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Quantum metrology is superior to classical metrology in parameter estimation. This is because quantum states
have coherence that, however, does not exist in classical states. Previous works were limited to the study of the
relationship between quantum Fisher information (QFI) and coherence of the initial probe state only for a specific
single-qubit parameter estimation process (e.g., a process described by a single-qubit spin angular momentum
operator Jz). Here, we consider a more general case and study the relationship between QFI and coherence of the
initial probe state for a single-qubit general parameter estimation process, which is described by a single-qubit
spin angular momentum operator J�n with a general unit vector �n. We find that the QFI is proportional to the square
of coherence of the initial probe state, when the single-qubit bases are eigenstates of the spin angular momentum
operator J�n describing the parametrization process. We also design and conduct a linear optical experiment to
support our theory. The experimental results are in good agreement with the theoretical ones. This work provides
an important guideline for enhancing the precision of parameter estimation.
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I. INTRODUCTION

Quantum metrology is essential to improve the estimation
precision of unknown physical parameters and consequently
crucial for the development of new technologies and funda-
mental advances [1–3]. Comparing with classical metrology,
quantum metrology has received widespread attention for its
high estimation precision [4]. This topic has been extensively
studied. In general, the whole estimation process can be di-
vided into three steps: preparation of the initial probe state
ρin; evolution of the initial probe state (described by a unitary
operator U (θ ) with an unknown parameter θ ); and detection
of the probe output state ρ(θ ). To estimate an unknown param-
eter θ , the above process is repeated Nm � 1 times, and the Nm

measurement outcomes are used to construct an optimal unbi-
ased estimator θ̂ , such as the maximum likelihood estimator or
the Bayesian estimator [5]. In classical parameter estimation
cases, Nm probes are employed to independently detect a pa-
rameter (Nm is the number of particles or modes, etc.), and the
best classical possible scaling is known as standard quantum
limit [6,7], whose error scale is 1/Nm. However, in quantum
parameter estimation cases, one can engineer an entangled
state of Nm particles as a quantum probe, and the precision
scaling can reach to 1/N2

m, which is called the Heisenberg limit
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[8–10]. When the limitation is reduced, it will lead to a more
precise estimation [11].

According to quantum Cramér-Rao inequality [12], the
reciprocal of quantum Fisher information (QFI) provides the
lower bound on the variance of the estimator θ , i.e., (�θ̂ )2 �
1/FQ, where �θ̂ is the standard deviation and FQ is the QFI.
Thus, a larger QFI means a higher precision of parameter esti-
mation. In order to reveal the essence of quantum metrology, it
is important and necessary to study the relationships between
QFI and observable quantities.

The coherent superposition of quantum states represents
one of the most fundamental features, which is the distinction
of quantum mechanics from the classical realm. This super-
position is called quantum coherence, which is an essential
ingredient in quantum states and plays important roles in
quantum computing, quantum communication, and quantum
metrology [13–15]. In 2014, Baumgratz et al. [15] established
a comprehensive framework of coherence quantification, and
the theory has become a method to explore new measures of
coherence. Subsequently, some methods have been proposed
to quantify quantum coherence, such as the relative entropy
[15,16], l1-norm measure [15,17], skew information [18–20],
fidelity based distance measure [21], trace distance [22], quan-
tum correlation [23,24], intrinsic randomness [25], robustness
of coherence [26], and so on.

Previous works have shown that QFI can be applied in
quantum coherence measure [27–29], and quantum coher-
ence can be used to enhance the precision of parameter
estimation owing to quantum coherence effects [20,30–32].
Moreover, the relationship between QFI and coherence has
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been investigated over the past years [33–36]. However, we
find that Refs. [33–36] studied the relationship between QFI
and quantum coherence of the initial probe state in dif-
ferent single-qubit systems, which was only for a specific
single-qubit parameter estimation process (e.g., a process de-
scribed by a single-qubit spin angular momentum operator Jz).
In addition, the investigation on the relationship between QFI
and coherence is only at the stage of theory up to today.

