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Retrieval of single photons from solid-state quantum transducers
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Quantum networks using photonic channels require control of the interactions between the photons, carrying
the information, and the elements comprising the nodes. In this work we analyze theoretically the spectral
properties of an optical photon emitted by a solid-state quantum memory, which acts as a converter of a
photon absorbed in another frequency range. We determine explicitly the expression connecting the stored
and retrieved excitation taking into account possible mode and phase mismatch of the experimental setup. The
expression we obtain describes the output field as a function of the input field for a transducer working over a
wide range of frequencies, from optical-to-optical frequencies to microwave-to-optical frequencies. We apply
this result to analyze the photon spectrum and the retrieval probability as a function of the optical depth for
microwave-to-optical transduction. In the absence of losses, the efficiency of the solid-state quantum transducer
is intrinsically determined by the capability of designing the retrieval process as the time reversal of the storage
dynamics.
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I. INTRODUCTION

Control of light-matter interactions is at the core of quan-
tum technological applications [1]. Its realization requires
detailed understanding of photon absorption and emission
processes in their microscopic details. This knowledge is a
prerequisite for the implementation of quantum light sources
for quantum sensors [2,3] and for the realization of protocols
for quantum computation [4,5] and quantum communica-
tion [6–11]. Furthermore, control of the photon shape and
frequency is essential for hybrid quantum networks, com-
bining elements which work optimally in different frequency
ranges [6,12–14].

In quantum networks, information is stored in stable quan-
tum mechanical excitations, which constitute the quantum
memory [15]. In quantum memories for photons, for in-
stance, the excitations can be the electronic transition of a
single emitter [14,16–18] or the spin wave of an ensemble of
emitters [16,19–22]. Among several realizations, solid-state
quantum memories such as ensembles of nitrogen vacancies
in bulk diamond [16] and rare-earth ion-doped crystals [22]
naturally provide large scattering cross sections and stable
transitions [23–25]. Rare-earth ion-doped crystals, moreover,
can have level structures that allow one to implement quan-
tum transducers for single photons, enabling the transfer of
information between different frequency ranges by means of
appropriate storage and retrieval protocols [26–30] acting on
different transitions. For storage and retrieval on the same
transition, the optimal memory efficiency is typically achieved
by having the retrieval process being the time reverse of
the storage dynamics [31]. Photon storage followed by re-

trieval on a different internal transition, however, generally
implies that the retrieval process cannot be cast in terms of the
time-reversed storage dynamics. Moreover, the level structure
might not warrant the optimal conditions for realizing the
individual write or read protocols [24,31–34] such as that
incident photon and control pulses might have different wave
numbers and group velocities.

In this work we analyze theoretically the dynamics of
retrieval of single photons emitted by a solid-state quantum
memory as a function of the stored excitation and of the mem-
ory properties. In particular, we focus on questions relevant
for quantum transducers employing different transitions in the
emitters. The setup we consider is illustrated in Fig. 1. As
opposed to previous studies, our analysis furthermore includes
the effect of different group velocities and wave numbers
between the photon and the read or write pulses. We finally
analyze the efficiency of a solid-state quantum memory acting
as a transducer from microwave to optical frequencies as in
the protocols of Refs. [26,27].

This paper is organized as follows. In Sec. II we review the
basic equations describing the dynamics of a single photon
which propagates in a solid-state quantum memory and deter-
mine the general solution. In Sec. III we derive the equations
which relate the spectrum of the emitted photon with the
spectrum of the input photon for a generic distribution of
the emitters within the bulk material. In Sec. IV we analyze
the spectrum of a retrieved optical photon when the stored
excitation is in the microwave regime. A summary is given in
Sec. V. The Appendixes provide details of the model of Sec. II
and further details of the calculations presented in Sec. III.
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FIG. 1. Single-photon frequency conversion with a solid-state
quantum memory. Wave mixing at the single-photon level is enabled
by the emitters’ internal level structure. (a) The medium consists
of quantum emitters which interact with quantum fields in differ-
ent frequency ranges. Here L denotes the medium’s length along
the direction of photon propagation. (b) The incident photon field
Ein couples to the transition |g〉 → |e〉 and the storage pulse �(S)

transfers the excitation into the stable state |r〉. (c) The excitation is
then transferred by the read pulse �(R) to a different state |e′〉, which
performs a transition to the state |g〉 by emitting the photon field Eout .
The frequency detunings �(S) and �(R) of the two transitions can be
correlated. Write and read pulses can propagate at different group
velocities than the incident and emitted photon, respectively.

II. SINGLE PHOTON PROPAGATING
IN A SOLID-STATE MEDIUM

In this section we review the basic equations describing
the interactions of the quantum field with an ensemble of
emitters and then derive their generic solutions. In our study
we start from the models and equations of Refs. [31,35].
We note that in those treatments the dynamics of stor-
age and retrieval are studied in a frame moving with the
write and read laser pulses, respectively. Here we instead
determine the expressions relating input field, stored exci-
tation, and output field in the reference frame of the bulk
embedding the emitters. This allows us to describe situ-
ations where different fields propagate at different group
velocities.

A. Equations for field and polarization

We consider a solid-state quantum memory consisting of
N quantum emitters embedded in a bulk. The relevant in-
ternal levels of the emitters form a four-level system as in
Fig. 1. The ground state |g〉 couples to the states |e〉 and
|e′〉 at transition frequencies ω

(S)
0 and ω

(R)
0 , respectively. The

transitions |g〉 → |e〉 and |g〉 → |e′〉 interact with photons
propagating in the z direction, while photon emission in other
directions in space is included in the decay rate γ (γ ′) of the
state |e〉 (|e′〉).

