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We propose the interaction of two quantum memristors via capacitive and inductive coupling in feasible
superconducting circuit architectures. In this composed system the input gets correlated in time, which changes
the dynamic response of each quantum memristor in terms of its pinched hysteresis curve and nontrivial entan-
glement. In this sense, the concurrence and memristive dynamics follow an inverse behavior, showing maximal
values of entanglement when the hysteresis curve is minimal and vice versa. Moreover, the direction followed
in time by the hysteresis curve is reversed whenever the quantum memristor entanglement is maximal. The
study of composed quantum memristors paves the way for developing neuromorphic quantum computers and
native quantum neural networks, on the path towards quantum advantage with current noisy intermediate-scale
quantum era technologies.
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I. INTRODUCTION

The memristor was proposed as the fourth basic circuit el-
ement with a flux-charge relation [1,2]. The first experimental
memristor was claimed by HP Labs [3], which turned into a
growing interest in the field. A key feature is its nonlinear cur-
rent and voltage response exhibiting memory effects, which
is used in the area of neuromorphic computing [4]. The goal
is to develop a computational paradigm based on neuronlike
devices to mimic human brain capabilities, allowing one to
simulate from learning processes [5–8] and artificial neural
communication [9], to simulate biological processes such as
brain synapses [10,11].

The development of neuromorphic computing has focused
on the design of single memristive systems and structures such
as the cross-bar arrays, where memristors work as switches
according to their resistance value [12]. These structures have
been used in dense arrays of memristors [13,14] for realizing
brain-inspired devices [10,13,15]. Nevertheless, little atten-
tion has been paid to studying the direct coupling between
these systems, and few proposals about parallel series and
wireless connections have been considered [16,17]. There-
fore, characterizing the dynamics of coupled memristors will
advance neuromorphic computing.

The implementation of neural networks and brain-inspired
quantum algorithms on quantum hardware gives rise to the
field of neuromorphic quantum computing (NQC), where
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quantum features such as superposition and entanglement lead
to calculation speedup [18]. There exist two NQC approaches;
the first one aims at implementing neural networks on quan-
tum processors through parametrized quantum circuits using
classical and quantum machine learning techniques [19–22].
The second approach, closer to classical neuromorphic com-
puting, attempts to take advantage of the system dynamics for
implementing neuronal and synaptic processes, specifically
a quantum memristor (QM). There are several proposals for
implementing a quantum memristor in quantum platforms
such as photonics [23–25], quantum dots [26], and super-
conducting circuits [27–31], as well as memristor-inspired
experiments for quantum advantage [32]. In the latter, the
memristive behavior appears due to the nonlinearity of the
Josephson junction (JJ), which contains a current term de-
pending on its superconducting phase [33]. It is possible to
increase this current contribution by coupling two Josephson
junctions on a closed loop, forming a device known as a con-
ductance asymmetric superconducting quantum interference
device (CA-SQUID) [30,31]. These works have focused on
developing a single quantum memristor, and not much atten-
tion has been paid to develop and characterize the systems
formed by coupled quantum memristors.

In this paper, we show how to entangle two QMs via
inductive and capacitive couplings within current state-of-the-
art superconducting circuit technologies. We observe that the
input signals of the memristors get correlated in time, which
induces the shrinking and expansion of the hysteresis curves.
This behavior is closely related to the rise and decay of entan-
glement in the coupled system. We find that the entanglement
and memristive dynamics follow an inverse behavior, where
maximal values of entanglement happen when the form factor
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of the hysteresis curve is minimal and vice versa. In addition,
we find that the coupling causes the direction of the hysteresis
curve to be reversed as the relative phase between current and
voltage changes in time. Interestingly, this change in direction
of the hysteresis curve happens whenever the entanglement
between the memristors is maximal.

The organization of this paper is as follows. In Sec. II
we review the mathematical model of a classical memris-
tor and its generalization to memristive systems. In Sec. III,
we describe the composite system of quantum memristors.
The main part of the paper is devoted to the analysis of
the capacitive interaction between the quantum memristors.
In Sec. IV, we describe the system dynamics via coupled
differential equations obtained by solving the master equa-
tion of the coupled open quantum systems. In Sec. V, we
show the dynamical responses of each quantum memristor
in the coupled system. In Sec. VI, we characterize the per-
formance of each quantum memristor using a quantity called
the form factor. In Sec. VI, we show the entanglement and
memristive dynamics of the coupled system and investigate
the relationship between them. We devote Sec. VI to derive
and explain the main conclusions of our paper. In the Appen-
dices, we provide the technical details on the derivation of
the Hamiltonian (Appendix A) and the memristive equations
(Appendix B). Furthermore we have included the results of
the inductive interaction (Appendix C) and the interaction
caused by using an inductor and a capacitor simultaneously
(Appendix D).