Motivated by the above, in this work, we will consider a
more general case, i.e., we will study the relationship between
QFI and coherence of the initial probe state for a general
parametrization process, which is described by a single-qubit
spin angular momentum operator J�n with a general unit vec-
tor �n. We find that the QFI is a square of coherence of the
initial probe state when the single-qubit bases are eigenstates
of the spin angular momentum operator J�n describing the
parametrization process. We also design and perform a linear
optical experiment to support our theory. The experimental
results are in good agreement with the theoretical ones. This
work provides an important guideline for enhancing the pre-
cision of parameter estimation.

This paper is organized as follows. In Sec. II, we briefly
introduce QFI and coherence. The quantitative relationship
between QFI and coherence will be studied and presented
in Sec. III. In Sec. IV, to support our theory, we design and
perform a linear optical experiment, which demonstrates the
relationship between QFI and coherence. A brief conclusion
is presented in Sec. V.

II. COHERENCE AND QUANTUM FISHER INFORMATION

In general, the variance of the parameter θ is limited by the
quantum Cramér-Rao bound [37,38]:

�θ̂ � �θQCB = 1√
NmFQ

, (1)

where Nm is the number of the repeated experiments, θ̂ is an
unbiased estimator (i.e., a paremeter to be estimated), and the
QFI for θ is defined as

FQ = Tr
[
ρ(θ )L2

θ

]
. (2)

Here, ρ(θ ) is the output state when the initial probe state
evolves under the parametrization, and Lθ is the so-called
symmetric logarithmic derivative, determined by the follow-
ing equation:

∂

∂θ
ρ(θ ) = 1

2
[ρ(θ )Lθ + Lθρ(θ )]. (3)

The FQ in Eq. (2) can be rewritten as [9,39,40]

FQ =
∑

i

(∂θ pi )2

pi
+ 2

∑
i �= j

(pi − p j )2

pi + p j
|〈ψi|∂θψ j〉|2, (4)

where {|ψi〉} are the eigenvectors of ρ(θ ) with {pi} being
the corresponding eigenvalues. When the parametrization is
described by the unitary operator U (θ ), the output state can
be written by

ρ(θ ) = U (θ )ρ[U (θ )]†, (5)

where ρ is an initial probe state, U (θ ) = e−iθĤ , and Ĥ is a
Hermitian Hamiltonian for the parametrization. Because the
eigenvalues of ρ and ρ(θ ) are the same, Eq. (4) can be further
written as [41–43]

FQ(ρ, Ĥ ) = 2
∑
i �= j

(pi − p j )2

pi + p j
|〈φi|Ĥ |φ j〉|2, (6)

where {|φi〉} and {pi} are the eigenvectors and the eigenvalues
of ρ, respectively. When the initial probe state is a pure state,
Eq. (6) becomes [41–43]:

FQ(ρ, Ĥ ) = 4(〈Ĥ2〉 − 〈Ĥ〉2). (7)

In the present work, we consider a single-qubit
parametrization process where the qubit acts as a probe. For a
single-qubit system, a generic Hamiltonian characterizing the
parametrization can be written as

Ĥ = �J�n, (8)

where the � denotes an energy scale and the J�n is a pseudospin
angular momentum operator, given by

J�n =
∑

α=x,y,z

1

2
nασα = 1

2
�n · �σ . (9)

Here, σα (α = x, y, z) are the Pauli matrices and �n =
(nx, ny, nz ) is a direction unit vector. After replacing Ĥ with
�J�n, Eq. (6) is simplified as

FQ(ρ, Ĥ ) = �2FQ(ρ, J�n), (10)

with

FQ(ρ, J�n) = 2
∑
i �= j

(pi − p j )2

pi + p j
|〈φi|J�n|φ j〉|2. (11)

We now introduce the measure of coherence for general
bases. Generally speaking, coherence measure includes two
parts, i.e., quantum state and measure basis. Baumgaratz et al.
defined a coherence measure in terms of the norm of off-
diagonal elements [15]. Consider an initial probe state ρ and a
basis K := {|i〉}. The coherence of this state is defined as [15]

CK (ρ) =
∑
i �= j

|〈i|ρ| j〉|. (12)

In a single-qubit system, Mani and Karimipour [17] de-
fined a simple coherence measure based on Eq. (12). For an
arbitrary quantum state of a single qubit, the density operator
can be expressed as ρ = (I + �r · �σ )/2, where �r is Bloch vec-
tor of ρ. If one chooses the basis of the qubit as the eigenstates
of J�n, the coherence of the state can be written as [17]

