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Estimation of Gaussian random displacement using non-Gaussian states
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In continuous-variable quantum information processing, quantum error correction of Gaussian errors requires
simultaneous estimation of both quadrature components of displacements in phase space. However, quadrature
operators x and p are noncommutative conjugate observables, whose simultaneous measurement is prohibited
by the uncertainty principle. Gottesman-Kitaev-Preskill (GKP) error correction deals with this problem using
complex non-Gaussian states called GKP states. On the other hand, simultaneous estimation of displacement
using experimentally feasible non-Gaussian states has not been well studied. In this paper, we consider a
multiparameter estimation problem of displacements assuming an isotropic Gaussian prior distribution and
allowing postselection of measurement outcomes. We derive a lower bound for the estimation error when only
Gaussian operations are used and show that even simple non-Gaussian states such as single-photon states can beat
this bound. Based on Ghosh’s bound, we also obtain a lower bound for the estimation error when the maximum
photon number of the input state is given. Our results reveal the role of non-Gaussianity in the estimation of
displacements and pave the way toward the error correction of Gaussian errors using experimentally feasible

non-Gaussian states.
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I. INTRODUCTION

Continuous-variable optical quantum information process-
ing has attracted much attention due to its extent scalability
achieved by large-scale cluster states [1,2] which enable
universal Gaussian operations [3,4]. As a next step for
the realization of practical quantum information processing,
quantum error correction [5] is an essential key. Gaussian
error is the most common type of error in optical systems. It
includes photon losses and the Gaussian quantum channel [6],
which is defined as phase-space displacements following an
isotropic Gaussian distribution. It has been proven, however,
that Gaussian errors imposed on Gaussian states cannot be
corrected using only Gaussian operations [7,8]. Therefore,
non-Gaussian states play a crucial role in optical quantum
information processing.

Gottesman-Kitaev-Preskill (GKP) error correction [9] is
one of the promising ways to correct Gaussian errors using
a single-mode states. It uses highly complex non-Gaussian
states called GKP states to correct errors. The information
regarding displacements on both x and p quadratures imposed
on GKP states is extracted by homodyne measurements and
ancillary GKP states in the error syndrome measurement [9].
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Although x and p are noncommutative conjugate observables
whose simultaneous measurement is prohibited by the un-
certainty principle, the non-Gaussianity of GKP states and
the prior information that the displacement is small enable
accurate estimation of both parameters. However, GKP states
are difficult to experimentally generate due to their high non-
Gaussianity. Although their generation has been reported in
other physical systems [10,11], optical generation of GKP
states has not been achieved yet. Several other protocols for
correcting Gaussian errors using non-Gaussian states (called
bosonic codes) are known [12], but it has not been unrav-
eled how experimentally feasible and simpler non-Gaussian
states such as Fock states can be exploited for quantum error
correction.

In this paper, we investigate a multiparameter quantum
estimation [13-18] problem of displacements using non-
Gaussian states. We assume an isotropic Gaussian prior
distribution of the parameters and postselect measurement
outcomes. First, we derive a lower bound for the estimation
error when only Gaussian states and Gaussian operations
are used. Then we show that this bound can be beaten for
some range of the prior variance even with only simple
non-Gaussian states such as single-photon states. This re-
sult reveals the role of non-Gaussianity in the estimation
of displacements and opens up the possibility of correcting
Gaussian errors using experimentally feasible non-Gaussian
states. We also derive a lower bound of the estimation error
depending on the maximum photon number of the input state
based on Ghosh’s bound [19].

We evaluate the estimation error using the mean square er-
ror averaged with respect to the posterior distribution with the
measurement outcome fixed. This is because it corresponds
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FIG. 1. A schematic of the Gaussian displacement estimation
problem. One estimates the amount of displacement &, n using the
measurement outcome y, which corresponds to the POVM element
Ey. One can use prior information that &, n follow an isotropic
Gaussian distribution, Eq. (2).
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to the natural situation where one knows the prior distribution
of the parameters and can postselect “good” measurement
outcomes, which reduces the estimation error. Although this
criterion is different from the frequentist estimation error
(which fixes the true value of the parameter and takes the
average with respect to the measurement outcomes) or the
Bayesian estimation error (which takes the average with re-
spect to both the true value and the measurement outcomes),
it is a commonly used method in Bayesian statistics [20].
Reference [21] also studies the simultaneous displacement
estimation problem using non-Gaussian states, although they
adopt frequentist estimation error. For Gaussian states, es-
timation of displacement is a classical problem and has
many previous studies [22—24]. For single-parameter estima-
tion using non-Gaussian states, there have been some recent
studies [25,26].

In Sec. II, we formulate the Gaussian displacement esti-
mation problem. In Sec. III, we derive lower bounds for the
estimation error when only Gaussian (classical) states and
Gaussian operations are used. In Sec. IV, we show that the
bounds derived in Sec. III can be beaten using non-Gaussian
states. In Sec. V, a statistical lower bound on the estimation
error which depends on the maximum photon number and
the postselection probability is obtained, based on Ghosh’s
bound. Section VI summarizes our paper and introduces some
future works.