II. CLASSICAL MEMRISTOR

The memristor is a two terminal device with resistive mem-
ory effects, in which the resistance depends on the history
of the voltage passed through the device. An ideal memris-
tor is fully described by its state dependent Ohm’s law [1].
Accordingly, based on the intrinsic variables of the device,
the memristor can be classified as charge controlled or flux
controlled with the constitutive relations

V (t ) = M(q) I (t ) with M(q) = dφ

dq
, (1a)

I (t ) = G(φ) V (t ) with G(φ) = dq

dφ
. (1b)

Here, I (t ), V (t ), q(t ), and φ(t ) stand for the current, voltage,
charge, and flux on the device. Furthermore, M(q) and G(φ)
are termed as memristance and memductance, with units of
electrical resistance and electrical conductance, respectively.
The generalization of the device is termed as memristive
systems [2]. The main difference between them corresponds
to the explicit dependence of the voltage (current) on the
memductance (conductance). The dynamics of the memristive
system is given by the state dependent Ohm’s law, together
with the evolution of the state variable provided by

V (t ) = M(x, I, t ) I (t ), f (x, I, t ) = dx

dt
, (2a)

I (t ) = G(x,V, t )V (t ) g(x,V, t ) = dx

dt
. (2b)

(a)

(b)

FIG. 1. Schematic illustration of two coupled superconduct-
ing quantum memristors, capacitively and inductively, respectively.
(a) Each QM consists of a CA-SQUID connected to an inductance L�

in a loop threaded by a signal φd�(t ). We describe the CA-SQUID as
a smaller loop interrupted by two different junctions and threaded by
a static flux φs, which cancels the critical current. (b) Effective RLC
circuit describing the system, where the resistance is modeled as a
time-dependent admittance. We depict the current with red arrows.

Here, M(x, I, t ) and G(x,V, t ) are the memristance and mem-
ductance, which are now functions of the internal variable x
ruled by f (x, I, t ) and g(x,V, t ), respectively.

III. THE MODEL

Let us study the circuit depicted in Fig. 1(a), consisting
of a pair of QMs coupled with either a capacitor or an in-
ductor. We form each QM with a CA-SQUID connected in
parallel to an inductor L� forming a closed loop threaded
by an external signal φd�(t ). The CA-SQUID consists of
a small loop embedded by two different JJs threaded by a
static DC magnetic flux. Each Josephson junction forming
the CA-SQUID has two current contributions. The first is a
nondissipative current due to the tunneling of Cooper pairs
proportional to the critical current IC� = 2eEJ/h̄ [34]. The
second is a dissipative contribution due to the tunneling of
quasiparticles proportional to the conductance [35,36]. The
memristive behavior arises when the latter current dominates
over the former. This is achieved when the junctions satisfy
GN1/GN2 = �1/�2 [30,37] (GNi is the junction conductance;
�i is the energy band gap) and the loop is threaded with a
flux φs� = π . In the limit �1 � �2, the first junction acts
as a shunt. Then, we model the CA-SQUID as a capacitor
coupled to a time-dependent admittance [31]. Therefore, the
whole system corresponds to a pair of coupled RLC resonators
with time-dependent resistance [see Fig. 1(b)] described by
the Hamiltonian (see Appendix A for derivation)

Ĥ =
∑
�=1,2

EC�,�
n̂2

� + EL�,�

2
φ̂2

� + EC1,2 n̂1n̂2 − EL1,2 φ̂1φ̂2. (3)

Here, n̂� and φ̂� are the dimensionless number and phase
operators, respectively, EC = 2e2Ĉ−1 is the charge energy
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matrix, and Ĉ−1 is the inverse of the capacitance matrix.
Moreover, EL = ϕ2

0 L̂−1 is the inductive energy matrix where
L̂−1 is the inverse of the inductive matrix, and ϕ0 = h̄/2e is
the reduced quantum flux. Furthermore, n� and φ� correspond
to the dimensionless charge and phase operators of the �th
QM, respectively. The first two terms of Eq. (3) are the free
Hamiltonian of each memristive system, whereas the last two
terms are the capacitive and inductive coupling interaction,
respectively.

For simplicity we redefine the operators in terms of cre-
ation and annihilation operators,

n̂� = i

4g�

(â†
� − â�),

(4)
φ̂� = 2g�(â†

� + â�),

with g� = (EC�,�
/32EL�,�

)1/4. Then, we obtain

Ĥ =
∑
�=1,2

h̄ω�â†
� â� − √

ω1ω2(α − β )(â†
1â2 + â1â†

2), (5)

where ω� = √
2EC�,�

EL�,�
/h̄ is the frequency of the �th QM.

