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In this work, we present a lower bound on the quantum Fisher information (QFI) which is efficiently
computable on near-term quantum devices. This bound itself is of interest, as we show that it satisfies the
canonical criteria of a QFI measure. Specifically, it is essentially a QFI measure for subnormalized states, and
hence it generalizes the standard QFI in this sense. Our bound employs the generalized fidelity applied to a
truncated state, which is constructed via the m largest eigenvalues and their corresponding eigenvectors of the
probe quantum state ρθ . Focusing on unitary families of exact states, we analyze the properties of our proposed
lower bound, and demonstrate its utility for efficiently estimating the QFI.
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I. INTRODUCTION

Quantum Fisher information (QFI) [1,2] quantifies the ul-
timate precision with which one can estimate a parameter
θ from a θ -dependent quantum state ρθ via the quantum
Cramér-Rao bound. This quantity is of fundamental impor-
tance for quantum metrology [3–7]. Moreover, the QFI has
been studied in the context of quantum phase transitions
[8–10], quantum information geometry [11,12], and quantum
information [13–20].

The general definition of the QFI is

I (θ ; ρθ ) = Tr
[
J2
θ ρθ

]
, (1)

where Jθ is called symmetric logarithmic derivative (SLD)
operator satisfying the following Lyapunov equation:

∂θρθ = 1
2 (Jθρθ + ρθJθ ). (2)

Also, the QFI is associated with the standard fidelity between
the exact state ρθ and the error state ρθ+δ as

I (θ ; ρθ ) = 8 lim
δ→0

1 − F (ρθ , ρθ+δ )

δ2
, (3)

where F (ρ1, ρ2) = ||√ρ1
√

ρ2||1 is the standard fidelity, and

with the trace norm given by ||A||1 = Tr[
√

AA†].
In spite of its theoretical significance, the QFI is in general

a difficult quantity to compute. Calculating the SLD operator
requires one to solve the Lyapunov equation, which in turn
needs full knowledge of the exact state ρθ , which is not always
known in practice. In addition, when employing Eq. (3) to
determine the QFI, one encounters the serious difficulty that
there is no efficient algorithm to compute the fidelity between
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arbitrary states. The complexity of the classical algorithms for
fidelity estimation can scale exponentially due to the expo-
nentially large dimension of the density matrices with respect
to the number of qubits [21]. But even quantum algorithms
face complexity theoretic arguments [22], and the fact that
the nonlinear nature of fidelity implies that a finite number
of copies of ρθ cannot lead to an exact computation of the
fidelity. Hence, instead of exactly computing the QFI, one can
estimate the QFI by bounding it [23,24].

This is precisely the goal of this paper, where we in-
troduce an efficiently computable lower bound for the QFI.
Our bound is based on the truncated (and therefore sub-
normalized) state constructed by projecting the exact state
ρθ into the subspace of its m-largest eigenvalues. Particu-
larly, we focus on the family of quantum states of the form
ρθ = W (θ )ρW †(θ ), where ρ is called the probe state, and
we define W (θ ) = e−iθG with a Hermitian and θ -independent
generator G. As in Ref. [25], we refer to the set of states
of this form as a unitary family. This family of states is
general enough to describe phase estimation tasks, such as
magnetometry [5,26,27].

Our results are derived by employing the concepts of gen-
eralized fidelity [28,29] and truncated states [21] to construct
an efficiently computable quantity which we call truncated
quantum Fisher information (TQFI). Our main results are a
series of lemmas that prove that TQFI lower bounds the stan-
dard QFI, and that TQFI satisfies various properties, including
most of the canonical criteria for a measure of QFI. In addi-
tion, we also introduce a quantity that we call the generalized
Bures distance, from which we provide a geometrical inter-
pretation to the TQFI. We note that in our recent work [30],
we have proposed a trainable variational quantum algorithm
to estimate QFI and further prepare the optimal state for phase
estimation by using TQFI.
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FIG. 1. Set of eigenvalues {λi}d
i=1 for a subnormalized quantum

state. Simplexes are shown for a d-dimensional Hilbert space with
(a) d = 2 and (b) d = 3. The eigenvalues of normalized states in
S=(H) lie on a (d2 − 1) simplex: a line segment in (a), and a triangle
in (b). The eigenvalues of a pure state lie on the edges of the simplex,
while those of a mixed state are on the centroid of the simplex. The
eigenvalues of subnormalized states in S�(H) can be obtained from
the subnormalization condition

∑d
i=1 λi � 1. In the diagrams, the

origin corresponds to the zero operator.

This paper is organized as follows. We first provide theoret-
ical background in Sec. II. Then, Sec. III introduces the TQFI
and its associated Hermitian SLD operator, and presents our
main results. Finally, we offer some concluding remarks in
Sec. IV.

II. THEORETICAL BACKGROUND

In this section we provide some theoretical background that
will be useful to define the TQFI. Specifically, we discuss
the generalized fidelity, a measure of distinguishability for
subnormalized states. We then discuss how the generalized
fidelity can be used to construct an upper bound for the stan-
dard fidelity. We remark that this bound will be the basis of
the definition of the TQFI.

Let H be a d-dimensional Hilbert space. A quantum state ρ

on H is defined as a Hermitian, positive semidefinite operator
of trace equal to 1. Hence, the set of normalized quantum
states on H can be defined as

S=(H) = {ρ : ρ† = ρ, ρ � 0, Tr[ρ] = 1}, (4)

which forms a convex set with real dimension (d2 − 1).
Relaxing the normalization condition, one arrives at the fol-
lowing definition.

Definition 1 (Subnormalized state). A Hermitian, positive
semidefinite operator τ on H is said to be a subnormalized
quantum state if Tr[τ ] � 1.

Definition 1 allows us to introduce S�(H) as the set of
subnormalized states on H, that is,

S�(H) = {τ : τ † = τ, τ � 0, Tr[τ ] � 1}. (5)

As schematically shown in Fig. 1, it follows that S=(H) ⊂
S�(H). Moreover, S�(H) has dimensionality d2, and can be
obtained as the convex hull of the set of quantum states and the

zero operator S�(H) = Conv[0,S=(H)] [31]. Subnormalized
quantum states have been used in quantum information theory
as a convenient generalization of normalized quantum states
[28,29,31]. Moreover, exciting new work on near-term quan-
tum algorithms utilizes truncated, and thus subnormalized,
quantum states to avoid having to store an exponentially large
density matrix, thus making the algorithms implementable on
the noisy intermediate-scale quantum computers [21,30,32].
This exciting new research direction is the primary motivation
for this work.