II. GAUSSIAN DISPLACEMENT ESTIMATION PROBLEM

Figure 1 depicts the Gaussian displacement estimation
problem. We consider a single-mode bosonic state p repre-
sented by quadrature operators X, p satisfying [X, p] = i. The
phase-space displacement operator D(£, ) is defined as

D(&, n) = exp(int — i€ p) (1)

and represents the displacement (x, p) = (x+§&,p+n).
First, ﬁ(é, n) acts on p, then a measurement is performed,
and the measurement outcome y is obtained. This measure-
ment corresponds to some POVM (positive operator-valued
measure) {Ey} satisfying [ Eydy = I, where [ is an identity
operator. We assume that &,  are random variables following
an isotropic Gaussian distribution with known variance and

mean 0:
1 2 2
pE.n) = — exp (—S 0 ) @
TV v

Note that the mean square distance with respect to this
distribution is (£%) 4+ (n?) = v. Displacement following an
isotropic Gaussian distribution corresponds to a common type

of noise in bosonic systems called the Gaussian quantum
channel [6] or additive Gaussian noise. The problem is to esti-
mate (£, n) from the value of y. We assume that one performs
a Bayesian estimation using the a priori information, Eq. (2).
The conditional probability density of obtaining y, when the
values of (£, n) are fixed, is given by

pOIE, ) = Tr{D(E, n)pD' (&, n)E,}, 3)

where Tr{-} denotes the trace operation. Defining the Wigner
function W; of an operator A by

/

1 , X
W;ix, p) :== Py / exp(ipx )<X Y

/

A x+%>dx’, 4)

Eq. (3) can be expressed in terms of the Wigner functions of
p and Ey [27]:

p(yl&. m) =2m / Wo(x — &, p—mWg (x, p)dxdp.  (5)

Once the value of y is known, one gets the corresponding
posterior distribution of &, 1,

_ PUlE mpE. )
() ’

where p(y) = [[ p(y|§, n)p(&, n)d&dn is the marginal prob-
ability distribution of y. Suppose one estimates the values
of &, 1 as E(y), 7i(y), corresponding to the value of y. To
evaluate the accuracy of the estimation, the mean square error
with respect to the joint probability distribution is one of the
standard choices in Bayesian quantum estimation,

P&, nly) (6)

UBayes = / PE, 7, WE —EM)* + (n — 7(y)) }dEdndy,

(7

where p(€,n,y) = p(v|&, n)p(€, n) is the joint probability
distribution of (&, n, y).

However, here we consider the postselection of a specific
measurement outcome y and take the average only with re-
spect to the true value &, 1, obtaining

V= fP(E, nIE = EM)’ + (1 — 1)*MdEdn.  (8)

The meaning of this quantity can be considered the expected
amount of error after obtaining the outcome y. Note that
more generally there are other options for the estimation er-
ror measure (e.g., mean square error with a general weight
matrix [28,29]), and here we choose this v’ for simplicity. We
consider the case where &(y), j(y) are chosen as the averages
with respect to the posterior distribution,

) = /p(éf» nly)édédn, ©)

7o) = / PG, nly)ndedn, (10)

which is the optimal choice to minimize v’. For any prob-
ability density function g satisfying [ g(&, n)dédn =1 and
g(&,n) >0, we define X[g(§,n)] as the covariance ma-
trix of (&, n) with respect to g(&, n). Then v’ can also be
expressed as

v = Tr{Z[pE, n»)1}- (1)
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Note that v’ depends on the measurement outcome y. Usu-
ally, in Bayesian quantum estimation, one evaluates the error
of estimation by averaging over the measurement outcomes
[16]. However, in this paper, we allow postselection of y to
get a smaller v". In Sec. III, we see that one can still obtain
lower bounds on v’ with this assumption.

We also assume that there exists no initial entanglement
between the input state and the measurement system. The
case where entanglements exist is studied in, e.g., Ref. [24],
and it is shown that the amount of displacement can be esti-
mated with an arbitrary high precision if one uses a two-mode
squeezed vacuum with a high squeezing level.

III. CLASSICAL AND GAUSSIAN BOUNDS

In this section, we derive lower bounds on the estimation
error v’ [Eq. (8)], when only Gaussian states and Gaussian
operations are allowed. We only have to consider the case
where p is a pure Gaussian state and EAy & [¥r)Xyr| for some
pure Gaussian state |1). Indeed, suppose we have p =1p; +
(1 —=1)py, 0 <t < 1. Then v'(p) = min{v'(p1), v'(p2)} be-
cause the variance is concave with respect to the probability
distribution. In the same way, one can also show that mix-
ing Ey does not reduce v’ either. Wigner functions of pure
Gaussian states can be written as

