency noise:

(2tgreed/T2 − 1)e2tgreed/T2 − 4(1 − ε)ε(2T/tgreed − 1) = 0,

white noise (40)

(4(tgreed/T2)2 − 1)e2(tgreed/T2 )2 − 4(1 − ε)ε(2T/tgreed − 1) = 0,

low-frequency noise. (41)

Unfortunately, we cannot find an analytical form of the op-
timized time tgreed to minimize δω

(U )
C in this case, and so we

will numerically find the optimized value. On the other hand,
when we try to find the optimized time to minimize the ratio
of the uncertainty, we obtain the following analytical solution
for the white noise and the low-frequency noise by solving
d
dt (δω(U )

C /δω
(L)
E ) = 0 in terms of t :

tsafe/T2 =
{

W (
√

2Nε(1 − ε)), white noise√
3W{ 4

3 [Nε(1−ε)]2/3}
2 , low-frequency noise

(42)

where tsafe denotes the optimized time for the ratio
δω

(U )
C /δω

(L)
E and N is defined as

N = T/T2. (43)

In Fig. 6, we plot tgreed of Eq. (40) [Eq. (41)] op-
timized with the uncertainty δω

(U )
C for the white noise

(low-frequency noise), and tsafe of Eq. (42) optimized with the
ratio δω

(U )
C /δω

(L)
E in terms of N . Both of tgreed and tsafe increase

with respect to N . In the limit of Nε 
 1, the optimized time
tgreed/T2 with the uncertainties for the white noise and the
low-frequency noise converges to 1

2 , which is the same as the
standard quantum metrology in Appendix A. The optimized
time tgreed for the white noise is larger than that for the low-
frequency noise for a finite ε, and the difference between
them becomes larger as N increases. On the other hand, the
optimized time tsafe for the white noise is smaller than that
for the low-frequency noise in small N . As N increases, the
optimized time tsafe for the white noise overtakes that for the
low-frequency noise.

In the limits of Nε 
 1 and Nε � 1, we can approximate
the optimized time tsafe of Eq. (42) by using Eq. (31) as
follows:

(Nε 
 1) :

tsafe/T2 	
{√

2Nε(1 − ε), white noise

[Nε(1 − ε)]1/3, low-frequency noise
(44)

(Nε � 1) :

tsafe/T2 	

⎧⎪⎨
⎪⎩

ln
( √

2Nε(1−ε)
ln (

√
2Nε(1−ε))

)
, white noise

1
2

√
3 ln

( 4
3 [Nε(1−ε)]2/3

ln ( 4
3 [Nε(1−ε)]2/3 )

)
, low-frequency noise.

(45)

tgreed (white noise)

tgreed (low frequency noise)

tsafe (white noise)

tsafe (low frequency noise)

100 104 106 108
N

1

2

3

4

5
tgreed/T2, tsafe/T2

FIG. 6. Plots of the optimized time tgreed and tsafe to minimize
the uncertainty δω

(U )
C and the ratio δω

(U )
C /δω

(L)
E , respectively, with

ε = 0.0001 (which is used for the state preparation error throughout
this section). The solid blue (orange) line denotes tgreed of Eq. (40)
[Eq. (41)] optimized with the uncertainty for the white noise (low-
frequency noise). The dashed blue (orange) line denotes tsafe of
Eq. (42) optimized with the ratio for the white noise (low-frequency
noise). The optimized time tgreed and tsafe for the white noise become
larger than that for the low-frequency noise in large N .
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exact (white noise)

exact (low frequency noise)

N 1 (white noise)

N 1 (low frequency noise)
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N

0.1

0.2
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0.5
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tsafe /T2
(a)

exact (white noise)

exact (low frequency noise)

N 1 (white noise)

N 1 (low frequency noise)

105 107 109 1011
N
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7

tsafe /T2
(b)

FIG. 7. Plots of the optimized time tsafe (that is plotted in Fig. 6) for the ratio δω
(U )
C /δω

(L)
E . In (a) and (b), the exact solution of the optimized

time tsafe in Eq. (42) for the white noise (low-frequency noise) is plotted as the solid blue (orange) line. In (a), the dashed blue (orange) line
expresses the optimized time tsafe of Eq. (44) approximated in the limit of Nε 
 1 for the white noise (low-frequency noise). The optimized
time tsafe for the white noise is smaller than that for the low-frequency noise. In (b), the dashed-dotted blue (orange) line denotes the optimized
time tsafe of Eq. (45) approximated in the limit of Nε � 1 for the white noise (low-frequency noise). The optimized time tsafe for the white
noise becomes lager than that for the low-frequency noise in large N .

In Figs. 7(a) and 7(b), we plot the exact solution of the op-
timized time tsafe for the white noise (low-frequency noise)
as the solid blue (orange) line. There is a good agreement
between the exact optimized time tsafe and the approximated
optimized time tsafe in the regime of Nε 
 1 and Nε � 1 in
Figs. 7(a) and 7(b).