In Refs. [28,29] the authors introduced a generalization of
the standard quantum fidelity to subnormalized states, which
is known as the generalized fidelity, and which is given as
follows.

Definition 2 (Generalized fidelity). Given two subnormal-
ized states τ, σ ∈ S�(H), the generalized fidelity between τ

and σ is

F∗(τ, σ ) = ||√τ
√

σ ||1 +
√

(1 − Tr[τ ])(1 − Tr[σ ]), (6)

where ||A||1 = Tr[
√

AA†] is the trace norm.
Note that the generalized fidelity reduces to the standard

fidelity F if at least one of the two states is normalized.
That is,

F∗(τ, σ ) = F (τ, σ ) = ||√τ
√

σ ||1, (7)

if τ or σ is in S=(H).
As shown in Refs. [21,28,29], the generalized fidelity has

the following relevant properties:
(1) Invariance under unitary transformations. Given two

subnormalized states τ, σ ∈ S�(H), and for any unitary V in
the unitary group U (d ) of degree d , we have

F∗(V τV †,V σV †) = F∗(τ, σ ). (8)

(2) Concavity. Given subnormalized states τ1, τ2, σ1, σ2 ∈
S�(H), and a real number q ∈ [0, 1], then

F∗[qτ1 + (1 − q)τ2, qσ1 + (1 − q)σ2]

� qF∗(τ1, σ1) + (1 − q)F∗(τ2, σ2). (9)

(3) Monotonicity under completely positive trace non-
increasing (CPTNI) maps. Given two subnormalized states
τ, σ ∈ S�(H), and a CPTNI map 	, then

F∗(τ, σ ) � F∗(	(τ ),	(σ )). (10)

We note that CPTNI maps are the mathematical gen-
eralization of completely positive trace-preserving (CPTP)
maps, which become useful when one allows for subnor-
malized quantum states [28,29,31]. Additionally, they have
the physical interpretation of describing an experiment in
which the measurement apparatus does not work with some
probabilities [31].

Let us now discuss how the generalized fidelity can be used
to upper bound the standard fidelity. Consider a projection
operator 
 which maps states to a subspace of H. Note that

 defines a CPTNI map as 	(ρ) = 
ρ
 which maps states
in S=(H) and in S�(H) to subnormalized states in S�(H).
Then, from the monotonicity under CPTNI maps of the gen-
eralized fidelity, the following bound on the standard fidelity
F (ρ, ρ̃ ) holds for any pair of normalized states ρ and ρ̃ [21]:

F (ρ, ρ̃ ) � F∗(
ρ 
,
 ρ̃ 
). (11)
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In Ref. [21], the authors proposed an algorithm that can
efficiently compute the upper bound in Eq. (11) for certain 
.
Specifically, in that work, 
 is the operator that projects onto
the Hilbert space spanned by the eigenvectors of the m-largest
eigenvalues of ρ. That is, given the spectral decomposition
ρ = ∑

i λi|λi〉〈λi|, we define


m
ρ =

m∑
i=1

|λi〉〈λi|. (12)

This operator allows us to introduce the truncated states ρ (m)

and ρ̃ (m):

ρ (m) = 
m
ρ ρ
m

ρ =
m∑

i=1

λi|λi〉〈λi|,

ρ̃ (m) = 
m
ρ ρ̃ 
m

ρ ,

(13)

which leads to the following expression of the generalized
fidelity for these states:

F∗(ρ (m), ρ̃ (m) ) = Tr[
√

T ] +
√

(1−Tr[ρ (m)])(1−Tr[̃ρ (m)]).
(14)

Here, T is a positive semidefinite m × m operator given by

T =
m∑

i, j=1

√
λiλ j〈λi |̃ρ|λ j〉|λi〉〈λ j |. (15)

Finally, let us remark that the upper bound F∗(ρ (m), ρ̃ (m) ) �
F (ρ, ρ̃ ) gets monotonically tighter with m, with equality hold-
ing if m = rank(ρ) [21].

III. TRUNCATED QUANTUM FISHER INFORMATION

From the discussions above, in this section, we introduce
a generalized measure of the QFI definable with the sub-
normalized state, which we call TQFI, and show that it is a
lower bound on the standard QFI. We then present some of
its properties in the form of lemmas, which we prove in the
Appendices, and present its geometrical interpretation in the
space of subnormalized states.

A. Definition of the TQFI

Consider the (normalized) exact state ρθ , and the (normal-
ized) error state ρθ+δ . These states encode the information of
an unknown parameter θ and of a shift δ in a probe state ρ of
rank r as

ρθ = W (θ )ρW †(θ ),

ρθ+δ = W (θ + δ)ρW †(θ + δ),
(16)

with

W (θ ) = e−iθG, (17)

where G is a θ -independent Hermitian operator.
Given the spectral decomposition of the exact state
ρθ = ∑

i λi|λi(θ )〉〈λi(θ )| with |λi(θ )〉 = W (θ )|λi〉, we define
the operator that projects onto the Hilbert space spanned by
the eigenvectors corresponding to the m-largest eigenvalues
of ρθ as 
m

ρθ
= ∑m

i=1 |λi(θ )〉〈λi(θ )|. Then, we define the

truncated (subnormalized) states

ρ
(m)
θ = 
m

ρθ
ρθ


m
ρθ

=
m∑

i=1

λi|λi(θ )〉〈λi(θ )|,

ρ
(m)
θ+δ = 
m

ρθ
ρθ+δ


m
ρθ

.

(18)

Finally, we have the following definition for the TQFI.
Definition 3 (Truncated quantum Fisher information).