1 1
W(x, p) = —exp (‘5(‘1 -w'z g - u)>, (12)

where g := (x, p)”, p and X are parameters representing the
mean and the covariance matrix of the Gaussian function,
and X satisfies det X = }1. Note that this constraint means
that Heisenberg’s uncertainty is saturated by pure Gaussian
states [30]. Thus, the Wigner functions of p and Ey are both
Gaussian functions and satisfy

det (W, (&, m] = det (W (5. )] =3.  (13)

Here we extend our definition of X in the last
section to unnormalized distribution functions by defining
Y[g(&, n)] := Z[g(&, n)] for any unnormalized distribution
function g(§,7n) satisfying fg(é, n)dédn < oo and
g(&,n) > 0, where g(&,n) = Ng(&,n) is the normalization
of g which satisfies [ g(§, n)dédn = 1. Note that although
generally Wigner functions can have negative parts, Gaussian
Wigner functions are positive and thus can be regarded as
probability distributions. Using Eq. (5) and a property of
convolution, p(y|&, n) is also Gaussian with respect to (&, n),
and its covariance matrix is

X[p(IE, m] = Z[Wp(E, m] + E[Wg, (&, n)]. (14)
Furthermore, from Eq. (6), p(§, n|y) is also Gaussian, and

EpE, a1~ = ZpolE, M7 + SipE, M1t (15)
holds.

A. Classical bound

First, we consider the case where only classical states,
i.e., coherent states, are available as p. In this case, we
have X[W, (&, n)] = %I , where [ is the identity matrix. From
Eq. (13), two eigenvalues of Z[Wp, (¢, n)] can be written as

a/2, 1/(2a) for a > 0. Then, from Egs. (11), (14), and (15),
one obtains

vV = ! + ! . (16)
2/v+2/(14+a) 2/v+2a/(1+a)
This is minimized when a = 1, regardless of the value of
v. Therefore, in this case, the optimal Ey is a projection
to a classical state, and the classical lower bound of v’ is
given by

2v
v4+2°

Ve = (17

B. Gaussian bound

Next we consider the case where arbitrary Gaussian states
and operations can be used. For positive definite 2 x 2
matrices A, B,

det(A + B) > det A + det B + 2+/det Adet B (18)

holds (see Appendix B for the derivation). Using this fact and
Egs. (13) and (14), one can show that

det X[p(yl&, m] = 1. (19)

Conversely, any Gaussian p(y|&,n) satisfying Eq. (19)
is possible by taking X[W;(&,n)] = Z[Wg (§,n)] =
X[p(y|&, n)l/2. Because p(y|&,n) minimizingl v’ must
saturate Eq. (19), its two eigenvalues can be written as a, 1/a
for some a > 0, and

o — 1 n 1
2/v+a  2/v+1/a
holds. The value of a which minimizes v’ depends on the
value of v. When v > 2, a = 1 minimizes v’. This means
that choosing vacuum (or coherent) states for both p and
E_v is optimal, hence the minimum of v’ coincides with the
classical bound, Uz—fz On the other hand, when v < 2, by

(20)

taking a — 0 or @ — oo, i.e., taking both p and Ey to be
infinitely squeezed states, v" approaches the lower bound v /2.
It is precisely half of the original variance v, because variance
along the squeezed direction is made 0, and the variance along
the antisqueezed direction remains v/2. To summarize, the
Gaussian lower bound of v’ is given by

(v <2),

v =12 21
G {vz—jz (v > 2). @D

Note that the lower bounds of the Bayesian estimation error
Upayes [EQ- (7)] in these settings are also given by ve and v in
Egs. (17) and (21), because these bounds are independent of
the measurement outcome y. (The classical bound v matches
the result in Ref. [24], which is derived as the Bayesian
right logarithmic derivative quantum Cramér-Rao bound. The
authors also show the tightness of the bound.) This means
that postselection does not improve the estimation accuracy
in these settings, which we show is not true for non-Gaussian
cases.

IV. ESTIMATION USING NON-GAUSSIAN STATES

In this section, we show that the bounds introduced in
Sec. III can be beaten using non-Gaussian states and a
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FIG. 2. The case where one uses heterodyne measurement as the
measurement in Fig. 1. First, the state to be measured is combined
with an ancillary state by a half-beam splitter, then v/2% and v/2p are
measured in each mode. The corresponding POVM is expressed by
Eq. (22).

heterodyne measurement, which is widely used for simultane-
ous measurements of both quadratures [31-34]. As examples
of non-Gaussian states, we consider the GKP state [9], which
is expected to give a high estimation accuracy as in Ref. [21],
and Fock states, which are experimentally feasible for small
photon numbers.