C�n(ρ) = r
√

1 − (�er · �n)2, (13)

where �er is the unit vector �r
r . To see this more clearly, let

us consider several examples. For �n = (0, 0, 1), �n = (1, 0, 0),
and �n = (0, 1, 0), we have J�n = Jz, J�n = Jx, and J�n = Jy, re-
spectively. Therefore, for these three cases, the base involved
in Eq. (13) is chosen as eigenstates of J�n = Jz = σz/2, J�n =
Jx = σx/2, and J�n = Jy = σy/2, respectively.
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FIG. 1. Experimental setup. Blue area: generation of single-photon source. Yellow area: preparation of the initial probe state. Orange area:
parametrization process of the probe state. Green area: measurement of output states. Here, the optical elements HWP, QWP, PBS, and BBO
are acronyms of half-wave plate, quarter-wave plate, polarization beam splitter, and β-barium borate, respectively.

III. RELATIONSHIP BETWEEN COHERENCE AND
QUANTUM FISHER INFORMATION

In this section, we will prove the relationship between
QFI and coherence of the initial probe state for a general
parametrization process. Generally, an arbitrary single-qubit
state can be written in the Bloch sphere as

ρ = 1
2 (I + �r · �σ ), (14)

where �r = (rx, ry, rz ) is the Bloch vector. Based on the spher-
ical coordinates, we assume

rx = r sin ϕ cos φ, ry = r sin ϕ sin φ, rz = r cos ϕ.

(15)

Based on Eq. (6), one can easily find that when the initial
probe state is Eq. (14), the QFI in the parametrization is given
by

FQ(ρ, Ĥ ) = 4(p1 − p2)2|〈φ1|Ĥ |φ2〉|2

= 4(p1 − p2)2|〈φ1|�J�n|φ2〉|2
= FQ(ρ, J�n)�2, (16)

with

FQ(ρ, J�n) = 4(p1 − p2)2|〈φ1|J�n|φ2〉|2. (17)

After a derivation (see Appendix A), we obtain from Eq. (17)

FQ(ρ, J�n) = r2[1 − (�er · �n)2]. (18)

According to Eq. (13), one can see that Eq. (18) can be further
written as

FQ(ρ, J�n) = C2
�n (ρ). (19)

Substituting Eq. (19) into Eq. (16), we have

FQ(ρ, Ĥ ) = (C�n)2�2, (20)

which shows that the QFI is proportional to the square of
coherence of the initial probe state when the bases are chosen
as eigenstates of the spin angular momentum operator J�n with
a general unit vector �n, which describes the parametrization
process in a single-qubit system.

FIG. 2. The QFI varies with the estimated parameter θ in the case when the initial probe state (|H〉 + |V 〉)/
√

2 evolves under different
parametrization processes. (a), (b), and (c) correspond to the parametrization processes Ux , Uy, and Uz, respectively. Solid curves denote
theoretical values while squares are experimental data.
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FIG. 3. The QFI varies with the estimated parameter θ in the
case when the initial probe state 1/

√
2(|H〉 + |V 〉) evolves under

different parametrization processes. (a) and (b) correspond to the
parametrization processes U1 and U2, respectively. Solid curves de-
note theoretical values while squares are experimental data.

IV. EXPERIMENTAL DEMONSTRATION

In the previous section, we have derived Eq. (20), which
gives the relationship between QFI and coherence of the initial
probe state for the general parametrization process. We now
design a linear optical experiment to verify this relationship.
For simplicity, we set � = 1, i.e., Eq. (20) reduces to Eq. (19).

A. Experimental setup

As depicted in Fig. 1, the experimental setup includes
four parts: generation of single-photon source, preparation
of the initial probe state, parametrization process, and state
detection. The single-photon source is generated through a
spontaneous parametric down-conversion process by pumping
a nonlinear β-barium-borate (BBO) crystal with a 404-nm
pump laser via type-II phase matching. After photons pass
through the 10-nm interference filter (IF), one photon serves
as a trigger while the other signal photon is used as the
probe photon. Because of the disturbance of the single-mode
fiber to polarization, the probe photon needs to pass through
the sandwich structure (QWP-HWP-QWP) to eliminate this
influence, and then goes through various optical elements.
Here, QWP represents “quarter-wave plate” while HWP rep-
resents “half-wave plate.” An arbitrary initial probe state can
be prepared by a combination of two QWPs and one HWP.