Moreover, parameter α = EL1,2/
√

EL1EL2 and parameter β =
EC1,2/

√
EC1EC2 are the inductive and charge energy ratios,

respectively. We describe the energy loss of the admittance
as a quasiparticle bath at zero temperature the dynamics of
which follows the time-dependent master equation (h̄ = 1)

˙̂ρ(t ) = i[Ĥ, ρ̂] +
∑
�=1,2

��(t )

2

[
L�ρ̂L†

� − 1

2
{L†

�L�, ρ̂}
]
, (6)

where Ĥ is the Hamiltonian shown in Eq. (5), while
L� = √

��(t )â� is the collapse operator describing the
quasiparticle tunneling of the �th QMs at rate ��(t ) =
|〈0| sin(φ̂�/2)|1〉|2SQP(ω�) [35,36]. Here, SQP(ω�) ≈ ω� is the
spectral density of the quasiparticle bath [35,36]. Due to the
fluxoid quantization rule on the outer loop, it is possible to
write ��(t ) in terms of the external magnetic flux φd�(t ). This
means ��(t ) = g2

�ω� exp(−g2
�)({1 + cos[φd�(t )]}/2) [31]; we

note that g� is proportional to the zero-point fluctuation of the
phase operator φ̂�. Moreover, φd�(t ) = φ0,� + A sin(ω�t ) is
the external magnetic flux threading the outer loop, where we
consider a sinusoidal modulation for observing the memristive
behavior of the coupled system. The phase dependence in
the decay rate is due to the quasiparticle current term [38],
which is intrinsic to JJs. This allows one to control the quasi-
particle dynamics via the external flux and thus have a flux
controlled memristive device. Since we are interested in inves-
tigating the memristive behavior originating from the phase
dependent conductance, we omit the decoherence induced by
other sources such as inductive and radiative losses. Works on
superconducting circuits have studied dominant quasiparticle
tunneling [38–40] and recent works have progressed towards
mitigating the radiative decay [41], which justifies our as-
sumption.

IV. COUPLED DIFFERENTIAL EQUATIONS

The current-voltage relation of each QM is obtained
through the equation of motion for the operators n̂� and φ̂�.

We can compute them from the master equation of Eq. (6)
(see Appendix B), obtaining

d

dt
〈n̂�〉 = EL�,�

〈φ̂�〉 − EL1,2 (δ1,�〈φ̂2〉 − δ2,�〈φ̂1〉)

− ��(t )

2
〈n̂�〉, (7a)

d

dt
〈φ̂�〉 = −2EC�,�

〈n̂�〉 − 2EC1,2 (δ1,�〈n̂2〉 + δ2,�〈n̂1〉)

− ��(t )

2
〈φ̂�〉. (7b)

We can produce analytical solutions for the averaged quanti-
ties 〈n̂�(t )〉 and 〈φ̂�(t )〉 for identical QMs. For the initial state
〈n̂1(0)〉 = 〈n̂2(0)〉 = n0 and 〈φ̂1(0)〉 = 〈φ̂2(0)〉 = 0, we get

〈n̂�〉 = n0 exp

[
−

∫ t

0

�(s)

2
ds

]
cos(ω′t ), (8)

〈φ̂�〉 = n0

√
EL�,�

− EL1,2

2(EC�,�
− EC1,2 )

exp

[
−

∫ t

0

�(s)

2
ds

]
sin(ω′t ).

(9)

Here, ω′ = √
2(EC�,�

− EC1,2 )(EL�,�
− EL1,2 ) =

ω
√

(1 − α)(1 − β ) is the effective frequency of the coupled
system. From the equation of motion in Eqs. (7a) and
(7b), we obtain that the quasiparticle current of each
QM is IQP,�(t ) = G�(t )Vcap,�(t ). Here, G� = C��(t )/2
is the conductance of each quantum memristor [31] and
Vcap,�(t ) = −2e〈n�(t )〉/C� is the voltage across the capacitor
in each CA-SQUID. From these expressions, we will study
the response of the composite system under variation of the
initial input voltage of each QM. Furthermore, we assume
that the QMs operate within the two-level approximation
satisfying the adiabatic limit [42]. In the following analysis,
we will focus on the capacitive coupling. However, we extend
the same analysis to the inductive interaction (see Appendix
C) and the interaction using an inductor and a capacitor
simultaneously (see Appendix D).