A. Heterodyne measurement

As the measurement {Ey} for the system in Fig. 1, we
consider a setup called heterodyne measurement shown in
Fig. 2, which consists of a half-beam splitter, an ancillary
state p’, and two homodyne measurements. The input state
after the displacement is combined with p’ by the half-beam
splitter, then ﬁfc and ﬁﬁ are measured in each mode. The
case where p’ is a vacuum state can be seen as a sampling
from the Husimi Q function and has wide applications, e.g.,
state verifications [31,32]. Here we consider a more general
case where any single-mode state can be used as p' [33,34].
Denoting two measurement outcomes y = (yx, ¥,), the corre-
sponding POVM element is [27]

A

[P INCE Y
va’yp = ED()}X’ Yp)P D' Yy, yp), (22)

where p™ is the operator whose matrix elements are the
complex conjugate of those of p’. Because taking the
complex conjugate corresponds to the time reversal opera-
tion, the Wigner function of p™ is given by Wy«(x, p) =
W, (x, —p).Therefore, substituting Eq. (22) into Eq. (3), one
can see that the conditional probability density p(yy, y,|&, n)
only depends on (§ — y., 7 —y,),

Pxs Ypl&, 1)
1 .
= ETr{D(E — Ve 1 = Yp)PDT(E = yeom — yp)0™*}
=fE =y, 1 —yp), (23)

where the “filter function” f is determined by p and p’ as
P p)i= [ Wale' —x = W —p )X dp (24

using Eq. (5). From Eq. (6), the posterior distribution of &, n
is obtained by multiplying the prior distribution by the filter

1.5
—_—n=1 —= g
— n=2 ===
—n=3 eeees GKP
1
‘< —
1.0 o
— s
‘/'/‘/ ,/’
/‘/ /’/’
= s L
0.5 o7
/'/ ”/
/0/‘ L
0.0+ e : : K
0.0 0.5 1.0 1.5 2.0 2.5

FIG. 3. The relation between v and v. “n=1" “n=2"
and “n =3": p = p’ = |n)n|, and (yx, y,) = (0, 0) is postselected.
“GKP”: p = p' = |GKP)YGKP|, and (y.,y,) = (0,0) is postse-
lected. “Ufzayes(" =1)": p = p' = [1)1], without postselection. v
and v are the classical and Gaussian bounds derived in Sec. III,
respectively.

function displaced by the measurement outcome y,, y:

P&, e, yp) X p(&, MF(E =y, 1 —Yp). (25)

Note that this form of measurement is not only experimentally
feasible, but also quite general in the presence of postselec-
tion, because having any POVM element £ is equivalent to
taking p"* o £ and postselecting y, = ¥p = 0 in this hetero-
dyne setting.

B. Estimation using the GKP state

The GKP state, or grid state [21], is a non-Gaussian state
used for GKP error correction [9] and is defined as

IGKP) oc > |x = +2ms). (26)

§=—00

Note that this state is not normalizable and is, therefore, an
unphysical state. The Wigner function of the GKP state is a
sum of Dirac delta functions:

Wokp(x, p) o D Y (=1)"8(x — /7 /29)8(p — /7 /20).

S§=—00 I=—00
(27)
If one takes p = p’ = |GKP)YGKP|, the filter function,
Eq. (24), becomes

foxp(.p) =Y Y 8(x—~2ms)s(p—2mr). (28)

§=—00t=—00

Reference [21] points out that this (unphysical) GKP state
can achieve O estimation error in the non-Bayesian setting
with the local unbiasedness condition. It is expected to achieve
a good estimation accuracy also in our setting, where we
consider Bayesian estimation with postselection. This is be-
cause the prior information that (£, n) is near the origin and
the locally sharp structure of the filter function circumvents
the uncertainty principle. The line labeled “GKP” in Fig. 3
shows the relation between v and v’ when one takes p =
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FIG. 4. The filter function f,(x, 0) when p = p' = |n)n| forn =
0,1,2,3[Eq. (29)].

p' = |GKPYGKP| and (yx, y,) = (0, 0) is postselected. One
can see that v’ is largely reduced compared to the Gaussian
and classical bounds for small v. Note that even with the
ideal GKP state, the Bayesian estimation error v’ remains
finite due to the finite tail of the Gaussian prior distribution,
unlike in frequentist’s locally unbiased estimation schemes
such as in Ref. [21]. On the other hand, v" becomes larger
than the classical bound in the region v > 2. This may be due
to the fact that the filter function fgkp(x, p) has a large
variance. Note also the similarity of this setting to the error
syndrome measurement for the GKP code [9], where the SUM
gate is used instead of the beam splitter.

C. Estimation using Fock states

While the GKP state is obviously useful for the estimation
of displacement, experimental generation of (an approxima-
tion with the physical state of) it has not been realized in
optics. We now discuss whether the Gaussian bound can
be beaten using experimentally feasible non-Gaussian states.
Fock states |n) are the simplest examples of non-Gaussian
states and, also, experimentally feasible when n is small
[35,36], although they are still harder than Gaussian states.
If one takes p = p’ = |n)n|, the filter function, Eq. (24),
becomes

1 24\ x? + p?
fn(X,P)—E[Ln< > >i| CXP(— > > (29)

where L,(-) is the Laguerre polynomial. f(x,0) for n =
0, 1, 2, 3 is shown in Fig. 4. The distance from the origin to the
first zero of f, scales as n~'/2 [37]. Thus, roughly speaking,
for sufficiently small v and when (y.,y,) = (0, 0) is posts-
elected, f,, acts like a Gaussian function of variance ~n~ 1
therefore Fock states are candidates for good input states.
Note that when p = p™, f,(x, p) always has a maximum value
of 1/(2m) at the origin.

