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Analytic gradients in variational quantum algorithms: Algebraic extensions of the parameter-shift
rule to general unitary transformations
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Optimization of unitary transformations in variational quantum algorithms benefits highly from efficient
evaluation of cost function gradients with respect to amplitudes of unitary generators. We propose several
extensions of the parameter-shift rule to formulating these gradients as linear combinations of expectation values
for generators with general eigenspectra (i.e., with more than two eigenvalues). Our approaches are exact and
do not use any auxiliary qubits; instead they rely on a generator eigenspectrum analysis. Two main directions
in the parameter-shift-rule extensions are (1) polynomial expansion of the exponential unitary operator based
on a limited number of different eigenvalues in the generator and (2) decomposition of the generator as a linear
combination of low-eigenvalue operators (e.g., operators with only two or three eigenvalues). These techniques
have a range of scalings for the number of needed expectation values with the number of generator eigenvalues
from quadratic (for polynomial expansion) to linear and even log2 (for generator decompositions). This allowed
us to propose efficient differentiation schemes for commonly used two-qubit transformations (e.g., match gates,
transmon gates, and fSim gates) and Ŝ2-conserving fermionic operators for the variational quantum eigensolver.
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I. INTRODUCTION

Variational quantum algorithms (VQAs) currently pro-
vide the main route to employing noisy intermediate-scale
quantum hardware without error correction to solve classi-
cally difficult optimization problems in quantum chemistry
[1–3], information compression [4], machine learning [5–7],
and number factorization [8]. The mathematical formulation
of VQAs involves a cost function defined as follows:

E (τ) = 〈0̄|Û †(τ)ĤÛ (τ)|0̄〉, (1)

where Ĥ is some Hermitian N-qubit operator (e.g., the
quantum system Hamiltonian for quantum chemistry appli-
cations) and Û (τ) is a unitary transformation encoded on
a quantum computer as a circuit operating on the initial
state of N qubits |0̄〉 ≡ |0〉⊗N . To avoid deep circuits, E (τ)
is optimized with respect to τ components using a hybrid
quantum-classical iterative process: (1) every set of τ pa-
rameters is implemented on a quantum computer to measure
the value of E (τ) and (2) results of quantum measurements
are passed to a classical computer to suggest a next set of τ

parameters.
Naturally, this hybrid scheme becomes more efficient if a

quantum computer can provide gradients of E (τ) with respect
to τ components. In molecular problems, analytical gradi-
ents with respect to circuit parameters are not only useful
for variational energy optimization, but also in the calcula-
tion of analytical nuclear energy gradients and nonadiabatic
couplings in variational quantum eigensolver extensions for
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excited states [9,10]. Usual parametrizations of unitary trans-
formations are organized as products of exponential functions
of some Hermitian generators {Ĝk}:

Û (τ) =
∏

k

exp(iτkĜk ). (2)

The choice of efficient generators is generally a challenging
problem the solution of which often relies on heuristics of
a concrete field (e.g., in quantum chemistry there is a large
variety of techniques developed recently [11–20]). Due to
general noncommutativity of generators, τk gradients can be
written as

∂E

∂τk
= ∂

∂τk
〈0̄|Û †

1 e−iτk ĜkÛ †
2 ĤÛ2eiτk ĜkÛ1|0̄〉

= i〈0̄|Û †
1 e−iτk Ĝk [Û †

2 ĤÛ2, Ĝk]eiτk ĜkÛ1|0̄〉, (3)

where Û1,2 are Û parts on the left-hand and right-hand sides
of the Ĝk exponent. Evaluating the gradient as the expectation
value in Eq. (3) requires extra efforts to accommodate for
nonsymmetric distribution of unitary transformations around
Ĥ (considering the simplest case when Ĝk is also unitary).
This treatment requires introducing an auxiliary qubit and
controlled unitaries in the circuit, which enhance depth of the
circuit [21].

It was found that in cases when Ĝk has only two
eigenvalues symmetrically distributed, {±λ}, the so-called
parameter-shift rule (PSR) is applicable to Eq. (3) [21,22]:

∂E

∂τk
= λ

(
〈0̄|Û †

1 e−i(τk+s)ĜkÛ †
2 ĤÛ2ei(τk+s)ĜkÛ1|0̄〉

−〈0̄|Û †
1 e−i(τk−s)ĜkÛ †

2 ĤÛ2ei(τk−s)ĜkÛ1|0̄〉
)
, (4)
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where s = π/(4λ). Clearly, this approach allows one to
evaluate the expectation values in Eq. (4) using the same
circuit as for E (τ) with only minor modifications of τ

parameters.
A natural question is how to extend the PSR to a

general unitary transformation containing generators with
more than two eigenvalues. The algebraic form of these ex-
tensions is set to be a linear combination of expectation
values of Eq. (4). Such extensions are motivated by active
developments in hardware (two-qubit gates [23,24] generally
have four eigenvalues) and theory related to specific problems
(new generators for solving quantum chemistry problems,
e.g., spin-adapted fermionic rotations). Also, these extensions
will allow one to reduce the number of optimized parameters
if more complex generators can be considered.