Given an exact state ρθ and error state ρθ+δ in S=(H), let ρ
(m)
θ

and ρ
(m)
θ+δ denote their truncated versions according to (18)

such that ρ
(m)
θ , ρ

(m)
θ+δ ∈ S�(H). The truncated quantum Fisher

information is

I∗(θ ; ρ (m)
θ ) = 8 lim

δ→0

1 − F∗(ρ (m)
θ , ρ

(m)
θ+δ )

δ2
. (19)

B. TQFI as a lower bound

From Eq. (11) we have that the following lemma holds.
Lemma 1. The TQFI of Definition 3 is a lower bound for

the QFI

I∗(θ ; ρ (m)
θ ) � I (θ ; ρθ ), (20)

where I (θ ; ρθ ) is the QFI defined in (3). In addition, the TQFI
is monotonically increasing with m, i.e.,

I∗(θ ; ρ (m)
θ ) � I∗(θ ; ρ (m+1)

θ ), (21)

with the equality in (20) holding if m = r, where r = rank(ρ).
Lemma 1 provides an operational meaning of the TQFI as

a lower bound on the standard QFI. We remark that since the
generalized fidelity is a tight bound for high purity states, the
TQFI will also be a tight bound on the QFI in this case.

C. Computation of TQFI

Let us briefly discuss how the TQFI can be computed. We
refer the reader to our work [30] for a much more detailed de-
scription of the estimation of TQFI. As previously mentioned,
the generalized fidelity can be efficiently computed for m ∈
O{poly[log(d )]} via a variational hybrid quantum-classical
algorithm [33] called the variational quantum fidelity estima-
tion algorithm in Ref. [21], which uses state diagonalization
as a subroutine [32,34]. Assuming this state diagonalization
subroutine is efficient, it follows that one can efficiently ap-
proximate the TQFI and lower bound the QFI by using the
algorithm in Ref. [21] and computing [1 − F∗(ρ (m)

θ , ρ
(m)
θ+δ )]/δ2

for small δ.

D. Properties of the TQFI

To further understand the meaning of the TQFI, it is useful
to express this quantity in the representation of the eigenbasis
of ρ.

Lemma 2. The TQFI of Definition 3 can be written as

I∗(θ ; ρ (m)
θ ) =4

m∑
i, j=1

λi|Gi j |2 − 8
m∑

i, j=1

λiλ j

λi + λ j
|Gi j |2, (22)

where Gi j = 〈λi |G|λ j〉, and where we recall that λi = 0
for i > r.
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Recalling that the standard QFI can be expanded in the
eigenbasis of ρ as [35]

I (θ ; ρθ ) = 4
d∑

i, j=1

λi|Gi j |2 − 8
d∑

i, j=1

λiλ j

λi + λ j
|Gi j |2 (23)

with again λi, j = 0 for i, j > r, we can see that the first two
terms in (22) are simply obtained by truncating the summa-
tions of (23) so that i, j = 1, . . . , m; and while this may seem
like the natural way to generalize the QFI to subnormalized
states, the derivation of Eq. (22) and the proofs of the prop-
erties required for it to satisfy the canonical criteria of a QFI
measure are nontrivial. Before listing these important prop-
erties, let us consider an alternative definition for the TQFI
by introducing the truncated symmetric logarithmic derivative
(TSLD).

Definition 4 (Truncated symmetric logarithmic derivative
operator).Given a subnormalized truncated exact state ρ

(m)
θ ∈

S�(H) defined according to (18), the TQFI of Definition 3
can be expressed as

I∗(θ ; ρ (m)
θ ) = Tr

[
L2

θ ρ
(m)
θ

]
, (24)

where

Lθ = 2
m∑

i, j=1

〈λi(θ )|∂θρ
(m)
θ |λ j (θ )〉

λi + λ j
|λi(θ )〉〈λ j (θ )| (25)

is the TSLD operator. For the unitary families, we particularly
have

Lθ = 2i
m∑

i, j=1

λi − λ j

λi + λ j
〈λi|G|λ j〉|λi(θ )〉〈λ j (θ )|. (26)

As we can see, the TSLD is simply obtained by truncating
the summation of the SLD operator.

From the previous definitions and lemmas we can derive
the following properties of the TQFI.

Lemma 3. From the definition of the TQFI, for the unitary
families ρθ = W (θ )ρW †(θ ), I∗(θ, ρ

(m)
θ ) satisfies the follow-

ing properties:
(1) Invariance under unitary transformations. Given

a truncated subnormalized state ρ
(m)
θ ∈ S�(H), for any

θ -independent unitary V in the unitary group U (d ) of degree
d , we have

I∗
(
θ,V ρ

(m)
θ V †

) = I∗
(
θ, ρ

(m)
θ

)
. (27)

Convexity. For two truncated subnormalized states
ρ

(m)
θ , ξ

(m′ )
θ ∈ S�(H) with ρ

(m)
θ = 
m

ρθ
ρθ


m
ρθ

and ξ
(m′ )
θ =


m′
ξθ

ξθ

m′
ξθ

, with a real number q ∈ [0, 1], we have

I∗
[
θ ; qρ

(m)
θ + (1 − q)ξ (m′ )

θ

]
� qI∗

(
θ ; ρ (m)

θ

) + (1 − q)I∗
(
θ ; ξ (m′ )

θ

)
. (28)

(2) Monotonicity under CPTNI maps. Given a truncated
subnormalized state ρ

(m)
θ ∈ S�(H), and a CPTNI map 	,

we have

I∗
(
θ,	(ρ (m)

θ )
)

� I∗
(
θ, ρ

(m)
θ

)
. (29)

(3) Subadditivity for product of truncated states. Given
a product of truncated states σ = ⊗

k ρ
(mk )
k,θ

, where ρ
(mk )
k,θ

=


mk
ρk,θ

ρk,θ

mk
ρk,θ

, then we have

I∗(θ ; σ ) �
∑

k

I∗
(
θ ; ρ (mk )

k,θ

)
. (30)

(4) Additivity for direct sum of truncated states. Given a
direct sum of truncated states σ = ⊕

k μkρ
(m)
k,θ

, where ρ
(mk )
k,θ

=

mk

ρk,θ
ρk,θ


mk
ρk,θ

, and where μk are θ -independent coefficients
such that 0 <

∑
k μk � 1, we have

I∗(θ ; σ ) =
∑

k

μkI∗
(
θ ; ρ (mk )

k,θ

)
. (31)

Note that the TQFI satisfies the same properties as those
that the standard QFI satisfies (see Ref. [2] for a review of the
properties of the QFI), except for the additivity for product of
states. Here, the TQFI satisfies instead a subadditivity prop-
erty which naturally follows from the fact that the states are
subnormalized.

Let us finally discuss the geometric interpretation of the
TQFI. From Eq. (19) we first define the generalized Bures
distance.