Below we introduce the basic equations describing the
interaction between the transitions |g〉 → |e〉 and |g〉 → |e′〉
with the quantum fields. For N � 1 we introduce the op-
erators P̂(S)(z, t ; �) and P̂(R)(z, t ; �) which describe the
dynamics of an excitation in |e〉 and |e′〉, respectively. These
operators give the polarization of the emitters at time t , de-
tuning �, and the position z on a coarse-grained spatial grid.
The equations of motion are derived assuming small density
fluctuations along z over a fraction of the resonant wavelength,
as we review in Appendix A. The polarization P̂( j)(z, t ; �)
couples to the operators Ê ( j)

f (z, t ) and Ê ( j)
b (z, t ) describing

the forward- and backward-propagating fields, respectively.
Their dynamics is given by coupled Heisenberg equations of
motion, which are linear in the operators. Since we will con-
sider normally ordered products, it is sufficient to consider the
equations of motion of the corresponding complex amplitudes
within the medium [31,35]. These are(

∂

∂t
+ c( j) ∂

∂z

)
E ( j)

f = iμ( j)
0 Le−ik( j)z

×
∫ +∞

−∞
d� G( j)(z,�)P( j)(z, t ; �),

(1a)(
∂

∂t
− c( j) ∂

∂z

)
E ( j)

b = iμ( j)
0 Leik( j)z

×
∫ +∞

−∞
d� G( j)(z,�)P( j)(z, t ; �),

(1b)

∂

∂t
P(S) = −

(γ

2
+ i�

)
P(S) + iμ(S)

0

× (
E (S)

f eik(S)z + E (S)
b e−ik(S)z

)
, (1c)

∂

∂t
P(R) = −

(
γ ′

2
+ i�

)
P(R) + iμ(R)

0

× (
E (R)

f eik(R)z + E (R)
b e−ik(R)z

)
, (1d)

with 0 < z < L (see Appendix A for details). Here c( j) is the
group velocity, k( j) > 0 is the wave number, and μ

( j)
0 is the

spectral bandwidth of the j transition of the quantum memory
( j = S, R) [32]

μ
( j)
0 = g( j)

√
N,

where g( j) is the (real-valued) coupling constant between a
single emitter and the resonant field modes and the factor√

N accounts for the collective scattering. In the equations we
have introduced the emitters’ distribution G( j)(z,�), which
is a function of their position along the z axis and of their
frequency shift � from the average frequency ω

( j)
0 . This

function may include both reversible and irreversible inho-
mogeneous broadening and is discussed in the following
section.

When analyzing storage (retrieval) we will also consider a
laser pulse coupling the state |e〉 (|e′〉) with a third stable level
|r〉 as in the protocols of Ref. [33]. We will assume that this
control field implements a π pulse, transferring the population
from |e〉 to |r〉 or from |r〉 to |e′〉, on a timescale in which the
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coupling with the photon field can be neglected. Therefore,
we can focus our analysis on Eqs. (1) and discuss separately
the dynamics induced by the control field (see also Ref. [35]).

B. Emitters’ frequency distributions

The distributions G( j)(z,�) are normalized according to
the relation ∫ L

0
dz

∫ +∞

−∞
d� G( j)(z,�) = 1, (2)

with z ∈ [0, L]. The generalized dependence of G( j)(z,�) on
both variables � and z allows one to describe all limiting cases
considered in the literature, such as the atomic frequency
comb [34], transverse controlled reversible inhomogeneous
broadening (CRIB) [33], and longitudinal CRIB [36].

For later convenience, we introduce the linear density of
emitters ñ(z), which is obtained by integrating the distribution
G over the frequencies:

ñ( j)(z) =
∫ +∞

−∞
d� G( j)(z,�). (3)

The density of emitters at frequency � is instead defined as

n( j)(�) =
∫ L

0
dz G( j)(z,�). (4)

Both densities are normalized to unity. A further useful quan-
tity is the maximal value of the density n( j)(�), which we
denote by n( j)

0 :

n( j)
0 = max

�
n( j)(�). (5)

This quantity does not necessarily coincide with the density
n( j)(0) at the central frequency.

In general, one distinguishes reversible from intrinsic in-
homogeneous broadening, where reversible inhomogeneous
broadening is introduced and later reversed to control the
emission process [31,33,34,36], while intrinsic inhomoge-
neous broadening is a medium’s property which limits the
performance of quantum memory protocols. These differ-
ent types of broadening can be included in this formalism
by writing � = �0 + �1, where �� follows the distribution
G( j)

� (z,��) and � = 0 (� = 1) labels the reversible (irre-
versible) broadening. Correspondingly,

G( j)(z,�) =
∫ +∞

−∞
d�0

∫ +∞

−∞
d�1

× G( j)
0 (z,�0)G( j)

1 (z,�1)δ(� − �0 − �1). (6)

In several works the overall effect of the intrinsic inhomo-
geneous broadening is phenomenologically described by an
effective dephasing rate [24,26]. In the present paper the
generic distribution G( j)(z,�) includes both contributions,
unless specified otherwise.

C. Formal solution

We analyze the solutions of Eqs. (1) by taking the Laplace
transform with respect to time. In the following we omit the
superscript ( j) for brevity and write γ = γ ′. Let X̄ (u) be
the Laplace transform of the function X (t ) such that X̄ (u) =

∫ ∞
t0

dt exp(−ut )X (t ). Here t0 is an initial time. The Laplace
transform of the polarization is given by the equation

P̄(z, u; �) = P(z, t0; �)e−ut0

u + i� + γ /2
+ iμ0

Ē f eikz + Ēbe−ikz

u + i� + γ /2
(7)

and is a function of the polarization P(z, t0; �) at t = t0 and of
the fields within the medium. The Laplace transforms of the
backward- and forward-propagating fields read

Ē f (z, u) = Ē f (0, u)e−Hf (z,u) +
∫ z

0

dz′

c
e−[Hf (z,u)−Hf (z′,u)]

×{E f (z′, t0) + iμ0LPG(z′, u)e−ikz′ }e−ut0 ,

(8)

Ēb(z, u) = Ēb(L, u)e−Hb(z,u) +
∫ L

z

dz′

c
e−[Hb(z,u)−Hb(z′,u)]

×{Eb(z′, t0) + iμ0LPG(z′, u)eikz′ }e−ut0 , (9)

where Ē f (0, u) and Ēb(L, u) are the Laplace components at the
medium edges and

PG(z, u) =
∫ +∞

−∞
d�

G(z,�)

u + i� + γ /2
P(z, t0; �). (10)

Here we have discarded the coupling between the fields E f

and Eb mediated by the polarization. This approximation re-
quires that the coherence length of the incident photon inside
the medium is much longer than the photon’s wavelength so
that the emitters’ distribution varies slowly on the scale of a
wavelength. We have also introduced the definitions

Hb(z, u) = u(L − z)

c
+ dh(z, u), (11)

with

h(z, u) = 1

2πn0

∫ L

z
dz′

∫ +∞

−∞
d�

G(z′,�)

u + i� + γ /2
(12)

and Hf (z, u) = Hb(0, u) − Hb(z, u). These functions depend
on the dimensionless parameter

d = 2πμ2
0n0

c
L, (13)

which we denote as optical depth. The parameter d determines
the attenuation of an incoming field that propagates through
the medium (see Sec. III A 2). This definition is convenient
when the broadening is larger than the damping γ , as we as-
sume in this work, and it matches the standard definition of the
experimentally observed optical depth (i.e., d (S) corresponds
to 2d ′ in Ref. [37]). For a narrow distribution, however, the
expression in Eq. (13) does not correspond to the observed
optical depth.