2. Uncertainty of the estimation with the optimized time

Next, we calculate the uncertainty δω
(U )
C with the opti-

mized time tgreed (or tsafe) to minimize the uncertainty δω
(U )
C

(or the ratio δω
(U )
C /δω

(L)
E ). In Fig. 8, by using the expression

of Eq. (38), we plot the uncertainty δω
(U )
C optimized by tgreed

of Eq. (40) [Eq. (41)] for the white noise (low-frequency

with tgreed (white noise)

with tgreed (low frequency noise)

with tsafe (white noise)

with tsafe (low frequency noise)

100 1000 104 105 106 107
N

0.01

0.05

0.10

0.50

1

T2 C
(U)

FIG. 8. Plots of the uncertainty δω
(U )
C in Eq. (38) with the op-

timized time tgreed (tsafe) (that are plotted in Fig. 6) to minimize the
uncertainty δω

(U )
C (the ratio δω

(U )
C /δω

(L)
E ). The solid blue (orange) line

denotes the uncertainty minimized by tgreed of Eq. (40) [Eq. (41)] for
the white noise (low-frequency noise). The dashed blue (orange) line
denotes the uncertainty with tsafe of Eq. (42) in the optimization of
the ratio for the white noise (low-frequency noise). The uncertainty
for the white noise becomes smaller than that for the low-frequency
noise in large N .

noise) as the solid blue (orange) line. Similarly, in Fig. 8, the
uncertainty δω

(U )
C with tsafe of Eq. (42) for the white noise

(low-frequency noise) is plotted as the dashed blue (orange)
line. Figure 8 shows that the difference between the uncer-
tainties δω

(U )
C with tgreed and tsafe decreases in the increase

of N . Furthermore, we can see that the uncertainties δω
(U )
C

for the white noise and the low-frequency noise intersect at
the point where Nε ∼ O(1) both in the optimization with the
uncertainty δω

(U )
C and the ratio δω

(U )
C /δω

(L)
E . Also, in order

to investigate the effect of the deviation from the optimized
time tgreed on the uncertainties, we discuss the uncertainties
calculated with the interaction time t around the optimized
time tgreed in Appendix E 2.

In the regime of Nε 
 1 and Nε � 1, we analyze the
asymptotic behavior of the uncertainty δω

(U )
C with the opti-

mized time tsafe for the ratio δω
(U )
C /δω

(L)
E . By using Eq. (31),

we can approximate the uncertainty δω
(U )
C with the optimized

time tsafe in the limits of Nε 
 1 and Nε � 1 as follows:

(Nε 
 1) :

T2δω
(U )
C 	

{ 1√
N

× 1
[2Nε(1−ε)]1/4 , white noise

1√
N

× 1
[Nε(1−ε)]1/6 , low-frequency noise

(46)

(Nε � 1) :

T2δω
(U )
C 	

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
√

ε(1−ε)

ln (
√

2Nε(1−ε)
ln (

√
2Nε(1−ε)) )

, white noise

4
√

ε(1−ε)

3 ln
( 4

3 [Nε(1−ε)]2/3

ln { 4
3 [Nε(1−ε)]2/3}

) , low-frequency noise.

(47)

In Fig. 9, the exact uncertainty δω
(U )
C of Eq. (38) with tsafe for

the white noise (low-frequency noise) is plotted as the solid
blue (orange) line. There is a good agreement between the
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exact (white noise)

exact (low frequency noise)

N 1 (white noise)

N 1 (low frequency noise)

N 1 (white noise)

N 1 (low frequency noise)

100 104 106
N

0.10

1

10
T2 C

(U) with tsafe

FIG. 9. Plots of the exact and approximated uncertainties δω
(U )
C

with the optimized time tsafe to minimize the ratio δω
(U )
C /δω

(L)
E .

The solid blue (orange) line denotes the exact uncertainty δω
(U )
C in

Eq. (38) with tsafe of Eq. (42) for the white noise (low-frequency
noise), which are plotted as the dashed lines in Fig. 8. The uncertainty
for the white noise becomes smaller than that for the low-frequency
noise in large N . The dashed blue (orange) line represents the
approximated uncertainty δω

(U )
C in Eq. (46) for the white noise

(low-frequency noise) in the regime of Nε 
 1. The dashed-dotted
blue (orange) line expresses the approximated uncertainty δω

(U )
C in

Eq. (47) for the white noise (low-frequency noise) in the regime of
Nε � 1.

exact and approximated uncertainties δω
(U )
C with tsafe both for

the regimes of Nε 
 1 and Nε � 1 in Fig. 9. The uncertainty
δω

(U )
C of Eq. (46) approximated in small Nε for the white

noise and the low-frequency noise decreases in proportion
to N−3/4 and N−2/3, respectively. It is worth mentioning that
the uncertainty seems to beat the classical scaling of δω

(U )
C ∝

N−1/2, which comes from the central limit theorem. However,
such a scaling of N−3/4 or N−2/3 holds only when Nε is much
smaller than 1. Actually, once Nε becomes much larger than 1,
the uncertainty decreases logarithmically, which is below the
classical scaling. We also observe that there is the intersection
between the exact uncertainties δω

(U )
C for the white noise and

the low-frequency noise in the intermediate region of Nε.