Generators with more than two eigenvalues can naturally
be decomposed to generators with two eigenvalues for which
the PSR can be applied individually, as suggested by Crooks
[25]. A few approaches to such decompositions were consid-
ered for some standard two-qubit gates [25]. But there was
no attempt to systematically address the minimization of the
number of terms in such decompositions or their extensions
beyond two-qubit operators.

A naive application of the Ref. [25] decomposition scheme
to generators of the unitary coupled cluster (UCC) approach
can lead to exponential growth of the number of terms (Pauli
products) with two eigenvalues [26]. Using a specifically
tailored decomposition of UCC generators (fermionic-shift
rule) Ref. [26] was able to address the exponential growth of
expectation values needed for gradient evaluation in the Pauli
product decomposition of UCC generators.

Here we demonstrate how to do the generator decompo-
sition systematically and how to avoid cases of exponential
increase of terms in such decompositions. We provide three
generalizations of the PSR based on somewhat different
algebraic ideas the main unifying theme of which is consider-
ation of the generator eigenspectrum. In the first approach, we
use the fact that the exponential function of the generator with
K eigenvalues can be presented as a K − 1 degree polynomial.
This allows us to extend the PSR by using a larger number
of expectation values in a linear combination to cancel all
higher powers of the generator. In the second approach, we
decompose the generator into a sum of commuting operators
with a smaller number of unique eigenvalues. The third ap-
proach uses a decomposition over noncommutative operators
with a low number of eigenvalues. While the first approach
can be seen as a generalization of Ref. [26] to generators
beyond those found in UCC, the second and third approaches
have no apparent connections with previous works on efficient
evaluation of gradients.

Note that even though there are multiple generalizations
of the PSR to higher derivatives for amplitudes of generators
with two eigenvalues [27,28] and stochastic techniques for
gradients of an arbitrary generator [29], they will not be con-
sidered here, since our focus is on deterministic expression for
gradients involving expectation values of Hermitian operators.

One problem that is related to using analytical gradients
in variational algorithms is the problem of barren plateaus
(exponentially vanishing gradients) [30–32]. The theoretical
developments discussed in this paper do not consider this

problem, since it is related to specifics of the variational prob-
lem and a choice of generators.

II. THEORY

A. Polynomial expansion

Energy partial derivatives [Eq. (3)] can be rewritten as

∂E

∂τ
= i〈e−iτ ĜĤ2Ĝeiτ Ĝ〉 − i〈Ĝe−iτ ĜĤ2eiτ Ĝ〉, (5)

where we removed the k subscript for simplicity and intro-
duced short notation: 〈. . .〉 = 〈0̄|Û †

1 . . . Û1|0̄〉, Ĥ2 = Û †
2 ĤÛ2.

Asymmetry of operators’ placement around Ĥ and potential
nonunitarity of Ĝ make the obtained expectation values more
challenging to measure. However, if Ĝ has a finite number of
different eigenvalues, there is a way to rewrite this difference
as a linear combination of terms measurable on a quantum
computer without any modifications of the E (τ) measurement
scheme:

∂E

∂τ
=

∑
n

Cn〈e−i(τ+θn )ĜĤ2ei(τ+θn )Ĝ〉, (6)

where θn and Cn are coefficients to be defined. Details on
obtaining this generalization of the PSR are given in the
Appendix. The key quantity that defines θn and Cn is the
number of different eigenvalues in Ĝ, which will be denoted as
L. L defines a finite polynomial expression for the exponential
operator

eiθĜ =
L−1∑
n=0

an(θ )(iĜ)n, (7)

where an(θ )’s are constants obtained by solving a linear sys-
tem of equations, and Cn’s are evaluated from another system
of linear equations using an(θ )’s with fixed θn’s (see the
Appendix for further details). To illustrate the process in the
simplest case of L = 2, where Ĝ’s eigenvalues are ±1, hence
Ĝ2 = 1̂ and

eiθĜ = a0(θ )1̂ + a1(θ )(iĜ), (8)

where a0(θ ) = cos(θ ) and a1(θ ) = sin(θ ). To obtain the en-
ergy derivative we need only two terms in Eq. (6):

∂E

∂τ
= 1

sin(2θ )

[
〈e−i(τ+θ )ĜĤ2ei(τ+θ )Ĝ〉

− 〈e−i(τ−θ )ĜĤ2ei(τ−θ )Ĝ〉
]
. (9)

For example, Ĝ satisfying the described conditions can be any
tensor product of Pauli operators for different qubits.