III. STORAGE AND RETRIEVAL OF A SINGLE PHOTON

In this section we analyze the dynamics and efficiency of
photon storage and retrieval using Eqs. (7)–(9). Storage and
retrieval are here implemented by means of the fast protocol
of Refs. [33,35], where population is transferred between the
stable ground state |r〉 and the excited states |e〉 and |e′〉 by
means of fast resonant pulses.
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A. Storage

We consider a photon wave packet which propagates along
the negative direction of the z axis. In the following, we denote
the emitters’ distribution by G(S)(z,�) and use the superscript
(S) to indicate the storage dynamics. In this model the input
photon is described by a complex field Ein(t ) at the posi-
tion z = L of the medium and propagating in the backward
direction

E (S)
b (L, t ) = Ein(t )

for t � t0, while at t = t0 fields and polarization vanish inside
the medium. The Laplace component of the backward field is
given by

Ē (S)
b (z, u) = Ēin(u)e−H (S)

b (z,u), (14)

where Ēin(u) is the Laplace transform of the input field. The
Laplace component of the polarization then reads

P̄(S)(z, u; �) = iμ(S)
0

Ē (S)
b (z, u)e−ik(S)z

u + i� + γ /2
. (15)

The polarization at the instant of time tS > t0 is the inverse
Laplace transform of Eq. (15). We determine it using Eq. (14)
in Eq. (15) and making the reasonable assumption that the dis-
tribution G(S)(z,�) identically vanishes for |�| > �max > 0,
i.e., G(S)(z,�) is different from zero only in the finite fre-
quency interval [−�max,�max] for some maximum detuning
�max. This allows us to perform the inverse Laplace transform
of Eq. (15):

P(S)(z, tS; �) = e−ik(S)z
∫ tS

t0

dτ F (S)(z, tS − τ ; �)Ein(τ ). (16)

The polarization is thus the convolution integral of the input
field with the function F (S). The function F (S) in turn de-
scribes the response of the medium and is given by the integral

F (S)(z, t ; �) = μ
(S)
0

2π

∫
C

du
eut e−H (S)

b (z,u)

u + i� + γ /2
, (17)

where C is the path in the complex plane along the Bromwich
contour. We remark that F (S)(z, t ; �) vanishes for t < (L −
z)/c(S), consistent with causality arguments.

1. Fast storage

Perfect storage is achieved when the backward field is
completely mapped onto the polarization. A consequence is
that at a given instant of time the field inside the medium must
vanish. Following the fast protocol of Ref. [35], at this instant
of time a fast control pulse transfers the excitation to a third,
metastable level |r〉. Let S(z, t ; �) denote the corresponding
coarse-grained spin wave and k′(S) be the wave number of
the transition |e〉 → |r〉 at the central frequency. Then the
polarization in Eq. (16) is mapped into the spin wave if the
pulse area is π and the pulse duration is much smaller than the
temporal width of the photon. The resulting spin wave reads
(see Appendix B for details)

S(z, t0(z)+; �) = −ieik′(S)zP(S)(z, t0(z); �), (18)

where t0(z) = t0 + δt + (L − z)/c′(S), δt is the time delay of
the laser control pulse at z = L, and c′(S) is the group velocity

in the corresponding frequency range. We note here that the
classical control field may have, e.g., a different polarization
than the quantum field. This means that if light is guided by an
asymmetric waveguide of sufficiently small size, the quantum
and control fields can have substantially different velocities in
the waveguide. In the above expression we have assumed that
the transfer is perfect and instantaneous over the timescale of
the photon dynamics. If this transfer is not optimal, some pop-
ulation will remain in the state |e〉 and will be lost by damping.

We write the spin wave as a function of the incident field
using Eq. (16) in Eq. (18),

S(z, t0(z)+; �) = −i
μ

(S)
0

2π
eiδk(S)z

×
∫

C
du

eu(t0+δt )eu(L−z)/c(S)
eff e−d (S)h(S) (z,u)

u+ i�+ γ /2
Ēin(u),

(19)

with δk( j) = k′( j) − k( j). The parameter c( j)
eff is an effective

group velocity, defined as

1

c( j)
eff

= 1

c′( j)
− 1

c( j)
, (20)

that can take both positive and negative values.

2. Transmitted field

Perfect storage implies that the field is absorbed by the
medium, and thus the intensity at the opposite edge of the
medium must vanish. In order to determine the intensity I0

at z = 0, we note that the Laplace component of the field
corresponds to the Fourier component, namely,

Ē (S)
b (z, u)|u=−iω =

√
2π Ẽ (S)

b (z, ω),

where Ẽ (S)
b (z, ω) is the field Fourier component at position z.

Therefore, the intensity I0 at z = 0 takes the form

I0 =
∫ +∞

−∞
dωI (ω),

where I (ω) = |Ẽ (S)
b (0, ω)|2 is the spectral component. Using

Eq. (14) we find

I (ω) = |Ẽin(ω)|2

× exp

(
−d (S)

∫ +∞

−∞

d�

2π

γ n(S)(�)/n(S)
0

(� − ω)2 + (γ /2)2

)
,

(21)

with d (S) being the optical depth of Eq. (13). The field
vanishes at the medium edge z = 0 when I (ω) ≈ 0 for all
frequency components. As seen from Eq. (21), in a broadened
medium this leads to the inequality d (S)n(S)(ω)/n(S)

0 � 1 for
the frequencies ω of the photon wave packet. In essence this
expresses that for a broadened medium an efficient memory
can only be attained if there is a sufficiently large optical depth
at the frequency of the incoming pulse. (We note that this
is different for a homogeneously broadened medium where
only the resonant optical depth needs to be large [31].) Fur-
thermore, Eq. (17) enables one to identify the spatial size of
the region where the photon is stored in the medium. For a
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uniform distribution G(S), the size is of the order of L/d (S). For
d (S) � 1 the photon is hence stored within a relatively small
region close to the edge where it has entered the medium. The
fraction of radiation that is lost by decay is of the order of
γ Tcoh, where Tcoh is the photon’s coherence time. In this work
we consider photons with relatively large spectral width δω,
and therefore γ Tcoh 
 1.

B. Retrieval

We now assume that at a given time after the photon has
been stored another control pulse enters the medium in the
forward-propagating direction (and thus counterpropagating
with respect to the direction of incidence of the initial photon).
The pulse has ideally an area of π for all emitters and trans-
fers the spin-wave excitation into the polarization. In CRIB
protocols, moreover, an effective Hahn echo is implemented
on the emitters’ frequency distribution, ideally performing
the transformation � → −�. The underlying assumption is
that the inhomogeneous broadenings of storage and retrieval
transitions are correlated and reversible since they are induced
by some external field. This may or may not be true for a
transducer where the electronic transitions for storage and
retrieval can be different. In this case the correlations will
depend on the microscopic mechanisms responsible for the
broadening.