3. Ratio between client’s uncertainty and Eve’s uncertainty

Here, we discuss how the behavior of the ratio δω
(U )
C /δω

(L)
E

depends on the choice of tgreed and tsafe. The plot of Fig. 10
shows the ratio δω

(U )
C /δω

(L)
E with the optimized time tgreed

with tgreed (white noise)

with tgreed (low frequency noise)

with tsafe (white noise)

with tsafe (low frequency noise)

100 1000 104 105 106 107
N

0.05

0.10

0.50

1

C
(U)/ E

(L)

FIG. 10. Plots of the ratio δω
(U )
C /δω

(L)
E in Eq. (39) with the op-

timized time tgreed (tsafe) (that are plotted in Fig. 6) to minimize the
uncertainty δω

(U )
C (the ratio δω

(U )
C /δω

(L)
E ). The solid blue (orange) line

denotes the ratio with tgreed of Eq. (40) [Eq. (41)] in the optimization
of the client’s uncertainty for the white noise (low-frequency noise).
The dashed blue (orange) line denotes the ratio minimized by tsafe of
Eq. (42) for the white noise (low-frequency noise). The ratio for the
white noise becomes smaller than that for the low-frequency noise
in large N . The ratio becomes more than 1 around when N becomes
more than 107.

(tsafe). In Fig. 10, as N becomes larger, the differences between
the ratio δω

(U )
C /δω

(L)
E with tgreed and that with tsafe become

smaller for both the white noise and the low-frequency noise.
Moreover, regardless of whether we optimize the uncertainty
δω

(U )
C or the ratio δω

(U )
C /δω

(L)
E , the ratios δω

(U )
C /δω

(L)
E of the

white noise and the low-frequency noise intersect at the point
where Nε is around 1 to 10. The ratios become more than
1 around when the repetition number M becomes more than
107, and this means that the client has less information than
Eve where the QRS does not provide a suitable asymmetric
information gain for the client. Also, in Appendix E 2, in order
to investigate the effect of the deviation from the optimized
time tsafe, we discuss the ratios with the interaction time t
around the optimized time tsafe.

Based on the analytical solution of the optimized time tsafe

in Eq. (42), we investigate the asymptotic behavior of the
ratio δω

(U )
C /δω

(L)
E with the optimized time in the regime of

Nε 
 1 and Nε � 1. By substituting the approximation for
the Lambert W function in Eq. (31) into the ratio δω

(U )
C /δω

(L)
E

in Eq. (39), the asymptotic form of the ratio can be approxi-
mated as follows:

(Nε 
 1) :

δω
(U )
C /δω

(L)
E 	

{
2
√

ε(1 − ε), white noise

2
√

ε(1 − ε), low-frequency noise
(48)

(Nε � 1) :

δω
(U )
C /δω

(L)
E 	

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4ε(1 − ε)
√

N

ln
( √

2Nε(1−ε)
ln [

√
2Nε(1−ε)]

) , white noise

4ε(1 − ε)
√

2N
√

3 ln
( 4

3 [Nε(1−ε)]2/3

ln { 4
3 [Nε(1−ε)]2/3}

) , low-frequency noise.
(49)
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FIG. 11. Plots of the exact and approximated ratios δω
(U )
C /δω

(L)
E

with the optimized time tsafe to minimize the ratio
δω

(U )
C /δω

(L)
E . The solid blue (orange) line denotes the exact

ratio δω
(U )
C /δω

(L)
E in Eq. (39) with the optimized time tsafe of Eq. (42)

for the white noise (low-frequency noise), which are plotted as the
dashed lines in Fig. 10. The dashed blue (orange) line represents
the approximated ratio δω

(U )
C /δω

(L)
E of Eq. (48) for the white noise

(low-frequency noise) in the regime of Nε 
 1. The dashed-dotted
blue (orange) line expresses the approximated ratio δω

(U )
C /δω

(L)
E in

Eq. (49) for the white noise (low-frequency noise) in the regime of
Nε � 1. The ratio for the white noise becomes smaller than that for
the low-frequency noise in large N .

From this analytical form, we can conclude that it is possible
to obain an asymmetric information gain (where the ratio is
smaller than 1) as long as ε

√
N � 1 is satisfied for Nε � 1. In

Fig. 11, we plot the exact ratio δω
(U )
C /δω

(L)
E with the optimized

time tsafe as the solid blue (orange) line for the white noise
(low-frequency noise). As seen from Fig. 11, the approximate
ratios of δω

(U )
C /δω

(L)
E reproduce the asymptotic form of the

exact ratio both in the regime of Nε 
 1 and Nε � 1.