For L = 3 with symmetric spectrum {0,±1}, the Appendix
shows that four expectation values are enough to obtain the
analytic gradient. It was shown recently that all fermionic op-
erators Ĝ = â†

p . . . â†
qâr . . . âs − â†

s . . . â†
r âq . . . âp used in the

UCC method have this spectrum [26]. Techniques developed
in Ref. [26] also found the gradient expressions requiring four
expectation values for such operators, and were able to reduce
it to only two expectation values for real unitary transforma-
tions acting on real wave functions. The polynomial expansion
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can be seen as a generalization of Ref. [26] to generators
beyond the fermionic rotations used in the UCC method.

The polynomial expansion for general Ĝ with L eigen-
values will produce the gradient expression with the number
of expectation values that scales as ≈ L2. If there are some
relations between different eigenvalues, they can be used to
reduce the number of expectation values by exploiting free-
dom in the choice of θn and Cn parameters (see the Appendix
for more details).

B. Generator decompositions

To address the ≈ L2 scaling of the number of expecta-
tion values in the polynomial expansion approach, instead of
Eq. (6) we will use the following alternative:

∂E

∂τ
=

∑
n

Cn〈e−iθnÔn e−iτ ĜĤ2eiτ ĜeiθnÔn〉, (10)

where we introduced new operators {Ôn}. Ôn’s are required to
have only a few eigenvalues (two or three) and to sum to Ĝ:

Ĝ =
K∑

n=1

dnÔn, (11)

where dn are real coefficients.

1. Involutory example

To illustrate how {Ôn} decomposition can be used in the
gradient evaluation, let us assume that Ôn’s have only two
eigenvalues ±1. To define Cn and θn let us consider the fol-
lowing pairs:

〈e−iθnÔn e−iτ ĜĤ2eiτ ĜeiθnÔn〉 − 〈eiθnÔn e−iτ ĜĤ2eiτ Ĝe−iθnÔn〉

= i sin(2θn)

[
〈e−iτ ĜĤ2eiτ ĜÔn〉 − 〈Ône−iτ ĜĤ2eiτ Ĝ〉

]
. (12)

Here, we used the involutory property of {Ôn} to convert their
exponents according to Eq. (8). This consideration shows that
to obtain the energy derivative via expansion in Eq. (10) we
should select ±θn pairs with coefficient C±n = dn/ sin(±2θn).
The number of the expectation values in Eq. (10) is 2K . Unfor-
tunately, K depends not only on the number of Ĝ eigenvalues
but also on their distribution and degeneracies (or multiplic-
ities). However, it is easy to formulate the best case scenario
where K = log2(L), where adding KÔn operators produces Ĝ
the spectrum of which has 2K eigenvalues {λ j}:

λ j =
K∑

n=1

dnbn j, bn j = {±1}. (13)

Starting with some Ĝ, it is not necessary that its eigenvalues
will be encoded so efficiently with involutory operators Ôn’s,
yet this best case scenario shows great potential for the de-
composition approach.

2. Efficient generator decompositions

Ôn operators optimal for the generator decomposition de-
pend on the spectrum of Ĝ. We assume that Ĝ can be written
in terms of a few qubit or fermionic operators. The number of

involved qubits or fermionic spin orbitals should not exceed
the limit when the dimensionality of a faithful representation
for involved operators becomes too large to do matrix algebra
on a classical computer.

The mathematical basis for representing Ĝ as matrix G is
that qubit or fermionic operators expressing Ĝ can be con-
sidered as basis elements of a Lie algebra. Using a faithful
representation of this Lie algebra one can work with corre-
sponding matrices instead of operators. G can be diagonalized
G = V†DV to obtain the guidance on choice of optimal
Ôn’s. To minimize the number of Ôn operators, one would
build them from decomposition D = ∑

n Dn, where Dn are
diagonal matrices with a few (two to three) different eigenval-
ues. Then, Ôn is obtained via the inverse representation map
of On = V†DnV. The caveat is that even the decomposition of
the diagonal matrix D can be done in various ways differing in
the number of necessary On’s. A simple example illustrating
various possibilities is⎛

⎜⎝
3 0 0 0
0 −3 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠

=

⎛
⎜⎝

3 0 0 0
0 −3 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ +

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠

=

⎛
⎜⎝

2 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 2

⎞
⎟⎠ +

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠

= 3(P1 − P2) + (P4 − P3), (14)

where P j is a 4 × 4 matrix with 1 on the ( j, j)th element
and zeros everywhere else. In this example, the most opti-
mal choice is the second expansion, two operators with two
symmetric eigenvalues each. It also shows that even though
the eigensubspace projector expansion [last in Eq. (14)] is the
most straightforward, it is not necessarily the most optimal.