Figure 3 shows the relation between v and v’ for n =
1, 2, 3. For comparison, the Bayesian estimation error vl’gayes
without postselection [Eq. (7)] for n = 1 is also shown. One
can see that the estimation accuracy is improved by postse-
lection, and even when n = 1, the Gaussian bound is beaten
in some range of v. We also calculate the effect of photon

(

).0+#=
0.0 0.5 1.0 1.5 2.0 2.5

FIG. 5. The relation between v and v, when p=p =
(1 — D|1)(1] 4 110)0|, where [ corresponds to the photon loss rate.

losses on both input states for the case p = p’ = [1)1], as is
important for an actual experimental realization (Fig. 5). We
assume the same amount of losses for p and p’. Losses of up
to 8.9% and 50% are allowed for beating the Gaussian bound
and the classical bound, respectively.

Note that practically postselecting a single value of (y,, y,)
is impossible in continuous-variable measurements such as
the heterodyne measurement, and one has to select events in
some range of (y,, y,) to have a sufficiently high postselection
probability. In Appendix C, we include an analysis of the case
selecting a finite range of outcomes with a finite probability
in the single-photon case. It shows that the classical and
Gaussian bounds are still beaten in some range of v, with finite
postselection probability.

It is interesting to observe that for all GKP-state and Fock-
state cases, v’ becomes 1 at v = 2. In fact, one can explicitly
show that when v = 2, v/ > 1 holds for arbitrary p and E,,
and the equality holds when p Ey o |y )| for some |¢r).
See Appendix D for the derivation.

V. ANALYSIS OF LOWER BOUNDS
FOR NON-GAUSSIAN STATES

We return to the general setting in Sec. II. One natural mat-
ter of interest is to find better input states and find the limit of
estimation using non-Gaussian states. Generally, preparation
of non-Gaussian states with large photon numbers is difficult,
and experimentally feasible states lie in a subspace with some
maximum photon number [36]. In this section, we discuss
lower bounds on v’, when p is a superposition of Fock states
up to the maximum photon number 7.

In quantum estimation theory, the Cramér-Rao bound
[16-18,38,39] is often used to obtain a lower bound on
the estimation error. Because we have prior information and
postselect a single measurement outcome in our case, we
use an inequality called Ghosh’s bound instead [19]. See
Appendix A for the detailed derivation of Ghosh’s bound and
its evaluation. According to the inequality, a lower bound for
v’, when the measurement outcome is y, is given by

, 4

> 30
"2 RO+ F(y) GO
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where Fy(y) and F (y) are defined as

82
o)=Y | p(ﬂﬁ(—w lnp(o))do, G1)
1 az
Foyi=3 | p(ﬂy)(—wlnp(ym)do. (32)

Here we write 0 := (61, 62) := (&, n), (41, ) := (%, p), and
d@ := d6,d0,. The quantities F (y) and Fy(y) can be consid-
ered variants of Fisher information. There is an upper bound
on F(y),

(9) e DT I
Fo <Y / a2 51| 0o + 3+ piR)Eve). (3
where

Ey g := D'(0)E,D(0) (34)
(see Appendix A for the derivation). For the Gaussian prior

distribution, Eq. (2), Fy(y) is simply a constant:

4
R() = > (35)
Therefore, inequality Eq. (30) can be transformed as
L1 FO)

v v + 4
An upper bound for F(y), in the case where the maximum

photon number of p is n, can be obtained using the Schwarz
inequality. For pure p = |y )}¥/|, we have

> TriGidgibyey < | Y Trig?p@?ply/2Tr E2
i i

= Y (12 19))? /2T E?

37
<Y _(W1d 1) /2T E2 G7

l

= (W |0+ 1)) 2Tr 2

<V2@n+ 1)/ TrE2.

(36)

Here we have used the Schwarz inequality with respect to the
inner product (A, B) := ), Tr{A,J;’l.T} in the first inequality,
taking A; = 4ipgi, B, = Eylo- The second inequality follows
from the fact that x> + y> < (x + y)? for x, y > 0. In the same
way, considering an inner product (A, B) := Tr{AB'} and tak-
ingA =3",4?p and B = E,p, we get

ZTr{@?ﬁE):\o} < Tr{(zc;l?)zbz}\/@
< Wi @rwnTE g
= V1A + 12 1Y),/ T E?

< @2n+1)/TrE2.

. cese00ecces,
30 e
° v=0.1 o
L]
L]
v=20.5 o
> .
~ .'
— 20 .
| ..
- e o000 ee,
> . ®eo
] oo,
} e’ fttereiinaa.
] $
10 :
H
]
s
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.0 ®®0c000c0c00e $000c0cccccccsccsccccce

FIG. 6. The relation between n and 1/v" — 1/v for fixed values

N

of v, when p = E, = |n){n|.