V. DYNAMIC RESPONSE

Let us fix the initial input of the first QM and vary
the initial input of the second one. We choose the in-
put through the initial state |��(θ�, ϕ�)〉 = cos(θ�/2)|0〉 +
eiϕ� sin(θ�/2)|1〉. Depending on the value of θ , it is possible to
control the initial voltage and current on the QM, whereas the
relative phase ϕ gives us the information whether we initialize
the system with an input current (ϕ = 0) or input voltage
(ϕ = π/2). At the starting point, the composite system is in
the product state |�1〉 ⊗ |�2〉. Figure 2 shows the hysteresis
curves for both QMs, where we have initialized the second
one with an initial voltage and an initial current, respectively.
From Fig. 2(a), as expected, different voltages do not affect
the memristive behavior of the device and only the shapes
of the hysteresis curves change. Opposite to the initial input
current case (see Fig. 2(b)], we observe that the lobes of the
hysteresis curves tend to shrink, with a considerably reduced
enclosed area. Thus, the hysteretic behavior of each memristor
is very sensitive to initial conditions.
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(a)

(b)

FIG. 2. Normalized pinched hysteresis curves of identical quan-
tum memristors. QM1 is initialized in the state |�(π/4, π/2)〉,
whereas QM2 is in the state (a) |�(π/3, π/2)〉 and (b) |�(π/4, 0)〉.
The system parameters are C1 = C2 = 3.6 [fF], Cc = 0.9 [fF],
L1 = L2 = 6.1 [μH], leading to a memristor frequency of ω1 = ω2 =
5.03 [GHz].

VI. PERFORMANCE

For comparing the performance of each QM in the
uncoupled or composite cases, we will focus on their
memory effects. It has been shown that the area en-
closed by the pinched hysteresis loop is related to the
memory effects of the device [43–45]. Here, we will
characterize the memristive features using the form factor
given by

F = 4π
A

P2
, (10)

where A is the area enclosed by the pinched hysteresis loop
and P is its perimeter. By using a dimensionless quantity,
that is invariant under scaling, we can compare memory ef-
fects and I/V characteristics despite the decay generated by
the dissipative dynamics. We calculate the form factor over
consecutive periods where the Lissajous curves reach zero
(origin), thus forming a closed loop. Figure 3 shows the form
factor of the hysteresis curves as a function of the period for
the uncoupled and coupled QMs. We see that for the uncou-
pled QMs the form factor is essentially constant as the area
and the square of the perimeter decay at the same rate. This
decay appears since the system does not receive additional
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FIG. 3. Form factor of the hysteresis curves as a function of
the period for (a) identical and (b) nonidentical QMs. QM1 and
QM2 are shown using diamonds and dots, respectively. For identi-
cal QMs, the parameters are |�(π/4, π/2)〉, C1 = C2 = 3.6 [fF],
L1 = L2 = 6.1 [μH], leading to a memristor frequency of ω1 = ω2 =
5.03 [GHz]. For nonidentical QMs, |�(π/3, π/2)〉, C1 = 3.6 [fF],
C2 = 2.6 [fF], L1 = [μH], L2 = [μH], leading to a memristor
frequency of ω1 = 6 [GHz] and ω2 = 8 [GHz].

energy and the input voltage decays due to dissipation, so
that the hysteresis follows a constant decay over time. For
the coupled QMs, the form factor shows damped oscillations
related to the correlation of the inputs. In this case, because the
hysteresis curves shrink and expand, it is natural to observe
the same pattern in the dynamics of the form factor. For the
identical QMs, we see an improvement in the performance of
the coupled system. In this manner, the peaks of the form fac-
tor overpass the uncoupled case, exhibiting robustness against
the loss of its memristive capacities due to dissipation. For the
case of nonidentical QMs, we can see that there is a tradeoff
in memristive capacities since there is a phase difference
between the oscillations of the form factor of each coupled
QM. This interesting feature manifests since in the timescale
of oscillation of any one of them the decrease and increase
in the area of one are compensated by the other. Thus, we
observe that the coupling of QMs leads to correlated inputs as
the system evolves, inducing periodic decay and revival of the
memory.
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FIG. 4. Entanglement and memristive dynamics for (a), (d) identical and (b), (c), (e) nonidentical QMs. We show the memristive dynamics
for four oscillations in each case. The form factor (normalized with respect to the concurrence) is plotted along with the concurrence, using
the same colors for each oscillation as the hysteresis curves. The form factors for QM1 and QM2 are shown using dots and diamond markers,
respectively. Memory revivals can be observed after three oscillations in (d) and after two oscillations for QM1 in (e). For QM2, it can be
observed at later times since the dynamics is plotted in the timescale of QM1. The insets show entanglement sudden death and entanglement
sudden birth. We have used the same initial state and system parameters as those in Fig. 3.