4. Discussion and summary

Similarly to Sec. V A 1, we discuss how much precision
can be obtained by the client under the information asym-
metry (δω(U )

C /δω
(L)
E < 1) in our protocol. We consider the

two strategies (greed and safe) in this section. The asymp-
totic behaviors of the uncertainty δω

(U )
C (and also the ratio

δω
(U )
C /δω

(L)
E ) with Nε � 1 for the optimized time tgreed is

similar to that for the other optimized time tsafe. Thus, the
uncertainty δω

(U )
C obtained under the information asymmetry

is almost the same for these two strategies. As seen from
Fig. 10, the ratio of the uncertainties between the client and
Eve is less than 1 when the repetition number N is less than

around 1.6 × 107 (8.9 × 106) with ε = 0.0001 for the white
noise (low-frequency noise). When we adopt these values for
N and ε = 0.0001, the client gains the information with the
uncertainty δω

(U )
C < 0.007/T2 (0.012/T2) under the effect of

the white noise (the low-frequency noise) as seen from Fig. 8.
In Tables II and III, we summarize the results of our protocol
where the preparation time and the readout time are short.

VI. CONCLUSION

In conclusion we have investigated the effect of dephasing
for the QRS protocol. The original paper [48] on the QRS
considers the state preparation error caused by the channel
noise between the client and the server, and evaluates the
fidelity of the shared state by using the random-sampling test.
In addition to the state preparation error, we introduce the
dephasing during the quantum sensing, which is one of the
most typical noises for solid-state systems. We show that the
uncertainty of the client side decreases with the square root
of the repetition number M for small M. On the other hand,
for large M, the state preparation error becomes as relevant
as the dephasing, and the uncertainty δωC for the client side
decreases logarithmically with M. This is the nontrivial result
in our paper because the uncertainty decreases with the square
root of M in the standard quantum metrology with the perfect
state preparation. Moreover, we calculate the uncertainty of
the qubit frequency δωE for the Eve, and compare this with
δωC. Our results lead us to obtain the conditions for the
asymmetric gain δωC/δωE < 1 to be maintained even under
the effect of dephasing, which is an important step for the
realization of the quantum remote sensing with solid-state
systems. Under the asymmetric gain, we can estimate how
much information can be obtained by the client.

Finally, we discuss the future work of the QRS. As seen
from Fig. 12, if the QRS is actually implemented, we have
to consume a lot of Bell pairs required for the sampling
test, which guarantees the fidelity of the initial state for the
quantum sensing. The sampling test has an advantage to guar-
antee the security, especially when the details of the noise are
not known. However, in practical aspects, it is desirable to
reduce the resources needed for implementing the QRS. So,
in order to decrease the resources, it would be better to find
an alternative way to guarantee the fidelity. Another future
work is to develop a theory of quantum remote sensing for a
spin-1 system. The nitrogen vacancy (NV) center in diamond
is a promising system to realize our scheme [15,16]. The NV
centers have a long coherence time such as a second [56], and
also we can control the NV centers by microwave pulses [57].
Moreover, the NV centers can be coherently coupled with

TABLE II. Summary of the results in our protocol where the initialization and the readout are fast. When optimizing the interaction time
for the uncertainty in this case, the optimized time is obtained as the numerical solution of Eqs. (40) and (41) as mentioned in the text. The
expression for the uncertainty and the ratio of the uncertainties between the client and Eve are written in the table.

tgreed Numerical calculation in Eqs. (40) and (41)

δω
(U )
C |t=tgreed

e
g(tgreed )√

tgreedT

√
1 + 4(T/tgreed − 1)ε(1 − ε)e−2g(tgreed )

δω
(U )
C /δω

(L)
E |t=tgreed

2eg(tgreed )
√

ε(1 − ε)[1 + 4(T/tgreed − 1)ε(1 − ε)e−2g(tgreed )]
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TABLE III. Summary of the results in our protocol where the initialization and the readout are fast. Here, δω
(U )
C denotes an upper bound

of the client uncertainty, δω
(L)
E denotes a lower bound of the uncertainty of Eve, tsafe denotes an optimized interaction time with the magnetic

fields, N denotes the number of the repetitions, g(t ) denotes the decay rate, and ε denotes an error rate in a state preparation. The optimized
time for the uncertainty, the uncertainty with the optimized time, and the ratio of the uncertainties with the optimized time are expressed as
the exact formula and the approximation in Nε 
 1 and Nε � 1. The optimization is performed to minimize the ratio between the client’s
uncertainty and Eve’s uncertainty, which we call a safe strategy. The upper row and the lower row in the table correspond to the white noise
and the low-frequency noise.