In the experiment, we consider three different initial probe
states |H〉, (|H〉 + |V 〉)/

√
2, and (

√
3|H〉 + |V 〉)/2. The three

states are prepared by using a HWP with angles of 0◦, 22.5◦,
and 15◦, respectively. Here |H〉 and |V 〉 denote the horizon-
tal and vertical polarization states, respectively. We choose
three kinds of different parametrization processes, which are
described by the following unitary operators [44]:

Ux(θ ) = e−iJxθ , (21)

Uy(θ ) = e−iJyθ , (22)

Uz(θ ) = e−iJzθ . (23)

To investigate the sensitivity of the output state to the esti-
mated parameter θ , different parameters θ are applied in the
parametrization process. The unitary operators in Eqs. (21)–
(23) are implemented using a combination of QWPs and
HWPs as follows:

Ux(θ ) = RQWP(0◦)RHWP(π/2 − θ/4)RQWP(0◦), (24)

Uy(θ ) = RHWP

(
θ

4

)
RHWP(0◦), (25)

Uz(θ ) = RQWP(45◦)RHWP

(
θ + π

4

)
RQWP(45◦). (26)

For the details on Eqs. (24)–(26), see Appendix B, where
RHWP and RQWP represent unitary transformations of HWP
and QWP. In addition, the linear superposition of Jx, Jy,
and Jz has been studied for the following two cases: �n1 =
(1/2, 1/2,

√
1/2) and �n2 = (

√
1/3,

√
1/3,

√
1/3). The

corresponding unitary operators can be expressed as follows:

U1 = e−iJ�n1 θ , (27)

U2 = e−iJ�n2 θ , (28)

where

J�n1 = 1

2

(
1

2
σx + 1

2
σy + 1√

2
σz

)
, (29)

J�n2 = 1

2

(
1√
3
σx + 1√

3
σy + 1√

3
σz

)
. (30)

FIG. 4. The QFI varies with the estimated parameter θ in the case when different initial probe states evolve under the same parametrization
process Uz. (a), (b), and (c) correspond to the initial probe states |H〉, (|H〉 + |V 〉)/

√
2, and (

√
3|H〉 + |V 〉)/2, respectively. Solid curves denote

theoretical values while squares are experimental data.
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TABLE I. The experimental values of QFI and the theoretical
values of coherence when the initial probe state is (|H〉 + |V 〉)/

√
2.

Cprobe represents coherence.

Parametrization QFIexp Cprobe C2
probe

Ux 0.012 ± 0.010 0 0
Uy 0.997 ± 0.002 1 1
Uz 0.996 ± 0.004 1 1

In an optical system, the U1 and U2 can be implemented by
the combinations of QWP-HWP-QWP.

Lastly, the output state is measured through the co-
incidence count of photons in four measurement bases
{|H〉, |V 〉, |R〉 = (|H〉 − i|V 〉)/

√
2, |D〉 = (|H〉 + |V 〉)/

√
2}.

The four measurement bases are implemented by a combi-
nation of QWP, HWP, and PBS. Here, PBS is the acronym
for polarization beam splitter. To realize these four bases, the
angles of QWP and HWP are chosen as (0◦, 0◦), (0◦, 45◦),
(0◦, 22.5◦), and (45◦, 22.5◦), respectively. The experimental
QFI can be calculated from the measurement results (see
Appendix C for details).

B. Experimental results and analyses

Next, we will experimentally study the relationship be-
tween QFI and coherence of the initial probe state during
the parametrization process. Our study includes two cases:
(1) the same initial probe state but different parametrization
processes (Figs. 2 and 3) and (2) different initial probe states
but the same parametrization process (Fig. 4).