Therefore, from Eq. (33), we obtain

JTr EA)?
po)

Since the left-hand sides of Eqs. (37) and (38) are linear in p,
the bound, Eq. (39), also holds for arbitrary mixed p. From
Egs. (39) and (36), one obtains a lower bound of v':

Fy) <2(V2+1D)@2n+1) (39)

Tr £2
l<1+uﬁ+nm+umJy. (40)
v’ v p(y)

The O(n) upper bound of F(y) is similar to the result in
Ref. [21], which studies the case with no prior information
and derives an O(n) upper bound for the Fisher information.
The authors state that whether or not the n scaling of the
Fisher information is achievable is an open problem and argue
that Fock states |n) do not achieve it due to the fringe of the
likelihood function [the filter function f;(x, p) in our setting]
[21]. Similarly, in our problem, if we take p = Ey = |n)(n|
and increase n for fixed v, 1/v" — 1/v only behaves ~n up to
some maximum »n (which depends on v) and then decreases,
while p(y) also gradually decreases (Figs. 6 and 7). This

1.0
:. e v=0.05
0.81 .". e v=01
L. « w=05
061 . e,
=N ¢ .o ..‘.
E‘/ o.. o,'...
044 ° ... XTI
02‘ ’ ‘ LI ce, ........’0000
0.0 : : :
0 10 20 30 40

FIG. 7. The relation between n and p(y) for fixed values of v,
when p = Ey = |n)n|.
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result is consistent with the observation that the filter function,
Eq. (29), behaves like a Gaussian with variance ~n~' only
when v is smaller than this variance.

The bound, Eq. (40), also depends on the normalized post-
selection probability density —222—. This implies that one

A /TrE\, ’

can possibly obtain a large F(y) at the expense of a small
postselection probability density. In fact, even when n = 1,
one can construct an example where 1/v" — 1/v is inversely

proportional to j% when j% — 0. See Appendix E for

details.

VI. CONCLUSION

We have considered the problem of estimating the amount
of random displacement that follows an isotropic Gaussian
distribution. We have shown that there is a lower bound on the
estimation error v’ when only Gaussian states and Gaussian
operations are used. This bound can be beaten for some range
of the prior variance v, using only linear optics and simple
non-Gaussian states such as single-photon states. When the
maximum photon number of the input state is n, 1/v" — 1/v
has an O(n) upper bound which is also inversely proportional
to the postselection probability.

Because of the similarity of the estimation of displacement
to the error syndrome measurement in the GKP code [9], ex-
tending the method proposed in this paper may lead to an error
correcting code using experimentally feasible non-Gaussian
states such as single-photon states, which is important from
a practical point of view. The Gaussian bound derived in this
paper seems to correspond to the impossibility of correcting
Gaussian errors using Gaussian states [8]. Finding a more
direct connection between the estimation of displacement and
the quantum error correction is a promising future study.

Another possible future subject is to find the best input
state and POVM for a given constraint, e.g., maximum photon
number. The bound, Eq. (40), is not necessarily tight, but for
quantum estimation of displacement, many kinds of lower
bounds for the estimation error are known [29,40,41], and
some of them have been shown to be efficiently solvable
[42,43]. It is possible that they can be extended to our setting.
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APPENDIX A: DERIVATION OF GHOSH’S BOUND AND
AN UPPER BOUND OF FISHER INFORMATION

We consider the estimation problem described in Sec. II.
We write &, as 6,6, and X, p as §i, §» in this section,
for convenience. We also just write (0, 6») as 6 and d6,d6,
as dé.

Let us denote the estimated value of 6; by 9,-(y). The
Van Trees inequality [16,28,44], also called the Bayesian
Cramér-Rao inequality, gives a lower bound for the Bayesian

estimation error. In a weaker form than the original matrix
inequality, it can be written as

~ 4
2
Ei f dy / d0@,(y) — 6)*p(, 0)>—E;VT>+F<VT>’ (A1)

where

F(VT) Z/dop(0)<
82
FOD . Z/dy/dOp(y, 0)(—W1np(y|0)>.

(V)
FO

—>In p(0)>
(A2)

is the a priori Fisher information of the prior distri-
bution p(#), and FVD is the expectation value of the Fisher
information with respect to the prior distribution of 6, which
can be considered as the average information obtained by the
measurement. Equation (A1) can be used to evaluate the mean
square error of the estimator, averaged over the measurement
outcome y and the parameter . However, the Van Trees in-
equality cannot be directly applied to our case, because we
allow postselection of y. To generalize the Van Trees inequal-
ity to the case including postselection, consider the equation

~ op(0
> [ -0y a0 =2

which can be shown using a partial integration. Using the
Schwarz inequality, one obtains

(A3)

) (A4)