VII. ENTANGLEMENT AND MEMRISTIVE DYNAMICS

Following the previous discussion, which hints at a
relationship between the quantum correlations and the
memristive behavior, we investigate the interplay between
the entanglement and the memristive dynamics. We com-
pare the memristive dynamics with the evolution of
the quantum correlations computed via the concurrence
[46,47] which, for a 2 ⊗ 2 bipartite state ρ, has a closed
form

C = max{0, λ1 − λ2 − λ3 − λ4} (11)

where λi are the eigenvalues of the matrix R =
√

ρ1/2ρ̃ρ1/2

ordered in decreasing order, with ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy)
where σy is the y-component Pauli matrix. C takes values
from zero to one for uncorrelated and maximally correlated
states, respectively. Figure 4 shows the memristive dynamics
and the concurrence for the cases of identical (ω1 = ω2) and
nonidentical (ω1 
= ω2) QMs. The selection of system param-
eters is based on the adiabatic evolution of open quantum
systems [48] and according to the current state-of-the-art ex-
perimental setups for superconducting circuits. The hysteresis
plots are shown for the first four oscillations and the form
factor is plotted along with the concurrence in the timescale
of QM1. Comparing the timescales of the form factor and
the concurrence, Fig. 4(d), for the identical QMs we see that
the periodic shrink and expansion of the hysteresis curves
coincide with the increase and decrease of the entanglement
over each period. Accordingly, this shows an inverse rela-
tionship between the memristive dynamics and the quantum
correlations. Since current and voltage are local observables,
an increase in the entanglement leads to a loss of locality,

producing hysteresis curves with a smaller area. When the
QMs are detuned, Fig. 4(e), the distribution of information
exchange between the QMs is uneven due to which the shrink
and expansion of the hysteresis and the corresponding rise and
decay of the quantum correlations do not happen in the same
timescale. This induces a phase shift between the oscillations
of the quantum correlations and the memristive behavior. It
is interesting to notice that the entanglement dynamics are
also related to the direction of the hysteresis curve. For a
given memristor, the relative phase between the voltage and
current dictates the direction in which the hysteresis curve is
drawn in time. In our case, the interaction between memristors
makes the relative phase time dependent. As a consequence,
the direction of the hysteresis curve is periodically reversed
during the time evolution. The first reversal of the direction of
the hysteresis curve is shown in Fig. 5. Specifically, in Fig. 5
a (left), we see the pinched hysteresis loop of both mem-
ristors, while the right panels show the corresponding time
dependence of voltage and current. Notice that the memristors
have opposite direction in their hysteresis curves. We can also
see that for each memristor, as time increases, the relative
phase between current and voltage decreases and eventually
reverses, which changes the direction of the hysteresis curve,
as can be seen in Fig. 5(c). Interestingly, this change in
direction happens when the concurrence between the mem-
ristors is maximum, as can be seen by comparing Fig. 5 with
Fig. 4(a). There, the colors are chosen to correspond to the
same oscillations. Then, entanglement reaches its maximum
value when the relative phase between current and voltage is
minimum.

We also observe that the system exhibits periodic entan-
glement sudden death (ESD) and entanglement sudden birth
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(a) (b) (c)
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FIG. 5. Direction of the hysteresis curve (left) and corresponding time dependence of current and voltage (right) at the (a) first oscillation,
(b) third oscillation, and (c) fourth oscillation for the case of identical memristors. The first (second) row corresponds to QM1(2). We can see
that the relative phase between voltage and current changes in time. In the fourth oscillation (c), this phase has reversed, which changes the
direction of the hysteresis curve. We have used the same initial state and system parameters as in Fig. 3.

(ESB) [49], as shown in the insets of Fig. 4 for identical
and nonidentical QMs. The entanglement dynamics in the
two coupling schemes differ by timescales and the maximal
peak of the entanglement. With detuning, the time taken to
reach the death state and the maximal entanglement tends to
decrease. ESD and ESB appear due to two identified factors.
The first one corresponds to the competition between the
two timescales of the system dynamics. Faster oscillations
at time τ1 = 2π/ω� correspond to the updated time of the
voltage input of the QM and an enveloping at time τ2 = 2π/g,
where g = √

ω1ω2α(β ), coinciding with the entanglement
or disentanglement of the system. The second factor stems
from the existence of an effective interaction mediated be-
tween subsystem-subsystem, environment-environment, and
subsystem-environment. ESB implies the existence of correla-
tions between the system and the environment. The oscillatory
behavior of the entanglement and memristive dynamics is
a consequence of them, causing a backflow of information.
Moreover, the loss of information due to a decay of quantum
correlations shows up in the reservoir, increasing the memory
and vice versa. Notice that in our system the QMs become
entangled because of the nature of their interaction. There
are other ways for entangling quantum systems by combina-
tion of strong driving and dissipative processes [50]. This is
an interesting possibility that could be considered for future
works.