For the first case, we choose the initial probe state (|H〉 +
|V 〉)/

√
2 and consider three different parametrization pro-

cesses Ux, Uy, and Uz. As mentioned previously, the spin
angular momentum operators, associated with these three
parametrization processes, are Jx, Jy, and Jz. Figures 2(a),
2(b), and 2(c) show the dynamics of QFIs with the parameter θ

for the three parametrization processes. Meanwhile, Figs. 3(a)
and 3(b) show the dynamics of QFIs with the parameter θ for
the two parametrization processes.

From Figs. 2(a), 2(b), and 2(c), we find that for the three
parametrization processes Ux, Uy, and Uz, the average values
of QFIs are equal to 0.012, 0.997, and 0.996, with deviations
0.010, 0.002, and 0.004, respectively. Meanwhile, when the
initial probe state considered here is expanded in terms of
the eigenstates of the spin angular momentum operators Jx,
Jy, and Jz, the coherence of the initial probe state is equal to
0, 1, and 1, respectively. Thus, for the three parametrization
processes Ux, Uy, and Uz, the relationship between QFI and
the coherence of the initial probe state fits well with the

TABLE II. The experimental values of QFI and the theoretical
values of coherence when the initial probe state is (|H〉 + |V 〉)/

√
2.

Cprobe represents coherence.

Parametrization QFIexp Cprobe C2
probe

U1 0.7396 ± 0.0164
√

3
2

3
4

U2 0.6641 ± 0.0206
√

6
3

2
3

TABLE III. The experimental values of QFI and the theoretical
values of coherence for the parametrization process Uz.

Initial probe states QFIexp Cprobe C2
probe

|H〉 0.007 ± 0.003 0 0
(|H〉 + |V 〉)/

√
2 0.996 ± 0.004 1 1

(
√

3|H〉 + |V 〉)/2 0.759 ± 0.016
√

3/2 0.75

relationship described by Eq. (20) (with � = 1 set above).
See Table I. From Figs. 3(a) and 3(b), we find that for the two
parametrization processes U1 and U2, the average values of
QFIs are equal to 0.7396 and 0.6641, with deviations 0.0164
and 0.0206, respectively. Meanwhile, when the initial probe
state considered here is expanded in terms of the eigenstates
of the spin angular momentum operators J�n1 and J�n2 , the

coherence of the initial probe state is equal to
√

3
2 and

√
6

3 ,
respectively. Thus, for the two parametrization processes U1

and U2, the relationship between QFI and the coherence of the
initial probe state basically fits with the relationship described
by Eq. (20) (with � = 1 set above). See Table II.

For the second case, we choose three different initial
probe states |H〉, (|H〉 + |V 〉)/

√
2, and (

√
3|H〉 + |V 〉)/2, and

consider the same parametrization process described by the
operator Uz. Figures 4(a)–4(c) show the dynamics of QFIs
with the parameter θ for the three initial probe states under
the same parametrization process Uz. From Fig. 4, the experi-
mental average values of QFI for the three initial probe states
are 0.007, 0.996, and 0.759, with deviations 0.003, 0.004,
and 0.016, respectively. Meanwhile, a simple calculation finds
that when the three initial probe states are expanded in the
eigenstates |H〉 and |V 〉 of Jz, their coherences are 0, 1, and√

3/2. The experimental values of QFI and the theoretical
values of coherences are listed in Table III.

From Table III, we find that the experimental value of QFI
approximately equals the square of the coherence of the corre-
sponding initial probe state within the allowable error range.
This indicates that the result obtained here is in agreement
with Eq. (20).

According to the results obtained for the two cases above,
it can be concluded that within the allowable error range, the
experimental results are consistent with the theoretical results
of Eq. (20). Therefore, we have experimentally verified that
the QFI and the coherence of the initial probe state under
the eigenstate base of J�n has a quantitative relationship as
described in Eq. (20).

In the experiment, we take three samples from each test
point, but the fluctuation between the three samples itself is
small and the experimental data volatility is not obvious in
the graphs. Thus, we directly take the average in the data
processing, without drawing the error bars in the graphs for
simplicity.