Definition 5 (Generalized Bures Distance). Given two
subnormalized states τ, σ ∈ S�(H), the generalized Bures
distance is

B2
∗(τ, σ ) = 2[1 − F∗(τ, σ )]. (32)

Here we remark that the generalized Bures distance is
closely related to the purified distance for subnormalized
states introduced in Refs. [28,29]. Hence, the following
lemma holds.

Lemma 4. Given two subnormalized states τ, σ ∈ S�(H),
the generalized Bures distance B2

∗(τ, σ ) is a distance metric
on the space of subnormalized states.

Then, for the truncated exact state ρ
(m)
θ defined in (18), we

can obtain the following result.
Lemma 5. Let B2

∗(ρ (m)
θ , ρ

(m)
θ+δ ) be the generalized Bures dis-

tance. Then, for |δ| 
 1, we have

B2
∗(ρ (m)

θ , ρ
(m)
θ+δ ) = 1

4I∗(θ ; ρ (m)
θ )δ2 + O(δ3). (33)

Lemma 5 provides a geometrical interpretation for the
TQFI as being related to the curvature of the generalized
Bures distance in the space of subnormalized states.

IV. CONCLUSION

In conclusion, we have introduced the TQFI, which is
demonstrated to be an efficiently computable lower bound on
the quantum Fisher information. This quantity can be used for
estimating QFI and to prepare the optimal state for metrol-
ogy via the variational quantum algorithms on the near-term
quantum computers. Specifically, the TQFI can be obtained
from the generalized fidelity between the states obtained by
projecting the exact state ρθ and error state ρθ+δ onto the sub-
space spanned by the largest m eigenvalues of ρθ . For unitary
families, we have proven that the TQFI satisfies the criteria
of the quantum Fisher information for subnormalized states.
In addition, we have revealed the geometrical interpretation
of the TQFI by introducing a generalized Bures distance, a
distance measure on subnormalized states.
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This lower bound can be employed to efficiently estimate
the quantum Fisher information. This is especially useful
in the context of quantum sensing, where one is interested
in maximizing the quantum Fisher information. Hence, one
can use our lower bound as a means to prepare states that
maximize quantum Fisher information, to enhance sensing
performance of the quantum sensors. Moreover, the quantum
Fisher information is often used to witness metrologically
useful entanglement [15,36]; therefore, an interesting future
research direction will be exploring the use of TQFI for the
entanglement witness in condensed matter systems.

Note added. Recently, Yamagata [37] studied the properties
of the quantum monotone metrics under the CPTNI maps. We
note that TQFI belongs to this class.
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APPENDIX A: PROOF OF LEMMA 1

The fact that the TQFI is a lower bound on the QFI follows directly from the fact that the generalized fidelity is an upper
bound for the fidelity. Recall the definition of the QFI and the TQFI, which are respectively defined as

I (θ ; ρθ ) = 8 lim
δ→0

1 − F (ρθ , ρθ+δ )

δ2
, I∗(θ ; ρ (m)

θ ) = 8 lim
δ→0

1 − F∗
(
ρ

(m)
θ , ρ

(m)
θ+δ

)
δ2

. (A1)

From the fact that

F (ρθ , ρθ+δ ) � F∗
(
ρ

(m)
θ , ρ

(m)
θ+δ

)
, (A2)

we obtain the bound

I∗
(
θ ; ρ (m)

θ

)
� I (θ ; ρθ ). (A3)

Then, let us recall that the generalized fidelity is monotonically decreasing with m [21], meaning that we have
F∗(ρ (m)

θ , ρ
(m)
θ+δ ) � F∗(ρ (m+1)

θ , ρ
(m+1)
θ+δ ). Hence, from the definition of the TQFI, we find that

I∗(θ ; ρ (m)
θ ) � I∗(θ ; ρ (m+1)

θ ). (A4)

APPENDIX B: PROOF OF LEMMA 2

Let us consider a normalized quantum state ρθ = W (θ )ρW †(θ ), where the state ρ has spectral decomposition ρ =∑r
j=1 λ j |λ j〉〈λ j |, and where {λ j}r

j=1 are θ -independent. Then, we have

ρθ =
d∑

j=1

λ je
−iθG|λ j〉〈λ j |e+iθG =

d∑
j=1

λ j |λ j (θ )〉〈λ j (θ )|, (B1)

ρθ+δ =
d∑

j=1

λ je
−i(θ+δ)G|λ j〉〈λ j |e+i(θ+δ)G =

d∑
j=1

λ je
−iδG|λ j (θ )〉〈λ j (θ )|e+iδG, (B2)

where we use the notation

|λ j (θ )〉 = e−iθG|λ j〉. (B3)

From Eq. (19), the TQFI is

I∗(θ ; ρ (m)
θ ) = 8 lim

δ→0

1 − F∗(ρ (m)
θ , ρ

(m)
θ+δ )

δ2
, (B4)

where

F∗
(
ρ

(m)
θ , ρ

(m)
θ+δ

) = ||
√

ρ
(m)
θ

√
ρ

(m)
θ+δ||1 +

√(
1 − Tr

[
ρ

(m)
θ

])(
1 − Tr

[
ρ

(m)
θ+δ

])
. (B5)

Here, following Ref. [21], we can write

||
√

ρ
(m)
θ

√
ρ

(m)
θ+δ||1 = Tr[

√
T ], (B6)
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where T is an m × m positive semidefinite operator defined as T = ∑m
i, j=1 Ti j |λi〉〈λ j |, and where

Ti j = √
λiλ j〈λi(θ )|ρθ+δ|λ j (θ )〉. (B7)

For simplicity of notation let us define

I∗
(
θ ; ρ (m)

θ , δ
) = 8

1 − F∗
(
ρ

(m)
θ , ρ

(m)
θ+δ

)
δ2

, (B8)

such that I∗(θ ; ρ (m)
θ ) = limδ→0 I∗(θ ; ρ (m)

θ , δ). To second order in δ, we find

Ti j = √
λiλ j〈λi |e−iδGρeiδG|λ j〉 (B9)

= √
λiλ j〈λi |

(
1 − iδG − δ2

2
G2 + · · ·

)
ρ

(
1 + iδG − δ2

2
G2 + · · ·

)
|λ j〉 (B10)

= √
λiλ j λiδi j − iδ

√
λiλ j〈λi |(Gρ − ρG)|λ j〉 + δ2

√
λiλ j

(
〈λi |GρG|λ j〉 − 1

2
〈λi |

(
G2ρ + ρG2

)|λ j〉
)