Using the form of the Dn matrix one can optimize the num-
ber and the form of Ôn operators for a particular generator.
The result of this optimization is not explicitly representable
in some closed form for an arbitrary generator. Instead, here
we provide several heuristics that can generate shorter expan-
sions than those from the eigensubspace projector expansion;
the latter can always be used as a conservative option.

3. Commutative Cartan subalgebra decomposition

The basis of our algebraic heuristics is a Cartan subalgebra
(CSA) decomposition for Ĝ [33]. This decomposition can be
done for an element of any compact Lie algebra. Here we will
use it for Ĝ realized as an element of the N-qubit operator
algebra, su(2N ):

Ĝ =
∑

n

CnP̂n, P̂n =
N∏

j=1

σ̂ j, (15)

where Cn are coefficients, and σ̂ j = {x̂ j, ŷ j, ẑ j, 1̂1 j} is one
of the Pauli operators or identity for the jth qubit. su(2N )
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contains 4N − 1 generators P̂n due to the exclusion of the
tensor product of N identity operators. The largest Abelian
(or Cartan) subalgebra in su(2N ) that we will involve in the
decomposition is a set of P̂n’s that contain only ẑ j operators,
denoted as Ẑn’s. Ẑn’s have only two distinct eigenvalues, ±1,
which is convenient for our decomposition. The CSA decom-
position of Ĝ is

Ĝ = V̂ †

(
K∑

n=1

cnẐn

)
V̂ , (16)

where cn are coefficients and V̂ is a unitary transformation:

V̂ =
∏

k

eiτk P̂k , (17)

where τk are real amplitudes and P̂k’s are all Pauli products
that are not in the CSA. Clearly, each term in the sum of
Eq. (16) has eigenvalues ±cn, therefore we can choose each
Ôn = cnV̂ †ẐnV̂ .

The CSA decomposition in Eq. (16) can be done by ex-
panding the left- and right-hand sides of Eq. (16) in a basis
of su(2N ) Lie algebra of P̂n’s to find coefficients cn and am-
plitudes τk for V̂ . This decomposition is unique in terms of
the number of Ẑn terms, which suits our purpose to obtain the
number of two-eigenvalue operators in the Ĝ decomposition.

Since all Ôn operators commute, one can rewrite the gra-
dient expression as an application of the PSR to each Ôn

operator in Ĝ:

∂E

∂τ
=

∑
n

1

sin(2θn)

[
〈e−i(τ Ĝ+θnÔn )Ĥ2ei(τ Ĝ+θnÔn )〉

− 〈e−i(τ Ĝ−θnÔn )Ĥ2ei(τ Ĝ−θnÔn )〉
]
. (18)

The involved unitary transformations can be rewritten as

e±i(τ Ĝ±θnÔn ) = V̂ †
K∏

m=1

e±icm (τ±δnmθn )ẐmV̂ . (19)

This form is convenient for implementation of these operators
as a circuit.

4. Noncommutative Cartan subalgebra decomposition

An alternative representation of Ĝ is a sum of noncommut-
ing two-eigenvalue operators:

Ĝ =
K ′∑

n=1

cnV̂
†

n ẐnV̂n, (20)

where V̂n’s are defined in the same way as V̂ . This decompo-
sition defines Ôn = cnV̂ †

n ẐnV̂n, and due to differences in V̂n’s,
different Ôn’s do not necessarily commute. The main advan-
tage of the noncommutative decomposition is that it uses not
only coefficients cn for reproducing the spectrum of Ĝ but
also some parameters in V̂n’s, λ j = λ j ({Vn}K ′

n=1, {cn}K ′
n=1). This

dependence provides an opportunity for the noncommutative
decomposition to represent Ĝ with a lower number of terms
K ′ < K [cf. Eqs. (16) and (20)].

To construct the noncommutative decomposition we fix the
number of terms K ′ to values lower than K in Eq. (16) and
minimize the difference between the left- and right-hand sides
of Eq. (20) using cn and τ

(n)
k (amplitudes of V̂n). The choice of

Ẑn in Eq. (20) is insignificant because V̂n can always transform
one CSA operator into another.

Noncommutativity of Ôn operators does not preclude use
of the shift rule to each Ôn operator to obtain components of
the derivative for the Ĝ amplitude:

∂E

∂τ
=

∑
n

1

sin(2θn)

[
〈e−iθnÔn e−iτ ĜĤ2eiτ ĜeiθnÔn〉

− 〈eiθnÔn e−iτ ĜĤ2eiτ Ĝe−iθnÔn〉
]
. (21)

To measure such expectation values there is overhead related
to noncompatibility of eigenstates for individual Ôn and Ĝ.
Thus, one needs to explore for each class of Ĝ operators,
whether the potential reduction in the number of terms in
Eq. (20) is not diminished by a possible higher circuit depth.