V. CONCLUSION

We have studied the relationship between QFI and co-
herence of the initial probe state for a single-qubit general
parameter estimation process. We found that this relationship
can be expressed as the formula of Eq. (20), which shows
that the QFI is proportional to the square of coherence of the
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initial probe state when the bases are eigenstates of a spin
angular momentum operator J�n describing the parametriza-
tion process. This work is a significant generalization of
the previous works which only studied the relationship be-
tween QFI and coherence of the initial probe state for a
specific parametrization process. To support our theory, we
have designed and performed a linear optical experiment. The
experimental results fit well with the theoretical results. Our
experiment demonstrated the relationship between QFI and
coherence of the initial probe state. The results obtained in this
work provide a profound insight on the enhancement of the
precision of parameter estimation and may have applications
in quantum information science and technology.
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APPENDIX A: DERIVATION OF EQ. (18)

The eigenvalues and eigenvectors of ρ [Eq. (14)] can be
written as

p1 = 1 + r

2
, p2 = 1 − r

2
, (A1)

|φ〉1 =
(

cos ϕ

2
sin ϕ

2 eiφ

)
, |φ〉2 =

(
sin ϕ

2− cos ϕ

2 eiφ

)
. (A2)

According to Eqs. (9) and (A2), one has

〈φ1|J�n|φ2〉 = 1

2

(
cos

ϕ

2
sin

ϕ

2
e−iφ

)
(nxσx + nyσy + nzσz )

(
sin ϕ

2− cos ϕ

2 eiφ

)

= 1

2

(
cos

ϕ

2
sin

ϕ

2
e−iφ

)(
1 + nz nx − iny

nx − iny nx − iny

)(
sin ϕ

2− cos ϕ

2 eiφ

)

= 1

2

[
(1 + nz ) cos

ϕ

2
sin

ϕ

2
+ (nx + iny) sin2 ϕ

2
e−iφ − (nx − iny) cos2 ϕ

2
eiφ − (1 − nz ) cos

ϕ

2
sin

ϕ

2

]

= 1

2

[
2nz cos

ϕ

2
sin

ϕ

2
+ sin2 ϕ

2
(nxcosφ − inx sin φ + iny cos φ + ny sin φ)

− cos2 ϕ

2
(nx cos φ + inx sin φ − iny cos φ + ny sin φ)

]

= 1

2
[nz sin ϕ − nx cos φ cos ϕ − ny cos ϕ sin φ + i(−nx sin φ + ny cos φ)]. (A3)

After inserting Eqs. (A1) and (A3) into Eq. (17), we obtain

FQ(ρ, J�n) = 4(p1 − p2)2|〈φ1|J�n|φ2〉|2
= r2

[
(nz sin ϕ − nx cos φ cos ϕ − ny cos ϕ sin φ)2 + (−nx sin φ + ny cos φ)2

]
= r2[n2

z sin2 ϕ + n2
x cos2 φ cos2 ϕ + n2

y cos2 ϕ sin2 φ − 2nxnz sin ϕ cos ϕ cos φ − 2nynz sin ϕ cos ϕ sin φ

+2nxny cos2 ϕ cos φ sin φ + n2
x sin2 φ + y2 cos φ − 2nxny sin φ cos φ

]
= r2[(cos2 φ cos2 ϕ + sin2 φ)n2

x + (cos2 φ + cos2 ϕ sin2 φ)n2
y + n2

z sin2 ϕ

+2(cos2 ϕ cos φ sin φ − sin φ cos φ)nxny − 2 sin ϕ cos ϕ cos φnxnz − 2 sin ϕ cos ϕ sin φnynz
]

= r2
[
(1 − sin2 ϕ cos2 φ)n2

x + (1 − sin2 ϕ sin2 φ)n2
y + (1 − cos2 ϕ)n2

z

−2 sin2 ϕ cos φ sin φnxny − 2 sin ϕ cos ϕ cos φnxnz − 2 sin ϕ cos ϕ sin φnynz
]

= r2
[
n2

x + n2
y + n2

z − (sin ϕ cos φnx + sin ϕ sin φny + cos ϕnz )2
]

= r2[1 − (�er · �n)2], (A4)

which is Eq. (18) in the main text.