Nε 
 1 Exact Nε � 1

tsafe/T2

√
2Nε(1 − ε)

[Nε(1 − ε)]1/3

W (
√

2Nε(1 − ε))

1
2

√
3W { 4

3 [Nε(1 − ε)]2/3}

ln(
√

2Nε(1−ε)
ln[

√
2Nε(1−ε)]

)

1
2

√
3 ln(

4
3 [Nε(1−ε)]2/3

ln{ 4
3 [Nε(1−ε)]2/3} )

T2δω
(U )
C

∣∣
t=tsafe

1√
N[2Nε(1−ε)]1/4

1√
N[Nε(1−ε)]1/6

T2eg(tsafe )
√

tsafeT

×√
1 + 4(T/tsafe − 1)ε(1 − ε)e−2g(tsafe )

2
√

ε(1 − ε)
/

ln(
√

2Nε(1−ε)
ln[

√
2Nε(1−ε)]

)

4

√
ε(1 − ε)

/
3 ln(

4
3 [Nε(1−ε)]2/3

ln{ 4
3 [Nε(1−ε)]2/3} )

δω
(U )
C /δω

(L)
E

∣∣
t=tsafe

2
√

ε(1 − ε)
2eg(tsafe )

×√
ε(1 − ε)[1 + 4(T/tsafe − 1)ε(1 − ε)e−2g(tsafe )]

4ε(1 − ε)
√

N

ln(
√

2Nε(1−ε)
ln[

√
2Nε(1−ε)]

)

4ε(1 − ε)
√

2N
√

3 ln(
4
3 [Nε(1−ε)]2/3

ln{ 4
3 [Nε(1−ε)]2/3} )

optical photons [58]. These are a prerequisite for the quantum
remote sensing. However, the NV center is not a qubit but
a three-level system. So, the analysis here cannot be directly
applied with the NV centers. Such a theoretical study of the
quantum remote sensing with a spin-1 system is left as a future
work.
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APPENDIX A: STANDARD QUANTUM METROLOGY

We review the standard quantum metrology implemented
under ideal conditions. The Hamiltonian is given as

H0 = h̄ω

2
σz, (A1)

where the frequency of qubit ω has a linear relationship with
the amplitude of the target field B that we want to know, and
we will assume ωt 
 1 for the weak target field B. The steps
of the standard quantum metrology are as follows:

(1) An initial state |+〉 is prepared.
(2) The state |+〉 is evolved with the Hamiltonian in

Eq. (A1) for an interaction time t .
(3) The σy measurement is performed for the final state.
(4) Repeat the steps 1–3, M times.
In step 2, the state of the qubit acquires a relative phase due

to the interaction between the qubit and the target magnetic
field. By performing the σy measurement in step 3, the relative
phase acquired by the target field is measured. In the actual ex-
periment, the σy measurement in step 3 produces the outcome
m(=1 or 0) where m = 1 (0) corresponds to the eigenvalue
+1 (−1) for σy. The σy measurement is repeated M times and
the average value SM is defined as

SM =
∑M

j=1 mj

M
, (A2)

where mj denotes the outcome of the jth σy measurement.
We can calculate the probability P of the outcome m = 1

for the σy measurement as follows:

P = Tr[Pye−iH0t/h̄ |+〉 〈+| eiH0t/h̄] (A3)

= (1 + sin ωt )/2 (A4)

	 (1 + ωt )/2, (A5)
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where Py = (1 + σy)/2 denotes the projection operator for the
σy measurement, and we use the approximation of ωt 
 1 in
the last line. By replacing the probability P in Eq. (A5) with
the average value SM , the frequency ω can be estimated as

ω
(est)
M = (2SM − 1)/t . (A6)

The uncertainty δω of the estimation is defined as the root-
mean-squared error:

δω ≡
√〈(

ω
(est)
M − ω

)2〉
(A7)

= 2

t

√
〈(SM − P)2〉, (A8)

where we substitute the estimation ω
(est)
M of Eq. (A6) and

the frequency ω of Eq. (A5) for the uncertainty δω. Since
the relation between the variance of the average value SM and
the variance δ2P of the random variable m is given as follows:

M 〈(SM − P)2〉 = δ2P, (A9)

where δ2P = P(1 − P) 	 1/4 under the assumption of ωt 

1, we obtain the uncertainty δω of the estimation,

δω 	 1

t
√

M
. (A10)

While we have considered a quantum sensing without de-
phasing, we will explain the case with dephasing below. By
replacing the probability P in Eq. (A5) with the new probabil-
ity P including the effect of dephasing as

P 	 (1 + e−g(t )ωt )/2, (A11)

we obtain the uncertainty with dephasing as

δω 	 eg(t )

t
√

M
, (A12)

where the factor eg(t ) expresses the loss of quantum coherence
for the qubit, and g(t ) is a linear or quadratic function of
the interaction time t as defined in Eq. (11). By calculating
d
dt (δω) = 0, the optimized time tgreed to minimize the uncer-
tainty of Eq. (A12) is given as follows:

tgreed/T2 =
{

1, white noise
1√
2
, low-frequency noise

(A13)

where T2 denotes the decoherence time. By using the opti-
mized time tgreed, the uncertainty can be obtained as

δω =
{ 1

T2

e√
M

, white noise

1
T2

√
2e
M , low-frequency noise.