+ O(δ3) (B11)

= √
λiλ j λiδi j + iδ

√
λiλ j (λi − λ j )〈λi |G|λ j〉 + δ2

√
λiλ j

(
〈λi |GρG|λ j〉 − 1

2
(λi + λ j )〈λi |G2|λ j〉

)
+ O(δ3). (B12)

Since we want to find the square root of the operator T , we can solve this problem via perturbation by determining an operator
X such that X 2 = T and X = ∑m

i, j=1 Xi j |λi〉〈λ j |, with X an m × m matrix. Hence, from the expansion

X =
∞∑

k=0

δkX (k), (B13)

we find

X 2 =
∞∑

k=0

δk
k∑

p=0

X (p)X (k−p). (B14)

To the second order of δ, we can use (B12) to find

(X (0) )i j = (√
λiλ jλi

)1/2
δi j, (B15)

(X (0)X (1) + X (1)X (0) )i j = i
√

λiλ j (λi − λ j )〈λi |G|λ j〉, (B16)

(X (0)X (2) + X (2)X (0) + X (1)X (1) )i j = √
λiλ j

(
〈λi |GρG|λ j〉 − 1

2
(λi + λ j )〈λi |G2|λ j〉

)
. (B17)

These equations allows us to show that

(X (1) )i j = i
√

λiλ j (λi − λ j )

λi + λ j
〈λi |G|λ j〉, (B18)

(X (2) )i j =
√

λiλ j

λi + λ j

(
〈λi |GρG|λ j〉 − 1

2
(λi + λ j )〈λi |G2|λ j〉 +

m∑
�=1

λ�(λi − λ�)(λ� − λ j )

(λi + λ�)(λ� + λ j )
〈λi |G|λ�〉〈λ� |G|λ j〉

)
. (B19)

Then, we can compute the trace of X to second order in δ as∣∣∣∣√ρ
(m)
θ

√
ρ

(m)
θ+δ

∣∣∣∣
1

= Tr[X ] = Tr[X (0)] + δTr[X (1)] + δ2Tr[X (2)] + O(δ3)

=
m∑

i=1

λi + δ2

2

m∑
i=1

(
−λi〈λi |G2|λi〉 +

d∑
j=1

λ j |〈λi |G|λ j〉|2 −
m∑

j=1

λ j (λi − λ j )2

(λi + λ j )2
|〈λi |G|λ j〉|2

)
+ O(δ3)

=
m∑

i=1

λi − δ2

2

m∑
i=1

λi〈λi |G2|λi〉 + δ2

2

m∑
i, j=1

4λ2
jλi

(λi + λ j )2
|〈λi |G|λ j〉|2 + δ2

2

m∑
i=1

d∑
j=m+1

λ j |〈λi |G|λ j〉|2 + O(δ3). (B20)
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Note that throughout our derivations, we use the fact that λ j = 0 for j > r. Let us now consider the second term in Eq. (B5). To
second order in δ we simply find√(

1−Tr
[
ρ

(m)
θ

])(
1−Tr

[
ρ

(m)
θ+δ

]) = 1 −
m∑

i=1

λi − δ2

2

m∑
i=1

(
d∑

j=1

λ j |〈λi|G|λ j〉|2 − λi〈λi|G2|λi〉
)

+ O(δ3). (B21)

Then, combining Eqs. (B20) and (B21), we can obtain

I∗(θ, ρ
(m)
θ ) = lim

δ→0
I∗(θ, ρ

(m)
θ , δ)

= lim
δ→0

8

δ2

(
1 − F∗(ρ (m)

θ , ρ
(m)
θ+δ )

)
= lim

δ→0

8

δ2

(
1 − ||

√
ρ

(m)
θ

√
ρ

(m)
θ+δ||1 −

√(
1−Tr

[
ρ

(m)
θ

])(
1−Tr

[
ρ

(m)
θ+δ

]))
= lim

δ→0

8

δ2

(
1 −

m∑
i=1

λi + δ2

2

m∑
i=1

λi〈λi |G2|λi〉 − δ2

2

m∑
i, j=1

4λ2
jλi

(λi + λ j )2
|〈λi |G|λ j〉|2 − δ2

2

m∑
i=1

d∑
j=m+1

λ j |〈λi |G|λ j〉|2

− 1 +
m∑

i=1

λi + δ2

2

m∑
i=1

d∑
j=1

λ j |〈λi|G|λ j〉|2 − δ2

2

m∑
i=1

λi〈λi |G2|λi〉 + O(δ3)

)

= 4
m∑

i, j=1

λ j |〈λi |G|λ j〉|2 − 16
m∑

i, j=1

λ2
jλi

(λi + λ j )2
|〈λi |G|λ j〉|2

= 4
m∑

i, j=1

λ j |〈λi |G|λ j〉|2 − 8
m∑

i, j=1

λiλ j

λi + λ j
|〈λi |G|λ j〉|2. (B22)

Here, in the last equality we used the fact that

2
m∑

i, j=1

λiλ
2
j

(λi + λ j )2
|〈λi |G|λ j〉|2 =

m∑
i, j=1

λiλ
2
j

(λi + λ j )2
|〈λi |G|λ j〉|2 +

m∑
i, j=1

λ2
i λ j

(λi + λ j )2
|〈λi |G|λ j〉|2

=
m∑

i, j=1

λiλ j

λi + λ j
|〈λi |G|λ j〉|2.