APPENDIX B: DERIVATION OF EQS. (24)–(26)

In the main text, the parametrization processes are Ux, Uy,
and Uz, respectively. They are described by

Ux(θ ) = e−iJxθ ,

Uy(θ ) = e−iJyθ ,

Uz(θ ) = e−iJzθ , (B1)

with

Jx = 1
2σx, Jy = 1

2σy, Jz = 1
2σz. (B2)

Substituting Eq. (B2) into Eq. (B1), the unitary operators in
Eq. (B1) take the following matrices:

Ux(θ ) =
(

cos θ
2 −i sin θ

2−i sin θ
2 cos θ

2

)
, (B3)

Uy(θ ) =
(

cos θ
2 − sin θ

2
sin θ

2 cos θ
2

)
, (B4)
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Uz(θ ) =
(

e−iθ/2 0
0 eiθ/2

)
. (B5)

Meanwhile, the unitary transformations, performed through
QWP and HWP, are described by

RQWP(α) =
(

cos2 α + i sin2 α sin α cos α(1 − i)
sin α cos α(1 − i) sin2 α + i cos2 α

)
, (B6)

RHWP(β ) =
(

cos 2β sin 2β

sin 2β − cos 2β

)
. (B7)

According to Eqs. (B6) and (B7), we have

RQWP(0◦) =
(

1 0
0 i

)
, (B8)

RQWP(45◦) = 1√
2

(
i 1
1 i

)
, (B9)

RHWP(β ) =
(

cos 2β sin 2β

sin 2β − cos 2β

)
. (B10)

Thus, we obtain

RQWP(0◦)RHWP(β )RQWP(0◦) =
(

cos 2β i sin 2β

i sin 2β cos 2β

)
,

(B11)

RQWP(45◦)RHWP(β )RQWP(45◦) =
(

e(π−2β )i 0
0 e2βi

)
,

(B12)

RHWP(β )RHWP(0◦) =
(

cos 2β − sin 2β

sin 2β cos 2β

)
. (B13)

Comparing Eq. (B11) with Eq. (B3), we have

Ux(θ ) = RQWP(0◦)RHWP(π/2 − θ/4)RQWP(0◦). (B14)

Next, comparing Eq. (B13) with Eq. (B4), we obtain

Uy(θ ) = RHWP

(
θ

4

)
RHWP(0◦). (B15)

Last, by comparing Eq. (B12) with Eq. (B5), it is easy to find

Uz(θ ) = RQWP(45◦)RHWP

(
θ + π

4

)
RQWP(45◦). (B16)

Equations (B14)–(B16) here are exactly Eqs. (24)–(26) in the
main text.

Note that the functions of both the operators U and eiθU
are identical. This is because the states U |ψ〉 and eiθU |ψ〉 are
the same due to the principles of quantum mechanics. Thus,
the overall phases in Eqs. (B8)–(B16) are neglected.

APPENDIX C: THE EXPERIMENTAL VALUE OF QFI

The QFI can be calculated via Eq. (4) in the main text. The
parametrization process is governed by Uθ = e−iĤθ , and Ĥ is
a Hermitian Hamiltonian for the parametrization. Thus, we
have

U (θ ) = e−iĤθ . (C1)
Suppose the initial probe state is ρ. Thus, we have

ρ(θ ) = U (θ )ρ[U (θ )]†. (C2)

In general, a quantum state can be expressed as

ρ =
∑

pi|ψi〉〈ψi|. (C3)

Based on Eqs. (C1)–(C3), we have

ρ(θ ) =
∑

pi|ψi(θ )〉〈ψi(θ )|, (C4)

where

|ψi(θ )〉 = U (θ )|ψi〉. (C5)

Thus,

∂θ pi = 0, (C6)

|∂θψi〉 = −iĤ |ψi(θ )〉. (C7)

Substituting Eqs. (C6) and (C7) into Eq. (4) of the main text,
the QFI can be expressed as

FQ = 2
∑
i �= j

(pi − p j )2

pi + p j
|〈ψi(θ )|Ĥ |ψ j (θ )〉|2. (C8)

When the probe quantum state is a single-qubit pure state and
the Hermite Hamiltonian for the parametrization is a single-
qubit spin angular momentum operator J�n with a general unit
vector �n, Eq. (C8) can be expressed as

FQ(θ ) = 4
(
Tr

[
ρ(θ )J2

�n
] − {Tr[ρ(θ )J�n]}2). (C9)

Equation (C9) is used to calculate the experimental value of
the QFI in this work.
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