VIII. CONCLUSIONS

We have studied the dynamics of two coupled quan-
tum memristors, observing that the capacitive and inductive
interactions correlate the input, producing shrink and ex-
pansion of the hysteresis loop. As a consequence, periodic
decays and revivals of their associated memories emerge.
This behavior is inversely related to the quantum correla-
tions generated in the composite quantum system. We find
that coupling the memristors changes the relative phase
between the current and voltage in time. Therefore, the di-
rection of the hysteresis curve is periodically reversed during
the time evolution. We find that the change in direction

happens whenever the entanglement reaches a maximal value.
In addition, we observe that the composite system exhibits
entanglement sudden death and sudden birth due to a com-
bination of the effect of the periodic adiabatic driving and the
coupling.

Compared to classical coupled memristors [16,17], we ob-
tain correlated inputs and nonclassical correlations improving
the memristive features of our quantum device. The enhance-
ment in the memristive properties could lead to improvements
in neuromorphic algorithms if we replace the classical mem-
ristors by their quantum counterparts; a good example is
provided by Ref. [25], which employs quantum memris-
tors for reservoir computing. Other applications may involve
analog simulation of differential equations [51], or analog
quantum neural networks composed of quantum memristors
similar to the ones implemented with memristive crossbar
latch architectures [52].

Ordered behavior in nonlinear systems is useful in real-
izing neuromorphic architectures. This paper advances the
understanding of the interplay between memristivity and
entanglement in open quantum systems. Furthermore, it
lays the foundations for developing neuromorphic quantum
computing and quantum neural networks with accessible su-
perconducting technologies, on the way to reach quantum
advantage with noisy intermediate-scale quantum era archi-
tectures.
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APPENDIX A: DERIVATION OF THE
CIRCUIT HAMILTONIAN

The Lagrangian of the circuit shown in Fig. 1 from the
main text is given by

L =
∑
�=1,2

[
C,�

2
ϕ̇2

� + EJ� cos

(
ϕ� + φd�(t )

ϕ0

)

+ EJ� cos

(
ϕ� + φd�(t ) + φs�

ϕ0

)
− ϕ2

�

2L�

]

+ Cc(ϕ̇2 − ϕ̇1)2

2
− (ϕ2 − ϕ1)2

2Lc
, (A1)

where C,1 = CJ1 + CJ2 and C,2 = CJ3 + CJ4 are the effec-
tive capacitance of the CA-SQUIDs, EJ� is the Josephson
energy of the � junction, φs� is the static magnetic flux thread-
ing each SQUID, L� is the inductance of the �th quantum
memristor, φd�(t ) is the time-dependent magnetic flux through
each quantum memristor, and ϕ0 = h̄/2e is the reduced flux
quanta. Finally, Cc and Lc are the coupling capacitance and
inductance, respectively. Notice that for static magnetic flux
at φs�/ϕ0 = π the Josephson energy contributions cancel each
other, and the system Lagrangian simplifies to

L =
∑
�=1,2

[
(C,� + Cc)

2
ϕ̇2

� −
(

1

2L�

+ 1

2Lc

)
ϕ2

�

]

−Ccϕ̇1ϕ̇2 + ϕ1ϕ2

Lc
. (A2)

Now, the conjugate momenta q� = (∂L/∂ϕ̇�) are

q1 = (C,1 + Cc)ϕ̇1 − Ccϕ̇2, (A3)

q2 = −Ccϕ̇1 + (C,2 + Cc)ϕ̇2. (A4)

We can write �q = Ĉ �̇ϕ, where �q = (q1, q2), and �ϕ = (ϕ1, ϕ2)
and

Ĉ =
(

C,1 + Cc −Cc

−Cc C,2 + Cc

)
. (A5)

The Hamiltonian of the circuit is given by the transformation
H = �q T �̇ϕ − L = �q T Ĉ−1 �q − L, then

H =
∑
�=1,2

[
Ĉ−1

�,� q2
�

2
+ L̂−1

�,�ϕ
2
�

2

]
+ Ĉ−1

1,2q1q2 − L̂−1
1,2ϕ1ϕ2.