(A14)

When the time of the initialization and the readout of the qubit
are much shorter than the interaction time t , the repetition
number M is written in terms of the total time T of experiment
and the interaction time t :

M = T

t
. (A15)

In this case, the optimized time tgreed is calculated as

tgreed/T2 =
{ 1

2 , white noise
1
2 , low-frequency noise.

(A16)

By using these optimized time tgreed, the uncertainty is ob-
tained as follows:

δω =
⎧⎨
⎩

√
2e

T2T , white noise√
2
√

e
T2T , low-frequency noise.

(A17)

The results of Eqs. (A11)–(A17) are known as the results of
standard quantum metrology under the effect of dephasing.

APPENDIX B: RANDOM-SAMPLING TEST

We review the concept of the random-sampling test. A key
point is to measure two stabilizer operators σx ⊗ σx and σz ⊗
σz, which gives us a lower bound on the fidelity. If a measured
state is the ideal Bell state |�+〉, the outcomes of these two
stabilizer measurements are always +1, which means that the
measurements on the first and the second qubits return the
same outcomes. First, the server prepares an 8k-qubit state ρS ,
where

k = �75 ln (2/δ)/[8(ε − 3
)2]�. (B1)

Without loss of generality, we consider that ρS consists of 4k
registers, and each register stores two qubits. Although the
state ρS of 4k registers is |�+〉⊗4k in the ideal case, it is the
arbitrary 8k-qubit state when the quantum channel is noisy.
Second, the server sends the client one half of each register
one by one. Then the client chooses 2k registers among 4k
registers independently and uniformly at random. For the first
k registers, the client and the server measure their own half in
the σx basis. For another k registers, they measure their halves
in the σz basis, respectively. The client counts the number
Nfail (�2k) of registers where the client’s outcome is different
from the server’s one. If Nfail � 2k
, where a value of 
 can
be decided by the client, the random-sampling test succeeds.
Finally, the client selects a single register from the remaining
2k registers. The quantum state ρtgt of the selected register
satisfies

〈�+|ρtgt|�+〉 � 1 − ε + 3
 − 3Nfail

2k
(B2)

with probability at least 1 − δ [48]. Therefore, if the random-
sampling test succeeds, i.e., Nfail � 2k
, we obtain ρtgt

satisfying Eq. (12).
Here, as detailed in Ref. [48], we show the dependence of

the number of Bell pairs NBell on the error rate ε corresponding
to the loss of the fidelity in Eq. (12). Given that the number of
Bell pairs is 4k and k is given as Eq. (B1), the dependence can
be shown as Fig. 12, where the values of δ and 
 are fixed
as some specific values. From Fig. 12, we can confirm that,
as we decrease ε, NBell increases. In our paper, we typically
use the value of ε = 0.001 (or ε = 0.0001), and so we need
NBell 	 109 (or NBell 	 1011) to implement our protocol.

APPENDIX C: UNCERTAINTY OF THE ESTIMATION

The goal of this Appendix is to derive the expression of the
uncertainty δωC (δωE) in Eq. (C13) [Eq. (C19)]. In our proto-
col, the standard quantum metrology explained as Appendix A
is implemented with the state preparation error and under the
effect of dephasing. So, in this case, the initial state |+〉 in
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step 1 of Appendix A is replaced by ρ(0) = I
2 + ∑

i=x,y,z
ri
2 σi

with the fidelity in Eq. (13). Also, the evolution of the state in
step 2 of Appendix A is described by the Hamiltonian H (t )
including the effect of dephasing in Eq. (1).

Let us start by explaining how to calculate the uncertainty
if we know the precise form of the initial state. Based on the
average value SM and the probability P of the outcome m = 1
for the σy measurement in Eq. (16), the qubit frequency ω can
be estimated as follows:

ω
(est)
M = SM − x(t )

ty(t )
, (C1)

where ω
(est)
M denotes the estimation of the qubit frequency ω

from the average value SM . The uncertainty δω of the estima-
tion is defined as the root-mean-squared error

δω ≡
√〈(

ω
(est)
M − ω

)2〉
(C2)

= 1

ty(t )

√
〈(SM − P)2〉, (C3)

where we substitute the estimation ω
(est)
M of Eq. (C1) and the

qubit frequency ω of Eq. (16) for the uncertainty δω. Since
the relation between the variance δ2P of the random variable
m and the variance of the average value SM is given as

δ2P = M 〈(SM − P)2〉 , (C4)

where δ2P = P(1 − P), we obtain the uncertainty δω of the
estimation

δω = 1

ty(t )

√
P(1 − P)

M
. (C5)

Next, let us explain how to derive the uncertainty δωC for
the client side. The client does not know the precise form of
the initial state. However, the client still can assume that the
initial state is very close to the ideal state |+〉 due to the high
fidelity guaranteed by the random-sampling test. So, we con-
sider a case that the client tries to estimate the qubit frequency
ω based on the assumption that the initial state is |+〉. Of
course, in this case, due to the slight deviation of the initial
state from |+〉, there will be systematic errors that cannot
be removed just by increasing the repetition number M. By
setting rx → 1 and ry → 0 for Eq. (16), the probability PC in
the client side for the σy measurement is given as follows:

PC = P
∣∣
rx→1, ry→0 (C6)

= xC + yC(t )ωt, (C7)

where

xC = 1

2
, yC(t ) = e−g(t )

2
. (C8)

By using the average value SM and the probability PC, the
qubit frequency is estimated as

ω
(est)
C,M = SM − xC

tyC(t )
. (C9)

Similarly to the above, the uncertainty of the client is defined
as the root-mean-squared error

δωC ≡
√〈(

ω
(est)
C,M − ω

)2〉
(C10)

= 1

t

√
〈(SM − P)2〉

yC(t )2
+

(
P − xC

yC(t )
− P − x(t )

y(t )

)2

(C11)

	 1

tyC(t )

√
x(t )[1 − x(t )]

M
+ [x(t ) − xC]2 (C12)

= 1

tyC(t )

√
x2

C

M
+

(
1 − 1

M

)
[x(t ) − xC]2, (C13)

where we substitute ω described by Eq. (16) in the first line,
and use 〈SM〉 = P in the second line. Also, by using Eq. (C4)
and dropping the term ωt in the third line, the uncertainty δωC

of the client is obtained as Eq. (C13), which is used in the
calculation of Eq. (20). Note that although the linear term of
ωt appears in the third line, the linear term can be neglected
as long as ωt is small. We discuss the detail of the linear term
in Appendix D.

Here, we derive the expression of the uncertainty δωE

of Eve. We assume that Eve knows the precise initial
state ρE(0) = I

2 + ∑
i=x,y,z

Ri
2 σi constrained by the fidelity of

Eq. (22) and Eve can remove the effect of the dephasing. The
probability PE of Eve for the σy measurement is calculated as
follows:

PE = Tr

[
e−iH0t/h̄ρE(0)eiH0t/h̄ 1 + σy

2

]
(C14)

	 xE + yEωt, (C15)

where we use ωt 
 1 in the second line. xE and yE are defined
as

xE = 1 + Ry

2
, yE = Rx

2
. (C16)

By using the probability PE and the average value SM , the
qubit frequency ω of Eve can be estimated as

ω
(est)
E,M = SM − xE

tyE
. (C17)

By repeating the calculation from Eq. (C2) to (C13), we obtain
the uncertainty δωE of Eve as follows:

δωE ≡
√〈(

ω
(est)
E,M − ω

)2〉
(C18)

	 1

tyE

√
xE(1 − xE)

M
, (C19)

where we use the probability PE in Eq. (C15) for ω. The
uncertainty δωE of Eve in Eq. (24) is evaluated based on the
expression of Eq. (C19).

APPENDIX D: LINEAR TERM OF ωt
IN UNCERTAINTY δωC

We discuss the linear term of ωt in the uncertainty δωC.
Although the higher order of ωt can be neglected due to the
weak magnetic field, the linear term of ωt should be remained
as Eq. (16). However, in this Appendix, we show that the
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FIG. 13. Contour plots of the uncertainty δω
(U )
C of Eq. (21) with ε = 0.001 for (a) the white noise in the range of M ∈ (1, 10 000) and

t/T2 ∈ (0.9, 2.0), and for (b) low-frequency noise in the range of M ∈ (1, 10 000) and t/T2 ∈ (0.7, 1.3). The gray lines denote the optimized
time tgreed of Eq. (30), which are plotted as the solid lines in Fig. 3.

contribution of the linear term to the uncertainty is negligible
in our protocol.

In order to investigate the contribution of the linear term
to the uncertainty, we remain the linear term of ωt in the
calculation of the uncertainty. Equation (C11) can be rewritten
as follows:

(2tyC(t )
√

MδωC)2 (D1)

= 4P(1 − P) + 4M

[
P − xC

− yC(t )

2z(t )
(−y(t ) +

√
y(t )2 + 4z(t )[P − x(t )])

]2

(D2)

	 1 + (M − 1)e−2g(t )

[
r2

y + 2
(

rx − M

M − 1

)
ryωt

]

+e−2g(t )
( − r2

x + r2
y + M

[
(rx − 1)2 − r2

y

])
ω2t2 (D3)

� 1 + 4(M − 1)e−2g(t )ε(1 − ε)

×
[

1 +
(

2ε + 1

M − 1

)
ωt√

ε(1 − ε)

+ −1 + 4ε[2 − M + 2ε(M − 1)]

4(M − 1)ε(1 − ε)
ω2t2

]
, (D4)
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FIG. 14. Contour plots of the uncertainty δω
(U )
C of Eq. (38) with ε = 0.0001 for (a) the white noise in the range of N ∈ (1, 10 000) and

t/T2 ∈ (0.5, 2.0), and for (b) low-frequency noise in the range of N ∈ (1, 10 000) and t/T2 ∈ (0.6, 1.4). The gray line denotes the optimized
time tgreed to minimize the uncertainty δω