(B23)

Also, we remark that this can be also simplified as

I∗(θ, ρ
(m)
θ ) = 2

m∑
i, j=1

(λi − λ j )2

λi + λ j
|〈λi |G|λ j〉|2, (B24)

and finally, because of the symmetry of the summand in i and j, we have

I∗(θ, ρ
(m)
θ ) = 4

m∑
i< j

(λi − λ j )2

λi + λ j
|〈λi |G|λ j〉|2. (B25)

APPENDIX C: TRUNCATED SYMMETRIC LOGARITHMIC DERIVATIVE

The standard QFI can be defined in terms of the so-called SLD operator. For the state ρθ = ∑d
i=1 λi|λi(θ )〉〈λi(θ )|, the standard

SLD operator is [25]

Jθ = 2
d∑

i, j=1

〈λi(θ )|∂θρθ |λ j (θ )〉
λi + λ j

|λi(θ )〉〈λ j (θ )|. (C1)

Analogously, we can also define the TQFI through a truncated SLD (TSLD) operator. Let the spectral decomposition of our
truncated exact state be given as

τθ =
m∑

i=1

λi|λi(θ )〉〈λi(θ )|, (C2)
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which the parameter dependence left implicit to simplify notation. Then, the TSLD operator is

Lθ = 2
m∑

i, j=1

〈λi(θ )|∂θτθ |λ j (θ )〉
λi + λ j

|λi(θ )〉〈λ j (θ )|. (C3)

One can easily verify that ∂θτθ = i[τθ , G], so that the explicit form of the TSLD operator becomes

Lθ = 2i
m∑

i, j=1

λi − λ j

λi + λ j
〈λi(θ )|G|λ j (θ )〉|λi(θ )〉〈λ j (θ )|

= 2i
m∑

i, j=1

λi − λ j

λi + λ j
〈λi|G|λ j〉W (θ )|λi〉〈λ j |W †(θ ),

(C4)

where we used the fact that |λ j (θ )〉 = W (θ )|λ j〉 and [W (θ ), G] = 0. Taking the conjugate transpose and then exchanging i and
j, we can easily verify that Lθ is Hermitian, i.e., Lθ = L†

θ . In addition to Hermiticity, the justification for regarding Lθ as an SLD
operator comes from the following propositions.

Proposition 1. For a θ -parametrized subnormalized state τθ = W (θ )τW †(θ ), the TSLD operator satisfies

∂θτθ = 1
2 (Lθ τθ + τθLθ ), (C5)

with Tr[Lθ τθ ] = 0.

Proof. First, using the fact that ∂θτθ = i[τθ , G] and τθ |λi(θ )〉 = λi|λi(θ )〉, we can write

∂θτθ = i
m∑

i, j=1

〈λi(θ )|[τθ , G]|λ j (θ )〉|λi(θ )〉〈λ j (θ )| (C6)

= i
m∑

i, j=1

(λi − λ j )〈λi|G|λ j〉|λi(θ )〉〈λ j (θ )|. (C7)

Then, making use of the explicit expansions of τθ and Lθ in the eigenbasis of τθ , we can write

1

2
(Lθ τθ + τθLθ ) = i

m∑
i, j=1

(
λi − λ j

λi + λ j

)
〈λi(θ )|G|λ j (θ )〉(|λi(θ )〉〈λ j (θ )|τθ + τθ |λi(θ )〉〈λ j (θ )|) (C8)

= i
m∑

i, j=1

(
λi − λ j

λi + λ j

)
〈λi|G|λ j〉(λi + λ j )|λi(θ )〉〈λ j (θ )| (C9)

= i
m∑

i, j=1

(λi − λ j )〈λi|G|λ j〉|λi(θ )〉〈λ j (θ )|. (C10)

Comparing these two expressions, we see that indeed

∂θτθ = 1
2 (Lθ τθ + τθLθ ), (C11)

as is required of a well-defined SLD operator. Finally, because Tr[τθ , G] = 0, we have

Tr[∂θτθ ] = i Tr[τθ , G] = Tr
[

1
2 (Lθ τθ + τθLθ )

] = Tr[Lθ τθ ] = 0. (C12)

Proposition 2. The TQFI I∗(θ ; τθ ) can be expressed as

I∗(θ ; τθ ) = Tr[L2
θ τθ ]. (C13)

Proof. I∗(θ ; τθ ) is given by

I∗(θ ; τθ ) = 4
m∑

i, j=1

λi|〈λi|G|λ j〉|2 − 8
m∑

i, j=1

λiλ j

λi + λ j
|〈λi|G|λ j〉|2. (C14)

From Eq. (C4), we have

Lθ = 2i
m∑

i, j=1

λi − λ j

λi + λ j
〈λi|G|λ j〉W (θ )|λi〉〈λ j |W †(θ ) (C15)
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and

τθ = W (θ )τW †(θ ) =
m∑

i=1

λiW (θ )|λi〉〈λi|W †(θ ). (C16)

Therefore, we obtain

Tr[L2
θ τθ ] = −4

m∑
i, j=1
k,�=1

m∑
r=1

(
λi − λ j

λi + λ j

)(
λk − λ�

λk + λ�

)
〈λi|G|λ j〉〈λk|G|λ�〉λrδ jkδ�rδir (C17)

= 4
m∑

i, j=1

λi

(
λi − λ j

λi + λ j

)2

|〈λi|G|λ j〉|2 (C18)

= 4
m∑

i, j=1

λ3
i − 2λ2

i λ j + λiλ
2
j

(λi + λ j )2
|〈λi|G|λ j〉|2 (C19)

= 4
m∑

i, j=1

λ3
i + λiλ

2
j

(λi + λ j )2
|〈λi|G|λ j〉|2 − 4

m∑
i, j=1

2λ2
i λ j

(λi + λ j )2
|〈λi|G|λ j〉|2 (C20)

= 2
m∑

i, j=1

λ3
i + λiλ

2
j + λ3

j + λ jλ
2
i

(λi + λ j )2
|〈λi|G|λ j〉|2 − 4

m∑
i, j=1

λ2
i λ j + λ2

jλi

(λi + λ j )2
|〈λi|G|λ j〉|2 (C21)

= 2
m∑

i, j=1

(λi + λ j )3 − 2λiλ j (λi + λ j )

(λi + λ j )2
|〈λi|G|λ j〉|2 − 4

m∑
i, j=1

λiλ j (λi + λ j )

(λi + λ j )2
|〈λi|G|λ j〉|2 (C22)

= 2
m∑

i, j=1

(λi + λ j )|〈λi|G|λ j〉|2 − 8
m∑

i, j=1

λiλ j

λi + λ j
|〈λi|G|λ j〉|2 (C23)

= 4
m∑

i, j=1

λi|〈λi|G|λ j〉|2 − 8
m∑

i, j=1

λiλ j

λi + λ j
|〈λi|G|λ j〉|2, (C24)

which leads to

I∗(θ ; τθ ) = Tr[L2
θ τθ ]. (C25)

�

APPENDIX D: PROOF OF LEMMA 3

In the following, we prove each property in Lemma 3.
(1) Invariance under unitary transformations: Given a unitary V ∈ U (d ) which is θ -independent, since the generalized fidelity