III. APPLICATIONS

We will consider application of the generator decomposi-
tions for gradient evaluations of several classes of challenging
operators: (1) two-qubit generators, (2) three-qubit generators,
and (3) generators of Ŝ2-conserving fermionic rotations. Our
choice was motivated not only by inapplicability of the PSR
for these generators due to the multitude of eigenvalues but
also because advantages of all three decomposition techniques
can be illustrated on them. To compare results of the pro-
posed decompositions with a previous general scheme from
Ref. [21], we start this section with reviewing the latter.

A. Gradients via linear combination of unitaries

Denoting V̂ = eiτ Ĝ and ∂τV̂ = iĜeiτ Ĝ, one can rewrite
Eq. (5) as

∂E

∂τ
= 〈V̂ †Ĥ2∂τV̂ 〉 + 〈∂τV̂ †Ĥ2V̂ 〉. (22)

To use a measurement scheme introduced in Ref. [21], ∂τV̂
needs to be decomposed as a linear combination of unitaries
(LCU). Since eiτ Ĝ is already a unitary operation, the decom-
position is only needed for the iĜ part:

∂τV̂ =
Ku∑

k=1

ckŴkeiτ Ĝ, (23)

where iĜ is decomposed in linear combinations of unitaries
Ŵk with coefficients ck . A typical choice of Ŵk’s is a set of
Pauli products iP̂k comprising Ĝ. Also, one can use the com-
mutative CSA decomposition Eq. (16) to obtain a potentially
more compact set of Ŵk’s. Note though that the decomposition
in Eq. (23) is less flexible than the one in Eq. (11) because the
latter does not require unitarity of Ôn operators.
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FIG. 1. Measurement scheme for terms in Eq. (25). States
|	k±〉 = (V̂ ± ŴkV̂ )Û1|0〉/(2

√
p±) are obtained after measure-

ment of the ancilla qubit, where p± = 〈0|Û †
1 (V̂ ± ŴkV̂ )†(V̂ ±

ŴkV̂ )Û1|0〉/4 is the probability for the ancilla qubit results to be ±1,
respectively. H is the Hadamard gate.

The LCU decomposition for ∂τV̂ allows one to rewrite

∂E

∂τ
=

Ku∑
k=1

ck[〈V̂ †Ĥ2ŴkV̂ 〉 + c.c.] (24)

= 1

2

Ku∑
k=1

ck[〈V̂ †(1 + Ŵk )†Ĥ2(1 + Ŵk )V̂ 〉

− 〈V̂ †(1 − Ŵk )†Ĥ2(1 − Ŵk )V̂ 〉]. (25)

Each term in square brackets of Eq. (25) can be obtained via
quantum measurement using the circuit depicted in Fig. 1.
Extra features required for the circuit on Fig. 1 are one ancilla
qubit and controlled versions of unitaries. These features are
not needed for a regular circuit measuring expectation values
in Eqs. (6) and (10). In what follows we will only compare
the number of expectation values needed to be measured in
the LCU scheme and the proposed approaches. If this number
is lower or the same in our schemes, absence of the ancilla
qubit and controlled unitaries in our schemes makes these
approaches more advantageous than the LCU scheme.

B. Two-qubit generators

Any two-qubit generator has not more than four different
eigenvalues, and thus the eigenvalue decomposition scheme
will need eight expectation values for a gradient evaluation.
The CSA decomposition [Eq. (16)] of any two-qubit generator
results in at most three Ẑn’s (ẑ1, ẑ2, ẑ1ẑ2), which leads to not
more than six expectation values for each gradient. In all con-
sidered two-qubit gates, commuting and noncommuting CSA
decompositions provided the same number of Ôn’s. Since all
Ôn’s provided by CSA decompositions are unitary, they can
be used in the LCU scheme. Therefore, the number of terms
required for measurements in the LCU and our schemes is
the same, but the LCU scheme will require an extra qubit and
controlled versions of unitary operations.

1. Transmon gates

These gates are generated by [23]

Ĝ = x̂1 − bẑ1x̂2 + cx̂2. (26)

Applying Ŵ (τ ) = exp(iτ ŷ1x̂2) to each term of Ĝ,

Ŵ †(τ )x̂1Ŵ (τ ) = cos(2τ )x̂1 − sin(2τ )ẑ1x̂2, (27)

Ŵ †(τ )ẑ1x̂2Ŵ (τ ) = cos(2τ )ẑ1x̂2 + sin(2τ )x̂1, (28)

Ŵ †(τ )x̂2Ŵ (τ ) = x̂2, (29)

one can choose τ0 so that cos(2τ0) = 1/
√

1 + b2 and
sin(2τ0) = b/

√
1 + b2, then Ĝ can be represented as

Ĝ = Ŵ †(τ0)[
√

1 + b2x̂1 + cx̂2]Ŵ (τ0). (30)

To arrive at the form of Eq. (16), V̂ needs to be defined as

V̂ = ei π
4 (ŷ1+ŷ2 )Ŵ (τ0) (31)

and then Ô1 = √
1 + b2V̂ †ẑ1V̂ and Ô2 = cV̂ †ẑ2V̂ . This de-

composition allows one to evaluate the gradient using only
four expectation values.