In the following we denote the transformation of the broad-
ening between storage and retrieval by the generic map

� → p[�],

which possibly includes imperfections in the realization. The
absence of correlations between storage and retrieval is recov-
ered for p[�] taking random values within a given distribution
(see Appendix C).

The field emitted by the medium at z = L, Ēout (u) =
Ē (R)

f (L, u), depends on the stored polarization:

P(R)(z, t1(z)+; p[�]) = −ei(k′(S)+k′(R) )zP(S)(z, t0(z); �). (22)

Here t1(z) = T1 + TS + z/c′(R), where T1 is the instant of time
at which the photon has been stored (see Appendix B for
details) and TS is the storage time.

Using Eq. (22), one can now determine the explicit relation
between the input and the output photon. For this purpose, we
first observe that, since the forward field vanishes before the
retrieval, the Fourier component Ẽout (ω) corresponds to the
Laplace component Ēout (u) taken at u = −iω, apart from a
normalization factor. We now use Eqs. (14), (15), and (22) in
Eq. (8) and obtain the integral relation [38]

Ẽout (ω) = 1

2π

∫ +∞

−∞
dω′S (ω,ω′)Ẽin(ω′), (23)

which connects the spectrum of the retrieved photon with
the Fourier component of the input field Ẽin(ω). The kernel
S (ω,ω′) is a function of the emitters’ distributions G(R) and
G(S) and takes the explicit form

S (ω,ω′) =
√

d (S)d (R)

2πn0

√
c(S)

c(R)
eiω(T1+TS+L/c′(R) )e−iω′(T1−L/c′(S) )

×
∫ L

0
dz ei(δk(S)+δk(R) )z

∫ +∞

−∞
d�

G(R)(z, p[�]) e−iω(L−z)/c(R)
eff e−d (R)h(R) (z,−iω)e−iω′(L−z)/c(S)

eff e−d (S)h(S) (z,−iω′ )

[i(p[�] − ω) + γ ′/2][i(� − ω′) + γ /2]
. (24)

We define the efficiency of the quantum transducer as the
ratio between the number of outgoing and incoming pho-
tons [33,39]:

η =
∫ +∞
−∞ dω|Ẽout (ω)|2∫ +∞
−∞ dω|Ẽin(ω)|2 . (25)

This definition ensures that the transducer has nonzero quan-
tum capacitance as soon as the efficiency exceeds η =
0.5 [40], since our model accounts only for amplitude damp-
ing [35]. We note that, even for efficiencies below the
threshold 0.5, the transducer can still be used for nontriv-
ial quantum information tasks by postselecting successful
events [41].

Retrieval protocols for quantum memories achieve largest
efficiency when the retrieval process is effectively the time-
reversed storage dynamics [31]. The efficiency is naturally
going to be reduced when the processes of storage and re-
trieval are quite different, such as in the case of a transducer.
In the case of a solid-state medium, the internal transitions
coupling with the incident field are different from the ones
coupling with the emitted field. Correspondingly, the spec-

tral bandwidths of the quantum memories can be different.
In Eq. (24), for instance, this could lead to different opti-
cal depths for the storage and retrieval processes. Moreover,
depending on the configuration, the group velocity of the
reading laser pulse can substantially differ from the group
velocity of the emitted photon. Finally, the wave number k′(R)

of the reading pulse will be generally different from the wave
number k(R) of the photon field. All these effects are accounted
for in Eq. (24). We remark that in Eq. (24) we have taken
the same maximal value of the density n0 for storage and
retrieval. Nevertheless, possible differences only amount to a
rescaling of the distribution G(R). From now on we will also
assume that γ ′ = γ . Differences in the damping mean that the
losses from a finite pulse duration are different. Here we are
mainly interested in the limitations from mode matching and
we therefore restrict ourselves to this simplified description.

Spatially independent inhomogeneous broadening

In order to provide an example, in what follows we deter-
mine the form of Eq. (24) for the case of the CRIB protocol
when the emitters’ distribution does not depend on the po-
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sition z along the medium, G( j)(�) = n( j)(�)/L, but the
distributions for storage and retrieval are correlated [34,37].
Now Eq. (12) can be cast in the convenient form

h(z,−iω) = H(ω)
L − z

L
≈ L − z

2L
, (26)

where

H(ω) = 1

2πn0

∫ +∞

−∞
d�

n(�)

i(� − ω) + γ /2
. (27)

This function takes the value 1
2 when the emitter density is

constant over the spectral width of the photon [33,34], which
is the case we consider here.

We now consider the map p[�] = −�, assuming that the
inhomogeneous broadening is perfectly reversible. After per-
forming the integrals in Eq. (24), the kernel becomes

S (ω,ω′) = eiω(TS+L/c′(R) )eiω′L/c′(S)
ei(δk(R)+δk(S) )L

×
√

d (S)d (R)c(S)/c(R)

γ − i(ω + ω′)

× 1 − e−iF (ω,ω′ )e−(d (R)+d (S) )/2

(d (R) + d (S) )/2 + iF (ω,ω′)
, (28)

where we have chosen the initial time t0 such that T1 = 0 and
we have introduced the cutoff function

F (ω,ω′) = (δk(R) + δk(S) )L + 2π

(
ω

ω(R)
+ ω′

ω(S)

)
(29)

and the characteristic frequency ( j = R, S)

ω( j) = 2πc( j)
eff

L
.

In order to understand the effect of the individual compo-
nents in Eq. (28) let us first consider retrieval of the stored
photon when |e〉 = |e′〉. We assume mode matching δk =
0 and nonvanishing characteristic frequencies ω(S) = ω(R) =
ω(0), which corresponds to light propagation in an asymmetric
waveguide of sufficiently small size. In this case

S0(ω,ω′) = eiωTS ei(ω′+ω)L/c′ 1

γ − i(ω + ω′)

× 1 − e−i2π (ω+ω′ )/ω(0)
e−d

1 + i2π (ω + ω′)/(dω(0) )
. (30)

For 2πγ /(dω(0) ) 
 1 the term [γ − i(ω + ω′)]−1 behaves
like a Dirac delta function and one recovers the ideal case:
The spectrum of the emitted photon is equal to the spectrum
of the stored one and the single-photon retrieval probability

W =
∫ +∞

−∞
dω|Ẽout (ω)|2 (31)

approaches unity for d → ∞ [33]. This quantity coincides
with the efficiency η [Eq. (25)] when the incident field is a
single photon, namely, when

∫ +∞
−∞ dω|Ẽin(ω)|2 = 1.