Z f @:(v) — 67 p(Bly)d6 >
Fy)

where F(y) is

i 1 (ap@hy))°
F = _ do
”) Zf p<0|y>< 36, )
ap(6
—Z/( ul '”)(39 (0|y))d0 (AS)
—Z / p(0|y><

EquNation (A4) is called Ghosh’s bound [19] in statistics.
F (y) can be further decomposed as

ln p(0|y)>d0

F(y) = By + FO), (A6)
)= / p(o|y>( 2 p<0))do (A7)
0
Fo)=3 | p(ﬂﬁ(—w 1np<y|0)>d0. (AS)

Equation (A4), together with Egs. (A6), (A7), and (AS8), gives
the variant of the Van Trees inequality with postselection.
FYD and FOD can be obtained as the expectation values of
Fo(y) and F(y) with respect to p(y). Therefore, if one takes
the expectation values of both sides of Eq. (A4) with respect
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to p(y) and uses the convexity of the function 1/¢, one obtains

Z/ 4y f 400 = T POFmdy’

which reproduces Eq. (A1). To find an expression for F'(y) in
our case, one transforms Eq. (A8) as

82
Fo)=Y / p(ﬂﬁ(—m In p(y|0>)do

-/ p(”)( ! <8p<y|0))2_32p<y|0>> .
—~J p)\p&I6)\ 96, 062 :

p(y, 0) > (A9)

(A10)
Using that from Eq. (3),
p(y10) = Tr{pEyp}, (AT1)
where
E,p := D' (0)E,D(0), (A12)
one can explicitly calculate terms in Eq. (A10) as
> ( “Tr{pE 0}> ZTr{(qlp panEyel’, (A13)
i
Z Tr{pEy.a} = ZTr —4;p — pd;)Eye},
(A14)
resulting in
A2
@[  Tr{(4ip — PGiEye}
For =3 ol ] - TR e
i PExe (A15)

+ Tr{( —24:pd: + G; p + p47) ”o}}

An upper bound of F(y) with a slightly simpler form can be
obtained by applying the Schwarz inequality to

(@ipEve} = Te{(Eyy i) - (p'PEG)} - (Al16)
obtaining
s A 5B
~ Tr{(gip — in)Ey\O} 4|Tr{611,0 vi6}]
Tr{pEye} Tr{pEye) (A17)

< ATr{GipGiEye}

which leads to

F(y) < Z/ 0%T (24ipgi + 47 p + 247 ) Evie)-
(A18)

APPENDIX B: DERIVATION OF EQ. (18)

Suppose A, B are positive definite 2 x 2 matrices. Then
we have

det(A + B) = detAdet(I + A='2BA™Y%),  (BI1)

where I is the identity matrix. Since A~'/2BA~!/? is posi-

tive definite and det(A~'/2BA~1/2) = ge‘ ﬁ , we can denote two

detB
x detA”

eigenvalues of A='/2BA~1/2 as x and 1 Then we get

1 detB
det( + A~'2BA™Y/?) = (1+x)<1+— © )

detA
det B 1detB
=1 - B2
+ detA T x detA ®2)
detB det B
>1+ .
detA detA
From Egs. (B1) and (B2), Eq. (18) is obtained.
v=20.5
0.45 1 /\
0.40
— U
< 0.351 ¢
_____ vl
0.30 1
T ittt ———————
0.0 0.2 0.4 0.6 0.8 1.0
post-selection prob.
v=1.0
0.91 vl
08{ 77 UG
0.4 0.6 0.8 1.0

post-selection prob.

v=1.5

—~

0.0 0.2 0.4 0.6 0.8 1.0
post-selection prob.

FIG. 8. The relation between the postselection probability
[Eq. (C2)] and (V') [Eq. (C1)] for v = 0.5, 1.0, 1.5, when we take
p = p’ = |1)1] in the setup in Sec. IV and postselect a range y> +

y; r? forr > 0.
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APPENDIX C: ANALYSIS OF THE CASE WITH A FINITE
POSTSELECTION PROBABILITY

We consider the setup in Sec. IV and take p = p’ = |1)(1].
Rather than postselecting a single point (yx, ¥,) = (0, 0), we
postselect a range y; + y» < r2 for r > 0. By increasing r —
00, the postselection probability converges to 1. We define the
estimation error (v’) as the average of v’ within the selected
range of y,

fy%ﬂ,z)@z V' (yy, Yp)POxs Yp)dyxdyp

v , C1
W POy <) b

where p(y? + y,z, < r?) is the postselection probability:
POy, <) = / PO yp)dyxdyp.  (C2)

yityp<r?
In Fig. 8, the relation between the postselection probability
and (v') is plotted, for v = 0.5, 1.0, 1.5 (see also Fig. 3). It can
be seen that the classical and Gaussian bounds are still beaten
in some range of v, with a finite postselection probability.