2. Match gates

Generators of these gates are linear combinations of the
following operators [18,34]:

{x̂1x̂2, ŷ1ŷ2, x̂1ŷ2, ŷ1x̂2, ẑ1, ẑ2}. (32)

This set forms a subalgebra of su(4) that is a direct sum of
two su(2) algebras:

A1 =
{

ẑ1 + ẑ2

2
,

x̂1ŷ2 + ŷ1x̂2

2
,

x̂1x̂2 − ŷ1ŷ2

2

}
, (33)

A2 =
{

ẑ1 − ẑ2

2
,

ŷ1x̂2 − x̂1ŷ2

2
,

x̂1x̂2 + ŷ1ŷ2

2

}
. (34)

Each su(2) has only one Cartan element. The CSA decompo-
sition of any match-gate generator provides two Ôn’s, which
are results of conjugation of two CSA elements, ẑ1 and ẑ2,
with unitaries (V̂ ’s) from the two SU (2) groups corresponding
to the su(2) algebras.

3. fSim gates

The fSim gate generator [24,35] is

ĜfSim = θ

2
(x̂1x̂2 + ŷ1ŷ2) + φ

4
(1 − ẑ1)(1 − ẑ2). (35)

Its CSA decomposition results in three Ẑn’s, therefore to
do gradients with respect to the overall amplitude τ in
exp(iτ ĜfSim ) will require six expectation values. ĜfSim can be
split into

Ô1 = θ

2
(x̂1x̂2 + ŷ1ŷ2), (36)

Ô2 = φ

4
(1 − ẑ1)(1 − ẑ2), (37)

which have three and two eigenvalues, respectively, thus the θ

and φ gradients of exp[iĜfSim(θ, φ)] will require four and two
expectation values.

C. Three-qubit generators

Considering the two-qubit generators, we were not able to
find a case where the noncommutative CSA decomposition
had an advantage over the commutative CSA scheme. Here,
we give an example of a three-qubit transformation where this
advantage is clear. Consider a generator

Ĝ = Û †ẑ1Û + ẑ2 (38)

that requires only two Ôn’s using the noncommuting scheme.
We choose a three-qubit unitary Û = exp(Â), where Â is
an anti-Hermitian operator with the following matrix rep-
resentation: Ai,i = 0, Ai, j<i = 1, and Ai, j>i = −1. The CSA
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decomposition of Ĝ

Ĝ ≈ V̂ †(1.250ẑ1ẑ2 + 0.045ẑ1ẑ2ẑ3 + 0.014ẑ1ẑ3

+0.658ẑ2 − 0.045ẑ2ẑ3 + 0.014ẑ3)V̂ (39)

indicates that there are at least six Ôn’s (12 expectation values)
for the commutative decomposition scheme.

D. Ŝ2-conserving fermionic generators

One of the approaches to construct a pool of generators for
application of VQAs to solving the electronic structure prob-
lems is adding symmetry conserving conditions [36]. Usual
UCC single and double operators

κ̂a
i = a†

aai − a†
i aa, (40)

κ̂ab
ji = a†

aa†
baia j − a†

j a
†
i abaa (41)

conserve the number of electrons but generally not the
electron spin. Unitary generators that commute with the
electron-spin operators, Ŝz and Ŝ2, can be obtained by anti-
Hermitization of singlet spherical tensor operators [37]. A
general spherical tensor operator, T̂ S,M , is defined as

[Ŝ±, T̂ S,M] =
√

S(S + 1) − M(M ± 1)T̂ S,M±1, (42)

[Ŝz, T̂ S,M] = MT̂ S,M , (43)

where S and M are the electron spin and its projection to the
z axis, respectively. Equation Ŝ2 = Ŝ−Ŝ+ + Ŝz(Ŝz + 1) can be
used to show that any singlet spherical tensor operator T̂ 0,0

will commute with Ŝz and Ŝ2.
There are standard approaches for producing spherical

tensor operators [37]; they involve very similar techniques
to those used for generating spin-adapted configuration state
functions [38,39]. Individual single excitations are not T̂ 0,0

operators; therefore, one needs to group more than one exci-
tation to obtain singlet operators:

T̂ 0,0
ia = κ̂

aα

iα
+ κ̂

aβ

iβ
, (44)

where aα (aβ) and iα (iβ) are the spin orbitals arising from the
α(β) spin parts of the ath and ith spatial orbitals. For double
and higher excitations or deexcitations, the seniority number
� (the number of unpaired electrons created by the operator)
correlates well with the number of individual excitation or
deexcitation pairs in construction of singlet operators:

� = 0 : T̂ 0,0
iiaa = κ̂

aαaβ

iα iβ
, (45)

� = 2 : T̂ 0,0
iiab = κ̂

aαbβ

iα iβ
+ κ̂

aβbα

iα iβ
, (46)

� = 2 : T̂ 0,0
i jaa = κ̂

aαaβ

iα jβ
+ κ̂

aαaβ

iβ jα
, (47)

� = 4 : T̂ 0,0
i jab =

∑
s,s̄∈{α,β}

κ̂
as̄bs
is js̄

. (48)

Generators in Eqs. (44)–(48) are required for spin-conserving
UCC single and double Ansätze. Note that these generators
can be used to add electronic correlation to an initial state
of any electron-spin symmetry (not necessarily closed-shell
singlet) without altering the spin state.

The spectra of the spin-conserving generators are reported
in Table I. It is important to note that the zero eigenvalue
has much higher multiplicity than the nonzero eigenvalues for
the single and double spherical tensor operators. Due to large

TABLE I. The eigenvalues and number of Pauli products for
the singlet single and double fermionic operators. Multiplicities are
provided as subscripts for eigenvalues.

Operators Eigenvalues Number of P̂k’s

T̂ 0,0
ia {06, ±i4,±i21} 4

T̂ 0,0
iiaa {014, ±i1} 8

T̂ 0,0
i jaa, T̂ 0,0

iiab {052, ±i4, ±i
√

22} 16
T̂ 0,0

i jab {0186, ±i16,±i
√

216, ±i22,±i2
√

21} 32

differences between multiplicities of different eigenvalues in
the singlet operators’ spectra, their decomposition following
Eq. (16) was found to be inefficient in K . We found that it
usually takes a lot of {±1}-eigenvalued operators to create
large variations in eigenvalues’ multiplicities. Furthermore,
due to parity symmetry of the spectra, it is natural to introduce
alternative Ôn’s in Eq. (10) which have three eigenvalues
{0,±λn}. Explicit forms of the Ôn operators for each singlet
spherical operator are as follows:

T̂ 0,0
ia = Ô1 + Ô2 :

λ ∈ {0,±i} : Ô1 = κ̂
aα

iα

(
n̂iβ − n̂aβ

)2 + κ̂
aβ

iβ
(n̂iα − n̂aα

)2,

λ ∈ {0,±i2} : Ô2 = T̂ 0,0
ia − Ô1,

T̂ 0,0
iiab = Ô1 + Ô2 :

λ ∈ {0,±i} : Ô1 = κ̂
aβbα

iα iβ

(
n̂aα

− n̂bβ

)2

+ κ̂
aαbβ

iα iβ

(
n̂aβ

− n̂bα

)2
,

λ ∈ {0,±i
√

2} : Ô2 = T̂ 0,0
iiab − Ô1,

T̂ 0,0
i jaa = Ô1 + Ô2 :

λ ∈ {0,±i} : Ô1 = κ̂
aαaβ

iβ jα

(
n̂iα − n̂ jβ

)2

+ κ̂
aαaβ

iα jβ

(
n̂iβ − n̂ jα

)2
,

λ ∈ {0,±i
√

2} : Ô2 = T̂ 0,0
i jaa − Ô1,

T̂ 0,0
i jab =

4∑
i=1

Ôi :

λ ∈ {0,±i2} : Ô1 =
∑

s,s̄∈{α,β}
κ̂

as̄bs
is js̄

[
n̂as n̂is̄ (1 − n̂ js )

+ n̂bs̄ n̂ js (1 − n̂is̄ ) − n̂as n̂bs̄ (n̂is̄ − n̂ js )
2
]
,

λ ∈ {0,±i2
√

2} : Ô2 =
∑

s,s̄∈{α,β}
κ̂

as̄bs
is js̄

[
n̂is̄ n̂ js (1 − n̂as )

+ n̂as n̂bs̄ (1 − n̂is̄ ) − n̂ js n̂bs̄ (n̂is̄ − n̂as )
2
]
,

λ ∈ {0,±i
√

2} : Ô3 =
∑

s,s̄∈{α,β}
κ̂

as̄bs
is js̄

[
(n̂is̄ − n̂bs̄ )

2

+ (n̂ js − n̂as )
2
]

− 2
(
Ô1 + Ô2

)
,

λ ∈ {0,±i} : Ô4 = T̂ 0,0
i jab −

3∑
i=1

Ôi,
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where n̂p = â†
pâp. For � = 0, T̂ 0,0

iiaa has only one nonzero
eigenvalue and thus does not require a decomposition.