Mode mismatching δk �= 0 determines a characteristic
length that must be compared with the size of the spatial
region where the photon is stored, L/d . When |δk|L/d 
 1
this effect can be discarded. Rare-earth ion-doped crystals
employed for realizing quantum memories typically have
lengths L of a few millimeters and transition frequencies

between the hyperfine ground states representing |g〉 and |r〉
of tens of megahertz to a few gigahertz (cf., for instance,
Refs. [28,42,43]). Assuming a phase velocity of the order
of the speed of light, |δk|L takes values ranging from 10−2

to 10−1 and the regime |δk|L/d 
 1 is achieved for optical
depths of the order of unity. This regime is experimentally
realized, for instance, in the setups of Refs. [22,25,28,42,43].

Deviations from these optimal conditions are found when
the storage and retrieval processes are characterized by dif-
ferent parameters, as is the case for a quantum transducer.
We first note that the phase-matching condition now requires
minimizing the quantity δk(R) + δk(S), which, depending on
the specific scheme, might be even achieved by retrieving the
photon in the same direction of incidence. We note, however,
that if the storage and retrieval are in the same direction, the
pulse will have to travel through an optically dense medium
which reduces the possible efficiency [34]. Alternatively,
phase matching could also be achieved by suitably choosing
the propagation direction of the write and read pulses [44].

In order to highlight the role of asymmetry we assume
phase matching δk(R) + δk(S) = 0, ω(R) = ω(S) = ω(0), and
c(S) = c(R) but different optical depths d (R) �= d (S). We define
the average optical depth d̄ = (d (R) + d (S) )/2 and observe that
the kernel can now be written in the same form as the ideal
case [Eq. (30)] with d → d̄ , but multiplied by the overall
factor

√
d (R)d (S)/d̄ . This factor leads to the scaling of the

retrieval probability

W ∝ d (R)d (S)/d̄2.

The retrieval probability is thus reduced in schemes with very
different optical depths for storage and retrieval. The inequal-
ity ω(R) �= ω(S) leads to a further reduction of the retrieval
probability and modifies the spectrum of the output photon.
The impact of this term scales with (ω(R) − ω(S) )/(d̄ω(R)ω(S) )
and is reduced at sufficiently large average optical densities.

In summary, the quantum transducer here discussed is re-
alized by combining the dynamics of two quantum memories
working in two different frequency ranges. As such, there are
two kinds of frequency cutoffs: The cutoffs to the emitters’
frequency distributions and the frequency cutoffs ω(S) and
ω(R) entering the function F (ω,ω′) [Eq. (29)]. Both limit the
efficiency and affect the spectrum of the retrieved photon. The
photon spectral width thus has to be smaller than these cutoffs,
whose minimum is the conversion bandwidth of the quantum
transducer. Moreover, if the bandwidths of the storage and
retrieval processes are different, the transducer can also act
as a bandwidth transducer, converting the bandwidth of the
photon from the storage to the (smaller) retrieval bandwidth.

IV. MICROWAVE-TO-OPTICAL CONVERSION

In this section we analyze the retrieval dynamics when the
storage process is done directly on the microwave transition
between the stable states |g〉 and |r〉 in Fig. 1. Several pro-
tocols for quantum memories in the microwave regime use
the coupling with a single-mode resonator [26,27,30], where
the characteristic wavelengths are larger than the size of the
medium. Under these conditions, we assume that the mi-
crowave excitation is uniformly distributed along the medium
and that a fast π pulse propagating in the forward direction
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transfers it to the optical polarization, giving

P(R)(z, t1(z)+; �) = eik′z f (�). (32)

Here t1(z) = z/c′(R) and f (�) is a complex function that
solely depends on �. It fulfills the normalization condition

L

c(R)

∫ L

0
dz

∫ +∞

−∞
d� G(R)(z,�)| f (�)|2 = 1, (33)

corresponding to a perfect transfer from the spin wave. The
wave number k′ here also includes any possible contribution
to the phase grating by the microwave storage process. We
assume that the function f (�) can depend on the inhomo-
geneous broadening of the optical transition. This can, for
instance, be the case if there are correlations between the emit-
ters’ frequency distributions during the microwave storage
and optical retrieval. Alternatively, a nontrivial function f (�)
may also arise if the broadening plays a role during the optical
π pulse. For a π pulse of nonvanishing duration the transfer
to the excited state will be influenced by the broadening, e.g.,
excitations stored in state |r〉 cannot be transferred to the
excited state |e′〉 if it is too far detuned. This will lead both to a
detuning-dependent amplitude f (�) of the excitation and to a
reduction of the transfer efficiency. The latter can be described
by including a rescaling factor smaller than unity in Eq. (33).
A full investigation of the excitation dynamics is beyond the
scope of this work. For now we therefore restrict ourselves
to the effect of the shape of f (�). Note that any reduction
in efficiency due to finite excitation efficiency can always be
accounted for by multiplying our results by that efficiency.

The Fourier component at frequency ω of the output field
is found by using Eq. (32) in Eq. (8) as well as the correspon-
dence with the Laplace component. It takes the form

Ẽout (ω) =
∫ +∞

−∞
d�M(ω,�) f (�), (34)

with the integral kernel

M(ω,�) = iμ0L√
2πc

eiωL/c′
∫ L

0
dz eiδkzG(z,�)

× e−iω(L−z)/ceff e−d h(z,−iω)

i(� − ω) + γ /2
, (35)

and we have dropped the label R, since now all parameters
refer to the retrieval dynamics.

In the following we assume a spatially independent inho-
mogeneous broadening, corresponding to G(z,�) = n(�)/L.
In order to keep the discussion simple, we further neglect δkL.
In this case Eq. (34) simplifies to

Ẽout (ω) = i

√
dn0L

c
C(ω)eiωL/c′ 1 − e−i2πω/ω(R)−dH(ω)

i2πω/ω(R) + dH(ω)
, (36)

where we have introduced the function

C(ω) = 1

2πn0

∫ +∞

−∞
d�

n(�) f (�)

i(� − ω) + γ /2
. (37)

When f is independent of the frequency, C(ω) ∝ H(ω) [see
Eq. (27)].