J

1

APPENDIX D: PROOF THAT v > 1 WHEN v = 2 FOR
ARBITRARY STATES AND MEASUREMENTS

Because the convolution of two Wigner functions can be
obtained by considering a half-beam-splitter interaction and
tracing out one of the modes, the conditional probability,
Eq. (5), can be expressed as

p(ylé,n)=2n/W,3(x—g/2,p_,7/2)
x Wg (x+§&/2, p+n/2)dxdp
/ (x—s/ﬁ p—n/ﬁ>
=T Wﬁ

V22
Wy (x +\%\/§’ p +%ﬁ)dxdp
= W5 (6/7/2.1/Y2), (D1)
where & is a positive operator defined as
6 :=Tri[B'(p ® E;)B]. (D2)

Here Tr; denotes the partial trace of the first system, and the
half-beam-splitter operator B acts as

1

B'%B = &), B'pB = 501+ P,
1 1 (D3)
B'%B = E@l %), B'pB= E(ﬁl — D2)-
Therefore, v’ can be expressed as
,JUE = E@)? + (0 — 7)) exp(— TH0)Ws (6 /32, n/v/2)dEd
v =
J exp(—= W (6 /v/2. n/v/2)dEdy D)
20 = x0)* + (p = po)’lexp(—=3 (¥ + p*)Ws (x, p)dxdp
[ exp(=2(x2 + p*))W; (x, p)dxdp ’
[
where we put xo := £(y)/+/2, po := 1(y)/V/2. this, because
When v = 2, one can use the fact that Xy 4 x N —x 2
| o <1|6|1>“/‘/¢1(x2)1ﬁ< lfz)w< 1f2>dx2 dx,
— exp(=(" + p*)) = Wioyoi(x, p) (D5) 2 2
=0 (D)
and
’ where ¢, (x) is the wave function of |1). This holds because
;[(x — %0 + (p — po)lexp(—(2 + p2)) 06 ¢1(x2) is odd and W(’%)w("‘;ﬁxz) is even with respect to x,.

= Wioyoi+lgxel (X, P,
where |¢) = a 0) + 1) and & = —v/2(x + ipy). Thus, we
obtain

,_ Trl(10X0l + [¢Xe 5]
Tr[|0)X016]

(D7)
> 1.
The equality holds when (¢|& |¢) = 0 for some «. The

input and the POVM element being the same and pure, i.e.,
p o Ey o [ )yr| for some |y), is a sufficient condition for

APPENDIX E: ON THE DEPENDENCE OF EQ. (40) ON THE
POSTSELECTION PROBABILITY p(y)

In Eq. (40), the upper bound of 1/v" — 1/v is inversely pro-
portional to the normalized postselection probability density
—20)_ We consider cases where p(y) is small. Because p(y)

is the overlap between the prior distribution p(&€, ) [Eq. (2)]
and the likelihood function p(&, n|y) [Eq. (3)], this can be
done by taking y = yg + € for small €, where yq is a point
such that p(0, Olyp) = 0, and taking v — 0. We show that the
linear dependence of the upper bound of 1/v" — 1/v on the
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TrE2]

20y in Eq. (40) is tight in the sense that we can
construct an example such that

factor

lim 1imLyi =0, (E1)
e—>0 | v—>0 TI'[EVZ]
Jim | Tim (10— 1/0)—22 | = ¢ (E2)
e—>0 | v—>0 TI'[E\Z]

for a small parameter €, with a fixed value of the maximum
photon number 7.

In the heterodyne setting in Sec. IV, we take p = p' =
[1)}1]. Then, for y = (g, 0), the estimation error v’ has the
following expression:

o — P,(v,q)
Pi(v,q)’
P,(v, ¢) = 2v(16¢° + 32¢%v* — 1284° + 32¢4*v* + 484*v*

(E3)

— 96¢*v* + 64g*v + 3844* + 16¢°v° + 80¢°0°
+ 160g%v* + 256¢°v® 4 25647 v* — 2564%v
— 5124 4 308 + 2007 + 56v° + 1120°
+ 192v* 4+ 1920° + 128v* + 256v + 256),
(E4)
Pi(v, q) = (v + 2)(4g* + 4¢%v> — 16¢% + v* + 40 + 82
+ 16v + 16)°. (ES)

On the other hand, the postselection probability density
p(g, 0) is expressed as

p(q,0)

2
_ (4g* +4¢02—164% + v* + 40’ +8v% + 16v+16)e 12
o 7 (V3 +10v44+40v34-80v24+-80v+32)

(E6)
If we take the limit of v — 0, we have
1 1 Y4+ 12
lim <_ — _> = % (E7)
v—>0 \ v/ v 2(q* —2)
and
2
2 2 2 _ 49
lim p(g, 0= L2 (E8)
v—>0 8

Then, if we put ¢>=2+¢ and assume [e] <1,
we have p(g,0) ~ €* and (L — 1)~ €72, Using TrE? =
1/2n )2, we have

tim | Tim L’AO) —0, (E9)
€ v Tr[quo]
0
lim | lim(1/v — 1/v) p(qA) —_— (E10)
€ v—>0 TI‘[E;O]

which is the desired property.
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