Here, Ĉ−1
j,k and L̂−1

j,k are the matrix elements ( j, k) of the inverse
of the capacitance and inductance matrix given by

Ĉ−1 = 1

C�

(
Cc + C2 Cc

Cc Cc + C1

)
,

(A6)

L̂−1 =
( 1

Lc
+ 1

L1
− 1

Lc− 1
Lc

1
Lc

+ 1
L2

)
,

with C� = Cc(C1 + C2) + C1C2. To quantize the cir-
cuit Hamiltonian, we promote the variables to opera-
tors. This means that q� → q̂� = −2en̂�, and ϕ�/ϕ0 → φ̂�,
with [φ̂�, n̂�′ ] = iδ�,�′ . Therefore, the quantum Hamiltonian

reads

H =
∑
�=1,2

[
EC�,�

n̂2
� + EL�,�

2
φ̂2

�

]
+ EC1,2 n̂1n̂2 − EL1,2 φ̂1φ̂2,

(A7)

where EC = 2e2Ĉ−1 is the charge energy and EL = ϕ2
0 L̂−1 is

the inductive energy. For simplicity, we can redefine q̂� and φ̂�

in terms of creation and annihilation operators as

n̂� = i

4g�

(a†
� − a�), (A8)

φ̂� = 2g�(a†
� + a�), (A9)

where g� = (EC�,�
/32EL�,�

)1/4 is proportional to the zero-point
fluctuation of the phase operator. Finally, the quantum Hamil-
tonian reads

Ĥ =
1∑

�=1,2

h̄ω�â†
� â� − √

ω1ω2(α − β )(â†
1â2 + â1â†

2),

(A10)

where ω� = √
2EC�,�

EL�,�
/h̄ is the frequency of the �th QMs.

Moreover, α = EL1,2/
√

EL1EL2 and β = EC1,2/
√

EC1EC2 stand
for the inductive and charge energy ratios.

APPENDIX B: MEMRISTIVE EQUATIONS

We derive the equation of motion for the mean value of the
observables n̂� and φ̂�, which are related to the current flowing
and the voltage across the memristor. We will consider the
dynamics in the Schrödinger picture, where it is governed by
the following master equation:

˙̂ρ(t ) = − i

h̄
[H, ρ̂] +

∑
�=1,2

��(t )

2

[
L�ρ̂L† − 1

2
{L†L, ρ̂}

]
.

(B1)

Here, ρ̂(t ) is the density matrix describing the system and
˙̂ρ(t ) = d ρ̂(t )/dt represents the derivative with respect to
time. Moreover, H is the system Hamiltonian in Eq. (A10),
while L� = √

��(t )a� is the collapse operator describing the
quasiparticle tunneling of the �th QMs at the rate ��(t ) =
|〈0| sin(φ�/2)|1〉|2SQP(ω�).

We are interested in the time evolution of the expectation
value 〈Ô(t )〉 = Tr[Ôρ̂(t )] with Ô = {n̂�, ϕ̂�}. Using Eq. (B1),
we obtain the equation of motion for Ô as

d〈Ô(t )〉
dt

= − i

h̄
Tr[[H,O]ρ̂(t )] + Tr[D̃[O]ρ̂(t )], (B2)

where D̃[O] = �(t )(a†Oa − {a†a,O}/2) corresponds
to the Lindbladian for the operator O. For n̂k , we
obtain

d〈n̂k〉
dt

= ELk,k 〈φ̂k〉 − EL1,2 (〈φ̂1〉δ2,k − 〈φ̂2〉δ1,k )

− Tr[D̃[n̂]ρ̂(t )] (B3)

and

D̃[n̂k] = 4i�(t )

g0

[
− a†

k

2
+ ak

2

]
= −�(t )

2
n̂k . (B4)
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FIG. 6. Inductively coupled QMs. Entanglement and memristive dynamics for the case of (a), (d) identical memristors and (b), (c), (e)
nonidentical memristors. Memristive dynamics are shown for five oscillations using five different colors. The corresponding form factor
(normalized with respect to the concurrence) is plotted using the same color combination of points for each oscillation along with the
concurrence. The parameter choice and initialization are the same as in Fig. 3 of the main text.

Thus, the equation of motion reads

d〈n̂k〉
dt

= ELk,k 〈φ̂k〉 − EL1,2 (〈φ̂1〉δ2,k − 〈φ̂2〉δ1,k ) − �(t )

2
〈n̂k〉.

(B5)

Analogously for φ̂k , we obtain

d〈φ̂k〉
dt

= −2ECk,k 〈n̂k〉 − EC1,2 (〈n̂1〉δ2,k + 〈n̂2〉δ1,k ) − �(t )

2
〈φ̂k〉.
(B6)

APPENDIX C: INDUCTIVELY COUPLED
QUANTUM MEMRISTORS

In this section, we discuss the results of the inductive
interaction between the QMs. We omit the dynamic response
and the performance since it is included in the main text for
the capacitively coupled QMs. Here, we show that the inverse
relation between entanglement and memristive dynamics is
also satisfied for the inductive interaction along with the ob-
servation of ESD and ESB.