(U )
C for (a) the white noise in Eq. (40) and for (b) the low-frequency noise in Eq. (41), which are

plotted as the solid lines in Fig. 6.
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FIG. 15. Contour plots of the ratio δω
(U )
C /δω

(L)
E of Eq. (39) with ε = 0.0001 for (a) the white noise in the range of N ∈ (1, 10 000) and

t/T2 ∈ (0.2, 2.0), and for (b) low-frequency noise in the range of N ∈ (1, 10 000) and t/T2 ∈ (0.2, 1.4). The gray line denotes the optimized
time tsafe of Eq. (42) to minimize the ratio δω

(U )
C /δω

(L)
E for (a) the white noise and for (b) the low-frequency noise, which are plotted as the

dashed lines in Fig. 6.

where the irrelevant factor is moved to the left-hand side. In
the second line, Eq. (C4) is used. In the third line, Eqs. (16)–
(18) and (C8) are used, and the third order of ωt is neglected.
In the fourth line, rx, ry, and rz are determined as follows:

rx = 1 − 2ε, ry = −2
√

ε(1 − ε), rz = 0, (D5)

where these parameters are chosen based on Eqs. (9) and
(13) to maximize the uncertainty of the client. So, as long as
(2ε + 1

M−1 ) ωt√
ε(1−ε)


 1 is satisfied for weak magnetic fields,
we can ignore the term of ωt . For example, the term of
(2ε + 1

M−1 )−1√ε(1 − ε) is around 10.5 (33.3) for ε = 0.001
(or 0.0001) and M = 1000 (or N = 10 000) where we choose
the typical parameters in our scheme. In this case, if the target
magnetic fields are weak to satisfy ωt 
 0.001, we can safely
ignore the term of ωt for the estimation of the uncertainty.
Since most of the practical magnetic field sensing aim to
detect weak magnetic fields, our assumption should be valid
for many realistic cases.

Moreover, we can also ignore the second order of ωt for the
following reason. We define δω

(U )
C 	 δω(0) + δω(1) + δω(2)

where δω(n) = �((ωt )n) for n = 0, 1, 2. Again, we consider
the case of the weak magnetic fields, and therefore ωt 

1 should be satisfied. This means that δω(0) � δω(1) and
δω(1) � δω(2) should be satisfied for ωt 
 1. So, we con-
clude that we can safely take an approximation of δω

(U )
C 	

δω(0) because δω(0) is much larger than δω(1) and δω(2).

APPENDIX E: CONTOUR PLOTS OF THE UNCERTAINTY

In this Appendix, we show the contour plots of the uncer-
tainty δω

(U )
C in terms of the interaction time t and the repetition

number M (or N) to investigate the effect of the deviation from
the optimized time tgreed on the uncertainty.

1. Slow initialization and readout

By using Eq. (21), in Fig. 13, we show the contour plot of
the uncertainty δω

(U )
C with ε = 0.001 for (a) the white noise

in the range of M ∈ (1, 10 000) and t/T2 ∈ (0.9, 2.0), and for
(b) the low-frequency noise in the range of M ∈ (1, 10 000)
and t/T2 ∈ (0.7, 1.3). Figure 13 shows that, as we increase
the repetition number M, the optimized time tgreed gradually
increases for both white noise and low-frequency noise. Small
fluctuations of the interaction time do not change the uncer-
tainty δω

(U )
C significantly. This means that a precise timing

control is not important for our protocol.

2. Fast initialization and readout

In Fig. 14, by the use of Eq. (38), we show the contour
plots of the uncertainty for (a) the white noise in the range
of N ∈ (1, 10 000) and t/T2 ∈ (0.5, 2.0) and for (b) the low-
frequency noise in the range of N ∈ (1, 10 000) and t/T2 ∈
(0.6, 1.4) with ε = 0.0001. The optimized time topt increases
against N both in the white noise and the low-frequency noise.
Similarly to Appendix E 1, δω(U )

C becomes less sensitive to the
small change of the interaction time t .

Also, since the interaction time t can be optimized for the
ratio δω

(U )
C /δω

(L)
E in the case of the fast initialization and read-

out of Eq. (29), we discuss the dependence of the ratio on N
and the interaction time t . In the left side of Fig. 15, we show
the contour plot of the ratio δω

(U )
C /δω

(L)
E of Eq. (39) for the

white noise with ε = 0.0001 in the range of N ∈ (1, 10 000)
and t/T2 ∈ (0.2, 2.0). Similarly, in the right side of Fig. 15,
we numerically calculate the ratio δω

(U )
C /δω

(L)
E of Eq. (39)

for the low-frequency noise with ε = 0.0001 in the range of
N ∈ (1, 10 000) and t/T2 ∈ (0.2, 1.4). The ratio δω

(U )
C /δω

(L)
E

similar to the uncertainty δω
(U )
C does not change significantly

for the small deviation from the optimized time tsafe.
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