[29] is unitary invariant, i.e.,

F∗(V τθV †,V τθ+δV
†) = F∗(τθ , τθ+δ ), (D1)

we obtain

I∗(θ ;V τθV †) = I∗(θ ; τθ ). (D2)

(2) Convexity: Let τθ and ξθ be subnormalized states. Since the generalized fidelity is jointly concave [29], we have

F∗(qτθ + (1 − q)ξθ , qτθ+δ + (1 − q)ξθ+δ ) � qF∗(τθ , τθ+δ ) + (1 − q)F∗(ξθ , ξθ+δ ). (D3)

Hence, for all δ, we have

I∗(θ ; qτθ + (1 − q)ξθ ) � qI∗(θ ; τθ ) + (1 − q)I∗(θ ; ξθ ). (D4)

(3) Monotonicity under CPTNI map: Here, we employ the monotonicity of the generalized fidelity [29]:

F∗(τθ , τθ+δ ) � F∗(	(τθ ),	(τθ+δ )) (D5)

for a CPTNI map 	. For all δ, we have

1 − F∗(τθ , τθ+δ )

δ2
� 1 − F∗(	(τθ ),	(τθ+δ ))

δ2
, (D6)
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so that we have

I∗(θ ; τθ ) � I∗(θ ; 	(τθ )). (D7)

(4) Subadditivity for product of truncated states: Consider a subnormalized state obtained from a tensor product of subnor-
malized state τθ = ⊗

k τ
(k)
θ . We have

∂θτθ =
∑

k

∂θτ
(k)
θ ⊗ τ

(k)
θ =

∑
k

Lk,θ τ
(k)
θ + τ

(k)
θ Lk,θ

2
⊗ τ

(k)
θ , (D8)

where we define

τ
(k)
θ =

⊗
j 
=k

τ
( j)
θ . (D9)

Therefore, the TSLD operator becomes

Lθ =
∑

k

Lk,θ ⊗ 1k . (D10)

Then, we can obtain

I∗(θ ; τθ ) = Tr
[
L2

θ τθ

] =
∑

k

AkTr
[
L2

k,θ τ
(k)
θ

]
, (D11)

where

Ak =
∏
j 
=k

Tr
[
τ

( j)
θ

]
� 1. (D12)

Therefore,

I∗(θ ; τθ ) =
∑

k

AkI∗
(
θ ; τ (k)

θ

)
�

∑
k

I∗
(
θ ; τ (k)

θ

)
. (D13)

(5) Additivity for direct sum of truncated states: For τθ = ⊕
k μkτ

(k)
θ , where μk is θ -independent and 0 <

∑
k μk � 1,

we have

∂θτθ =
⊕

k

μk∂θτ
(k)
θ =

⊕
k

μk
Lk,θ τ

(k)
θ + τ

(k)
θ Lk,θ

2
. (D14)

Then, the TSLD operator becomes

Lθ =
⊕

k

Lk,θ . (D15)

Therefore,

I∗(θ ; τθ ) = Tr
[
L2

θ τθ

] =
∑

k

μkTr
[
L2

k,θ τ
(k)
θ

]
, (D16)

so that

I∗(θ ; τθ ) =
∑

k

μkI∗
(
θ ; τ (k)

θ

)
, (D17)

and
√

T is taken to be the unique, positive semidefinite square root of T .
Finally, let us remark that an alternative proof for the subadditivity for the product of truncated states can be obtained as

follows. This is for the readers who are not familiar with the SLD operator. It will suffice to show it is true in the bipartite case
(as larger product states follow by induction). So, we consider a subnormalized state of the form

τθ = τ
(1)
θ ⊗ τ

(2)
θ ∈ S�(H1) ⊗ S�(H2), (D18)

where dim(Hk ) = dk with k = 1, 2. Here, we focus on the unitary families. First, recall that the TQFI is defined as

I∗
(
θ, ρ

(m)
θ

) = 2
m∑

i, j=1

(λi − λ j )2

λi + λ j
|〈λi |G|λ j〉|2. (D19)
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As this explicit form depends on the eigensystem of our state and the generator of the unitary dynamics, let us prove explicitly,
when the subnormalized state of the subspace belongs to the unitary families, we have

τθ = τ
(1)
θ ⊗ τ

(2)
θ (D20)

= e−iθG(1)
τ (1)e+iθG(1) ⊗ e−iθG(2)

τ (2)e+iθG(2)
(D21)

= (e−iθG(1) ⊗ e−iθG(2)
)(τ (1) ⊗ τ (2) )(e+iθG(1) ⊗ e+iθG(2)

). (D22)

A useful quantity needed here is the Kronecker sum defined as

A(1) ⊕ B(2) = A(1) ⊗ 1(2) + 1(1) ⊗ B(2), (D23)

and we recall here the following useful identity:

eA ⊗ eB = eA⊕B = eA(1)⊗1(2)+1(1)⊗B(2)
, (D24)

where ⊕ is the Kronecker sum defined above. Hence, we have

τθ = (e−iθG(1) ⊗ e−iθG(2)
)(τ (1) ⊗ τ (2) )(e+iθG(1) ⊗ e+iθG(2)

) (D25)

= e−iθ (G(1)⊗1(2)+1(1)⊗G(2) )(τ (1) ⊗ τ (2) )e+iθ (G(1)⊗1(2)+1(1)⊗G(2) ). (D26)

As for the eigensystem, we note that the Hilbert space is now of the form H(1) ⊗ H(2) so the eigenvalues and eigenvectors are
now of the form

τ
(1)
θ ⊗ τ

(2)
θ |λi〉 ⊗ |λ j〉 = λiλ j |λi〉 ⊗ |λ j〉, (D27)

where we have that i ∈ [1, m1] and j ∈ [1, m2], and where 0 <
∑

i λi � 1 and 0 <
∑

j λ j � 1. Together, TQFI becomes

I∗(θ, τ
(1)
θ ⊗ τ

(2)
θ ) = 2

m1∑
i,k=1

m2∑
j,�=1

(λiλ j − λkλ�)2

λiλ j + λkλ�

|〈λi| ⊗ 〈λ j |(G(1) ⊗ 1(2) + 1(1) ⊗ G(2) )|λk〉 ⊗ |λ�〉|2. (D28)