For small optical depths d 
 1, Eq. (36) can be expanded
in lowest order in d and reduces to the expression

Ẽout (ω) ≈ i

√
dn0L

c
C(ω)eiω(L/c′−π/ω(R) )sinc

( πω

ω(R)

)
, (38)

where sinc(x) = sin(x)/x. In this case the frequency ω(R) =
2πceff/L is the upper cutoff of the photon spectral width and
thus gives a lower cutoff to its coherence length.

Let us now assume that the spectral widths of the initial
polarization f and of the emitters’ distribution n are well
below the cutoff ω(R). We denote the spectral widths of f and
n by δω and �, respectively, with δω, � 
 ω(R). In this limit
we can discard the terms proportional to ω/ω(R) in Eq. (36)
and obtain the expression

Ẽout (ω) ≈ i

√
n0L

dc

C(ω)

H(ω)
(1 − e−dH(ω) )eiωL/c′

, (39)

which is valid for any value of the optical depth. For instance,
this expression is consistent with Eq. (38) for d 
 1 and
δω, � 
 ω(R). In this case, it predicts that the emission prob-
ability W scales linearly with d . This expresses the collective
enhancement of the retrieval process. For large optical depth,
instead, W ∼ d−1 and thus the probability decreases as the
optical depth increases, since excitations stored far from the
edge cannot propagate through the sample. Figure 2(a) dis-
plays the emission probability (31) as a function of the optical
depth. The emission probability is calculated using Eq. (36)
and for Gaussian distributions f and n. The two curves cor-
respond to the cases δω 
 � 
 ω(R) and � 
 δω 
 ω(R). In
the first case only a small fraction of the emitters are excited,
whereas in the latter all emitters are excited with essentially
the same amplitude. This, however, has little influence on the
retrieval efficiency, which is similar in the two cases.

For the chosen parameters, the emission probability ex-
hibits a peak at optical depths of the order d ∼ 2–3. The
maximal value is W � 0.7. We note that a similar behavior
is also observed in a solid-state quantum memory when the
retrieved photon is extracted in the direction of incidence [34].

We now turn to the spectrum of the emitted photon and
determine its relation with the initial excitation f (ω) and with
the emitters’ spectrum n(ω) when their spectral widths are
much smaller than the cutoff ω(R). In this case the spectrum
can be obtained from Eq. (39). We again consider the two lim-
its from above. When the emitters’ spectrum is much broader
than the one of the stored polarization � � δω, we can im-
pose that n(�) is a constant in Eq. (39). In this limit H(ω) � 1

2
and C(ω) � f (ω) for the functions and parameters considered
here and the spectrum of the output photon is the spectrum
f (ω) of the stored polarization to a good approximation. In the
opposite case δω � �, H(ω) and C(ω) are functions of n(ω)
and the spectrum thus depends on the emitters’ spectrum. For
d 
 1, in particular, it takes the simple form Ẽout (ω) ∝ n(ω).

We verify this behavior by determining the overlap be-
tween the field of the emitted photon [Eq. (36)] and a field
either solely determined by the stored polarization Ẽ0, f (ω) ∝
f (ω) or by the emitters’ distribution Ẽ0,n(ω) ∝ n(ω):

F j= f ,n =
∣∣∫ +∞

−∞ dω Ẽ∗
out (ω)Ẽ0, j (ω)

∣∣√∫ +∞
−∞ dω′′|Ẽout (ω′′)|2 ∫ +∞

−∞ dω′|Ẽ0, j (ω′)|2
. (40)
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FIG. 2. Optical photons from a stored microwave excitation.
(a) Retrieval probability W as a function of the optical depth d . Here
n(�) = exp(−�2/�2)/

√
π�2 and f (�) = N e−�2/δω2

ei�tc , with N
being a normalization factor [Eq. (33)] and tc denoting the emission
time. (b) Corresponding fidelities F f (dashed lines) and Fn (solid
lines) [Eq. (40)]. The parameters are ω(R) = −2π × 30 GHz, L =
0.01 m, and γ = 2π × 0.01 GHz and the optical depth d is varied
by changing μ0. The emission time tc is 1 ns and the widths of
the Gaussian distributions are �/δω = 20, with δω = 2π × 1 GHz
[blue (dark gray) line], and �/δω = 0.05, with δω = 2π × 20 GHz
[orange (light gray) line].

This quantity is maximal and equal to unity when the spectra
overlap and when the emission time of the photon corresponds
to the time dynamics determined by the phase imprinted on
the polarization. Figure 2(b) displays the fidelities Fn and
F f when the emitters’ distribution and the stored excitation
have Gaussian spectra and for two opposite limits � � δω

and � 
 δω, with the same parameters of the corresponding
curves in Fig. 2(a). In the first case, when the spectrum of the
stored excitation is narrow, the fidelity F f is close to unity for
all values of the optical depth: The spectrum of the emitted
photon is given by the spectrum of the stored excitation.
When instead the spectral width of the emitters’ distribution is
narrower than the width of f (ω), we observe that Fn is close
to unity only for d � 3 and drops below 0.9 when d exceeds
this value. This is a consequence of frequency-dependent
absorption significantly changing the shape of retrieved light
at large optical depths. The figure thus reflects a change in
the shape of the outgoing wave packet for this situation. For
low optical depths the shape directly reflects the initial stored
state, but for high optical depth it crosses over to a shape set
by a compromise between the initial state and the damping.
This analysis suggests that the retrieval probability of the
microwave-to-optical transducer depends mainly on the op-
tical depth and seems to be relatively independent of whether

10−2 10−1 100 101 102 103

Optical depth d

10−2

10−1

W

Gaussian

Sech

Lorentz

Uniform

FIG. 3. Probability of emission W as a function of the opti-
cal depth for different frequency distributions n(�). The four lines
refer to a Gaussian profile n(�) = N exp(−�2/�2) (blue solid
line), a sech profile n(�) = N sech(

√
π�/�) (orange dashed line),

a Lorentzian profile n(�) = N /[�2 + (�/
√

π )2] (red dotted line),
and a rectangular (uniform) distribution n(�) = N θ (

√
π�/2 −

�)θ (
√

π�/2 + �) (green dash–double-dotted line), with θ (x) the
Heaviside function and N the corresponding normalization [see
Eq. (2)]. The function f (�) and the other parameters are the same as
for the case � 
 δω of Fig. 2.

the stored excitation has a narrower or broader spectrum than
the emitters’ distribution.

Figure 3 displays the emission probability for different
forms of n(�) as a function of d . Different shapes have max-
ima for slightly different values of d ∼ 1, but otherwise show
similar behavior. In general, free-space solid-state quantum
memories reach presently optical densities of the order of
unity [22,25,28,42,43]. We note that the steplike (uniform)
distribution reaches the highest efficiency. This result suggests
that the ability to tailor the spectral distribution of the emitters
can allow one to optimize the retrieval process and at the same
time to tailor the frequency distribution of the emitted pho-
ton. This spectral shaping is based on the collective emission
properties of the medium and is therefore complementary to
protocols based on tailored drive fields [45–51].