Figure 6 shows the entanglement and memristive dynam-
ics for the QMs coupled via inductive interaction. The form
factor is shown along with the concurrence with the same
color points as their corresponding pinched hysteresis loop.
We observe that the coupling leads to the periodic shrink and

F
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F
o
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to
r

(b)

)( )(

FIG. 7. QMs coupled via an inductor and a capacitor simultaneously. Form factor (area/perimeter2) of the hysteresis curves as a function
of the period for (a) identical and (b) nonidentical QMs. QM1 and QM2 are shown using diamonds and dots, respectively. The parameter choice
and initialization are the same as in Fig. 3 of the main text.
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FIG. 8. QMs coupled via an inductor and a capacitor simultaneously. Direction of the hysteresis curve (left) and corresponding time
dependence of current and voltage (right) at the (a) first oscillation, (b) 14th oscillation, and (c) 29th oscillation for the case of identical
memristors. The first (second) row corresponds to QM1(2). We can see that the relative phase between voltage and current changes in time. In
the 14th oscillation (b), this phase has reversed, which changes the direction of the hysteresis curve, and the relative phase is inverted in the
29th oscillation (c). We have used the same initial state and system parameters as in Fig. 3.

expansion of the hysteresis curve along with the periodic rise
and decay of the concurrence. To reflect upon this fact, we
can compare the timescales of the form factor and the con-
currence for identical QMs, Fig. 6(d), where we can find that
the loss of entanglement is accompanied by the increase in the
form factor. This hints that the entanglement and memristive
dynamics may generally be inversely related to each other.
Furthermore, the interaction leads to the competition between
the input voltage update time (τ1 = 2π/ω�) and the envelop-
ing time (τ2 = 2π/g) of the QM inducing ESD (shown in the
insets) and ESB which can be observed for both the cases.
On the other hand, similar to the capacitive coupling, when
we detune the QMs, Fig. 6(e), the distribution of information

exchange between them is uneven due to which the shrink
and expansion of the hysteresis and the corresponding rise and
decay of the quantum correlations do not happen in the same
timescale.

In conclusion, despite the minor differences in the plots
of the inductive and capacitive coupling, which are mainly
due to the very nature of the circuit elements, the interac-
tion produces correlated inputs during the system evolution
leading to periodic shrink and expansion of the hystere-
sis and the rise and decay of the entanglement. The
inverse behavior of the entanglement and memristive dy-
namics can be generally observed when the detuning is
low.
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FIG. 9. QMs coupled via an inductor and a capacitor simultaneously. Entanglement and memristive dynamics for the cases of (a), (d)
identical QMs and (b), (c), (e) nonidentical QMs. Memristive dynamics are shown for four oscillations in the timescale of QM1 using different
colors. The corresponding form factor is plotted using the same color combination of points for each oscillation along with the concurrence.
The parameter choice and initialization are the same as in Fig. 3 of the main text.
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APPENDIX D: QUANTUM MEMRISTORS COUPLED VIA
AN INDUCTOR AND A CAPACITOR SIMULTANEOUSLY

Apart from using either an inductor or a capacitor, the
coupling characteristics can be investigated when both the
circuit elements are simultaneously used to couple the QMs.
Thus, the system is fully described by the simplified and the
quantized Hamiltonian given in Eqs. (A7) and (A10) with both
the inductive and capacitive coupling contributions. For this
system we study the performance and the entanglement and
memristive dynamics in order to compare them with the other
coupling schemes.

The performance, quantified by the form factor (F =
4π A

P2 ), is shown in Fig. 7, for identical and nonidentical cases.
As we can see, the coupling leads to correlated inputs inducing
rise and decay of the form factor. In comparison to the induc-
tive and capacitive coupling, the oscillation frequency is low.
Here the coupling does not lead to an enhanced performance
of the QMs. Moreover, the nonidentical ones do not show a

significant change in their behavior as compared to the identi-
cal case. This observation can be understood by investigating
the interplay of the entanglement and memristive dynamics
as shown in Fig. 7. Similar to the other cases, the periodic
shrink and expansion of the hysteresis curves and the rise and
decay of the concurrence are observed. We see that there is no
observation of the ESD and ESB phenomena. The entangle-
ment in this case is very low due to which the maximal and
minimal concurrence and form factor never coincide and their
oscillation frequencies are not comparable. Therefore, here we
observe that the coupling leads to correlated inputs but there
is no observation of ordered characteristics as in the coupling
via a single inductor or capacitor. Nonetheless, the direction
of the hysteresis is reversed during the time evolution of the
system. As can be seen in Fig. 8(a), the two QMs initialized
out of phase have their relative phases inverted during the
time evolution of the system [Fig. 8(c)]. This inversion occurs
when the entanglement tends towards a maximum value after
undergoing net decay (compare with Fig. 9).
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