Let us now expand the matrix element part of the expression

|〈λi| ⊗ 〈λ j |(G(1) ⊗ 1(2) + 1(1) ⊗ G(2) )|λk〉 ⊗ |λ�〉|2 (D29)

= [〈λi| ⊗ 〈λ j |(G(1) ⊗ 1(2) + 1(1) ⊗ G(2) )|λk〉 ⊗ |λ�〉]
×[〈λk| ⊗ 〈λ�|(G(1) ⊗ 1(2) + 1(1) ⊗ G(2) )|λi〉 ⊗ |λ j〉] (D30)

= (〈λi|G(1)|λk〉δ j� + δik〈λ j |G(2)|λ�〉
)(〈λk|G(1)|λi〉δ j� + δik〈λ�|G(2)|λ j〉) (D31)

= |〈λi|G(1)|λk〉|2δ j�δ j� + (〈λi|G(1)|λk〉)(〈λ�|G(2)|λ j〉)δikδ j�

+(〈λ�|G(2)|λ j〉)(〈λk|G(1)|λi〉)δ j�δik + |〈λ j |G(2)|λ�〉|2δikδik (D32)

Replacing this expansion in the summation of TQFI sum, we see that the terms with δikδ j� lead to λiλ j − λkλ� = 0. Hence, the
first term in the TQFI becomes

2
m1∑

i,k=1

m2∑
j,�=1

(λiλ j − λkλ�)2

λiλ j + λkλ�

|〈λi| ⊗ 〈λ j |(G(1) ⊗ 1(2) + 1(1) ⊗ G(2) )|λk〉 ⊗ |λ�〉|2 (D33)

= 2
m1∑

i,k=1

m2∑
j,�=1

(λiλ j − λkλ�)2

λiλ j + λkλ�

(|〈λi|G(1)|λk〉|2δ j� + |〈λ j |G(2)|λ�〉|2δik
)

(D34)

= 2
m1∑

i,k=1

m2∑
j=1

λ2
j (λi − λk )2

λ j (λi + λk )
|〈λi|G(1)|λk〉|2 + 2

m1∑
i=1

m2∑
j=1

λ2
i (λ j − λ�)2

λi(λ j + λ�)
|〈λ j |G(2)|λ�〉|2 (D35)

� 2
m1∑

i,k=1

(λi − λk )2

λi + λk
|〈λi|G(1)|λk〉|2 + 2

m2∑
j,�=1

(λ j − λ�)2

λ j + λ�

|〈λ j |G(2)|λ�〉|2. (D36)

Therefore, we get

I∗(θ, τ
(1)
θ ⊗ τ

(2)
θ ) � I∗

(
θ, τ

(1)
θ

) + I∗
(
θ, τ

(2)
θ

)
(D37)

as desired.
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APPENDIX E: PROOF OF LEMMA 4

Let σ, ξ , and η be subnormalized states in S�(H). Then we have that the following properties of the generalized Bures
distance hold:

(1) Symmetry: Because of F∗(σ, ξ ) = F∗(ξ, σ ), we have B∗(σ, ξ ) = B∗(ξ, σ ).
(2) Identity of indiscernibles: Because F∗(σ, ξ ) = 1 if and only if σ = ξ , we have B∗(σ, ξ ) = 0 if and only if σ = ξ .
(3) Triangular inequality: Let A∗(σ, ξ ) be the generalized angular distance A∗(σ, ξ ) = arccos (F∗(σ, ξ )), and 0 � A∗(σ, ξ ) �

π
2 . Then, we can write

B∗(σ, ξ ) = 2 sin

(
A∗(σ, ξ )

2

)
. (E1)

From the triangle inequality for the generalized angular distance [28,29], we have

B∗(τ, ξ ) = 2 sin

(
A∗(σ, ξ )

2

)
� 2 sin

(
A∗(σ, η)

2

)
+ 2 sin

(
A∗(η, ξ )

2

)
= B∗(σ, η) + B∗(η, ξ ). (E2)

These prove that B∗(σ, ξ ) is a distance metric on the space of subnormalized state. Let us finally remark that the generalized
Bures distance can also be expressed as B∗(σ, ξ ) = 2P2(σ, ξ ), where P(σ, ξ ) = √

1 − F∗(σ, ξ ) is the so-called purified distance
[28,29].

APPENDIX F: PROOF OF LEMMA 5

Let us consider B2
∗(ρ (m)

θ , ρ
(m)
θ+δ ). Suppose that B2

∗(ρ (m)
θ , ρ

(m)
θ+δ ) has the form

B2
∗(ρ (m)

θ , ρ
(m)
θ+δ ) = 1

4

∞∑
k=0

bkδ
k = b0

4
+ b1

4
δ + b2

4
δ2 + O(δ3), (F1)

where bk ∈ R and |bk| < ∞. Defining F∗(δ) = F∗(ρ (m)
θ , ρ

(m)
θ+δ ), by definition, we have

B2
∗(ρ (m)

θ , ρ
(m)
θ+δ ) = 2[1 − F∗(δ)] = 2 − 2

(
F∗(0) + δ∂δF∗(0) + δ2

2
∂2
δ F∗(0) + O(δ3)

)
, (F2)

From F∗(0) = 1 and ∂δF∗(0) = 0 because the generalized fidelity is a continuous function of δ and becomes maximum at δ = 0,
we have

B2
∗(ρ (m)

θ , ρ
(m)
θ+δ ) = −δ2∂2

δ F∗(0) + O(δ3). (F3)

Therefore, we arrive at the following equality:

b0

4
+ b1

4
δ + b2

4
δ2 + O(δ3) = −δ2∂2

δ F∗(0) + O(δ3), (F4)

which has to be valid for any infinitesimal δ. Therefore, we must have b0 = b1 = 0, and

b2 = −4∂2
δ F∗(0). (F5)

Here, applying F∗(0) = 1 and ∂δF∗(0) = 0, by definition of the truncated QFI, we can also obtain

I∗(θ ; ρ (m)
θ ) = 8 lim

δ→0

1 − F∗(δ)

δ2
= −4∂2

δ F∗(0), (F6)

which leads to

b2 = I∗
(
θ ; ρ (m)

θ

)
. (F7)

Therefore, we obtain

B2
∗
(
ρ

(m)
θ , ρ

(m)
θ+δ

) = 1
4I∗

(
θ ; ρ (m)

θ

)
δ2 + O(δ3). (F8)
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