V. CONCLUSION

We have analyzed the dynamics and efficiency of pho-
ton retrieval from solid-state quantum memories acting as
quantum transducer. We have focused on the so-called fast
protocol, where storage (retrieval) is realized by a π pulse,
transferring the population to (from) a metastable state and
determined the retrieved field as a function of the input pho-
ton. We have determined the retrieval dynamics and efficiency
taking into account that the emitting and absorbing transitions
can be characterized by different internal states, transition
frequencies, and emitters’ frequency distributions, as is the
case for a solid-state quantum transducer. We have discussed
the effects which reduce the efficiency of retrieval.

Our model can be applied to transducers bridging quite
different frequency regimes and to storage and retrieval pro-
tocols where the group velocity of the read and write pulses
can be different from the one of the photonic excitation. We
have exemplarily discussed the case of microwave-to-optical
frequency conversion and analyzed in particular the spectral
properties of the emitted photon as a function of the effective
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cutoff frequency and of the emitters’ spectral distribution,
which may or may not be correlated between the optical and
microwave regimes.

One specific limitation to the efficiency of a solid-state
quantum transducer in free space is the asymmetry
between storage and retrieval dynamics such that the latter
substantially differs from the time reversal of the storage
dynamics. This has generally a detrimental effect, which
limits the constructive interference dynamics of photon
emission by the individual emitters and can be interpreted
as an effective dephasing mechanism. This could potentially
be remedied by modulating the read or write pulses using
optimal control [52–55] for the purpose of compensating the
accumulated phases.
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APPENDIX A: BASIC EQUATIONS

In this Appendix we provide some details about the model.
We focus on the dynamics of the two-level transition |g〉 →
|e〉 and omit the index (S) or (R). Starting from the Heisenberg
equation of motion, we review the basic steps that lead to the
equations for the complex amplitudes reported in Eqs. (1). We
describe the N emitters by two-level systems at the positions
z j and transition frequency ωeg, j = ωeg + � j , where ωeg is the
average frequency, with j = 1, . . . , N . We define the raising
operator by σ̂

( j)
eg = |e〉 j〈g|.

The modes of the electromagnetic field are assumed to
propagate along the z axis. We distinguish between forward-
and backward-propagating modes depending on whether the
wave vector points in the positive or negative z direction, re-
spectively. We denote by â†

f (k) and â f (k) [â†
b(k) and âb(k)] the

operators which create and annihilate, respectively, a forward
(backward)-propagating photon at wave number k. We assume
the linear dispersion relation

ω(k) = ωeg + c(k − keg), (A1)

where c is the group velocity and keg is the wave number at
the transition frequency ωeg. The operators fulfill the com-
mutation relations [ân(k), â†

m(k′)] = δnmδ(k − k′), where δ(x)
is the Dirac delta function, δnm is the Kronecker delta, and
n, m ∈ { f , b}.

The Hamiltonian describing the quantum emitters, the
electromagnetic field modes, and their mutual interaction

is given by the operator sum Ĥ = Ĥ0 + V̂ f + V̂ b,
with [56]

Ĥ0 =
∫ +∞

0
dk h̄ω(k){â†

f (k)â f (k) + â†
b(k)âb(k)}

+
N∑

j=1

h̄(ωeg + � j )σ̂
( j)
ee , (A2a)

V̂ f = −h̄g

√
L

2π

N∑
j=1

∫ +∞

0
dk

{
σ̂ ( j)

eg â f (k)eikz j + H.c.
}
,

V̂ b = −h̄g

√
L

2π

N∑
j=1

∫ +∞

0
dk

{
σ̂ ( j)

eg âb(k)e−ikz j + H.c.
}
,

(A2b)

where g is the coupling constant and L is the medium’s
length in the z direction. The interactions V̂ f and V̂ b are
here assumed to be in the electric dipole and rotating-wave
approximations.

The photon field in position space is given in the
Heisenberg picture by the slowly varying annihilation oper-
ators [35,57]

Ê f (z, t ) =
√

L

2π
eiωegt

∫ +∞

0
dk â f (k, t )ei(k−keg)z,

Êb(z, t ) =
√

L

2π
eiωegt

∫ +∞

0
dk âb(k, t )e−i(k−keg)z. (A3)

To describe the dynamics of the emitters, we resort to a coarse
graining by dividing the z axis into a grid of finite steps δz and
the frequency range into a grid with finite steps δ�. We define
the normalized distribution of emitters

G(z,�) = 1

N

N∑
j=1

δ(� − � j )δ(z − z j ).

The number of emitters at the position z j ∈ [z − δz/2, z +
δz/2] and with detuning � j ∈ [� − δ�/2,� + δ�/2] is
given by

Nz,� = G(z,�)δzδ�.

The polarization operator can be written as [32,33]

P̂(z, t ; �) =
√

N

Nz,�

∑
j∈Sz,�

σ̂ ( j)
ge (t )eiωegt , (A4)

where Sz,� includes all atoms with z j ∈ [z − δz/2, z + δz/2]
and � j ∈ [� − δ�/2,� + δ�/2].

For single photons almost all of the atoms remain in the
ground state |g〉. The commutation relations of the coarse-
grained operators then read

[Ên(z, t ), Ê†
m(z′, t )] = Lδnmδ(z − z′), (A5a)

[P̂(z, t ; �), P̂†(z′, t ; �′)] = 1

G(z,�)
δ(z − z′)δ(� − �′),

(A5b)
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where the Dirac delta function is understood in terms of
this coarse graining (see also Ref. [57] for details). We re-
mark that the commutation relation (A5b) is defined for
G(z,�) �= 0.

The Heisenberg equations of motion for the fields and
polarization are [35]

(
∂

∂t
+ c

∂

∂z

)
Ê f = ig

√
NL

×
∫ +∞

−∞
d� G(z,�)P̂(z, t ; �)e−ikegz,

(A6a)

(
∂

∂t
− c

∂

∂z

)
Êb = ig

√
NL

×
∫ +∞

−∞
d� G(z,�)P̂(z, t ; �)eikegz,

(A6b)

∂

∂t
P̂ = −

(γ

2
+ i�

)
P̂ + η̂(z, t ; �)

+ig
√

N
(
Ê f eikegz + Êbe−ikegz

)
. (A6c)

Here γ is the polarization decay rate and η̂(z, t ; �)
is the corresponding Langevin force with a vanishing
mean value 〈η̂(z, t ; �)〉 = 0 and the only nonvanishing
second-order moment being 〈η̂(z, t ; �)η̂†(z′, t ′; �′)〉 ∝ δ(z −
z′)δ(� − �′)δ(t − t ′) [58].

By means of the operators Ê f , Êb, and P̂ it is possible to write a generic state of the system with a single excitation:

|�(t )〉 = 1√
cL

⎛
⎝ ∑

n∈{ f ,b}

∫ +∞

−∞
dz En(z, t )Ê†

n(z, 0) + L
∫ L

0
dz

∫ +∞

−∞
d� G(z,�)P(z, t ; �)P̂†(z, 0; �)

⎞
⎠|g, . . . , g; vac〉. (A7)

Here |g, . . . , g; vac〉 denotes the state with all emitters in |g〉 and the electromagnetic field modes in the vacuum state |vac〉 and
E f , Eb, and P are the amplitudes for the excitation (photon) to be respectively forward and backward propagating or in an atomic
state at position z and time t . We note that in principle the full state of the system should contain terms describing photons
emitted into other modes through spontaneous emission, corresponding to the noise operator η̂. Since such photons are lost
from the system they are of no interest to us here and we omit these terms for simplicity. This means that our state is not fully
normalized, but the amplitude in the forward or backward direction still gives the correct retrieval efficiency, which is our main
interest. The equations of motion for E f , Eb, and P are obtained from the Heisenberg equations of motion (A6) by taking the
matrix element, e.g., E f (z, t ) = √ c

L 〈g, . . . , g; vac|Ê f (z, 0)|�(t )〉, and are given in Eqs. (1).
The temporal shape of the photon leaving the medium at z = L is given by the expectation value [35]

I (t ) = c

L
〈�(t )|Ê†

f (L, 0)Ê f (L, 0)|�(t )〉 (A8)

and can be now expressed in terms of the complex amplitude E f as I (t ) = |E f (L, t )|2 (as long as one keeps in mind that this
replacement is valid solely for normally ordered expressions [31]).

APPENDIX B: FAST STORAGE AND RETRIEVAL IN A THIRD METASTABLE LEVEL

In this Appendix we discuss the details of the classical pulses used for the fast storage and retrieval. We denote by S(z, t ; �)
the spin wave, which is coupled by a laser pulse to the polarization P( j)(z, t ; �), with j = S, R. Assuming that during the pulse
the coupling with the photon field can be neglected, the equations determining the dynamics are

∂

∂t
P( j)(z, t ; �) = −i�P( j)(z, t ; �) − i

�( j)(z, t )

2
S(z, t ; �), (B1a)

∂

∂t
S(z, t ; �) = −i

[�( j)(z, t )]∗

2
P( j)(z, t ; �). (B1b)

The storage pulse propagates in the backward direction with the incident photon and has an area of π , ideally implementing
perfect population transfer from state |e〉 to state |r〉,

�(S)(z, t ) = �0e−ik′(S)zθ (t − t0(z))θ (t̄ + t0(z) − t ), (B2)

where �0 = π/t̄ and

t0(z) = t0 + δt + (L − z)/c′(S).

In this expression we have introduced the time delay δt between the photon and the laser pulse at the position z = L. Under the
assumption that in the relevant spectral range |�|t̄ 
 1 holds, the transfer can be considered to be instantaneous and the spin
wave at position z after the pulse reads

S(z, t0(z)+; �) = −ieik′(S)zP(S)(z, t0(z); �) (B3)
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and has been imprinted a phase grating. At time T1 = t0 + δt + L/c′(S) the control pulse leaves the medium and the transfer to the
spin wave is completed everywhere in the medium. We remark that in the case c′(S) > c(S), the delay time will be chosen in order
to preserve the temporal sequence between photon excitation and storage pulse. A sufficient condition is δt � L(1/c(S) − 1/c′(S) ).
Since the photon is typically stored in the region of size L/d (S), a more modest bound is δt � L/d (S)(1/c(S) − 1/c′(S) ).

The retrieval dynamics is described by Eqs. (B1), now with a pulse propagating in the forward direction and after implement-
ing the map � → p[�],

�(R)(z, t ) = �0eik′(R)zθ (t − t1(z))θ (t̄ + t1(z) − t ), (B4)

where

t1(z) = T1 + TS + z/c′(R)

and TS is the storage time. We assume that there is no dynamics during the storage time in the spin wave S (which requires that
the state |s〉 is perfectly degenerate along the crystal). In reality, there will always be some dynamics in the spin wave leading to
decay of the stored excitation, but this is a separate issue and we will not go into it here. The retrieved polarization at position z
takes the form

P(R)(z, t1(z)+; p[�]) = −ieik′(R)zS(z, t1(z); �) (B5)

such that P(R)(z, t ; p[�]) vanishes for t < t1(z)+. Inserting Eq. (B3) in Eq. (B5) after using S(z, t1(z); �) = S(z, t0(z)+; �), we
obtain the expression (22).

APPENDIX C: CORRELATED AND UNCORRELATED INHOMOGENEOUS BROADENINGS

In Sec. III B we introduced the map p[�] that connects the inhomogeneous broadenings of the storage and retrieval transitions.
This allows us to model both correlated and uncorrelated broadenings. In this Appendix we give the integral kernel S [Eq. (24)]
connecting the input and output fields in a more general form and provide examples for both types of broadenings and the related
maps p.

Let G(�,�′) be the distribution for the detunings � and �′ of the storage and retrieval transitions, respectively. The kernel
S in terms of this distribution reads

S (ω,ω′) ≡
√

d (S)d (R)

2πn0

√
c(S)

c(R)
eiω(T1+TS+L/c′(R) )e−iω′(T1−L/c′(S) )

∫ L

0
dz ei(δk(S)+δk(R) )z

×
∫ +∞

−∞
d�

∫ +∞

−∞
d�′ G(�,�′)G(R)(z,�′) e−iω(L−z)/c(R)

eff e−d (R)h(R) (z,−iω)e−iω′(L−z)/c(S)
eff e−d (S)h(S) (z,−iω′ )

[i(�′ − ω) + γ ′/2][i(� − ω′) + γ /2]
. (C1)

In the CRIB protocol, for instance, one realizes the distribution G(�,�′) = δ(� + �′). This is an example for correlated
broadenings and the resulting kernel S can be recovered from Eq. (24) when choosing p[�] = −�. The inhomogeneous
broadenings are instead uncorrelated if the distribution is, for instance, of the form G(�,�′) = G0(�′). In this case, p samples
detunings �′ from the distribution G0(�′).
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