In electronic structure calculations, owing to time-reversal
symmetry of the electronic Hamiltonians, unitary transforma-
tions generating real-valued wave functions are considered.
Therefore, the technique developed in Ref. [26] to reduce the
number of expectation values for real fermionic wave func-
tions from four to two is applicable for the singlet spherical
tensor operators as well. This leads to not more than eight
expectation values needed for evaluating gradients in the most
complicated case of � = 4.

Note that in this case Ôn’s are not unitary operators, and
thus they cannot be used by the LCU scheme. To estimate
the number of fragments for measurements within the LCU
scheme we can use the number of Pauli products within each
fermionic rotation (see Table I). It is clear that the number
of Pauli products within singlet fermionic rotations can be
up to eight times larger than the corresponding number of
Ôn operators, which makes our scheme much more preferable
than the LCU approach.

IV. CONCLUSIONS

We considered two approaches to generalization of the
parameter-shift rule based on the polynomial expansion of
exponentially parametrized unitary transformations and the
generator decompositions. As in the original parameter-
shift-rule application, these approaches provide gradient
expressions as linear combinations of expectation values,
where the main criterion for efficiency is the number of dif-
ferent expectation values.

Both of the considered approaches depend on the eigen-
spectrum of the generator for the differentiated unitary
transformation, but in different ways. The performance of the
polynomial expansion depends only on the number of differ-
ent eigenvalues, while that of the generator decompositions
depends also on the generator eigensubspaces and how well
their structures can be reproduced by decomposing operators.
The polynomial expansion approach scales quadratically with
the number of generator eigenvalues and provides efficient
expression only for two- and three-eigenvalue generators [40].
For generators with a larger number of eigenvalues it is more
beneficial to employ the generator decomposition technique.
This technique provides efficient schemes (in terms of the
number of needed expectation values) for all considered gen-
erators. Also, compared to the LCU decomposition technique
used for an arbitrary generator before [21], our approach does
not require ancilla qubits.

The generator decomposition approach has several vari-
ations differing in low-eigenvalue operators used for the
decomposition. The most conservative approach is to use
projectors on individual eigensubspaces; the number of expec-
tation values scales linearly with the number of the generator
eigenvalues. It was found to be superior to other decompo-
sitions if one of the generator eigenvalues has much higher
multiplicity than the other eigenvalues, as in the case of S2-
conserving fermionic operators.

Another alternative for decomposing generators is using
the CSA. For some generators the different eigenvalues of
which can be related via linear combinations with binary

coefficients and have similar degeneracies, the CSA decom-
position can reduce the generator expansion to scale as log2
of the number of eigenvalues. Results of the CSA decompo-
sition can be further improved if one will allow generation of
noncommutative terms. The CSA based approaches showed
that any two-qubit transmon and match gates require only four
expectation values for their gradients.

Note added. Recently, two more proposals generalizing the
PSR via methods identical to our polynomial expansion were
submitted [41,42].
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APPENDIX

Here we derive Eqs. (6) and (7) for generator Ĝ that has
L eigenvalues. First, to find ai(θ )’s in Eq. (7) we use an
eigenspace projector decomposition of Ĝ:

Ĝ =
L∑

n=1

P̂nλn, (A1)

where λn are different eigenvalues of Ĝ and P̂n are projectors
on the corresponding eigensubspaces. Convenient properties
of these projectors are their orthogonality and idempotency
(P̂nP̂m = δnmP̂n). These properties allows us to connect the
exponential function

eiθĜ =
L∑

n=1

P̂neiθλn (A2)

with its polynomial expansion

L−1∑
k=0

ak (θ )(iĜ)k =
L∑

n=1

P̂n

L−1∑
k=0

ak (θ )(iλn)k. (A3)

Due to linear independence of projector operators this results
in a system of linear equations with {ikak (θ )} as variables:

L−1∑
k=0

λk
n[ikak (θ )] = eiθλn , n = 1, . . . , L. (A4)

The matrix involved in this system of equations is the
Vandermonde matrix (λk

n = Wnk), the determinant of which is
nonzero as long as the eigenvalues are different. Inverting the
Vandermonde matrix provides ak (θ ) solutions:

ak (θ ) = i−k
∑

n

W −1
kn eiθλn . (A5)

Since λn’s are real, it is easy to show the following relations:

a2k (θ ) = a∗
2k (−θ ), (A6)

a2k+1(θ ) = −a∗
2k+1(−θ ). (A7)
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Second, Cn coefficients in Eq. (6) can be found as solutions
of a linear system of equations. This system can be formulated
by rewriting Eq. (6) as

∑
n

Cn〈e−iθnĜH̃eiθnĜ〉 =
∑

n

Cn

L−1∑
k,k′=0

〈Ĝk′
H̃Ĝk〉Akk′ (θn)

= i
[〈H̃Ĝ〉 − 〈ĜH̃〉], (A8)

where

H̃ = e−iτ ĜÛ †
2 ĤÛ2eiτ Ĝ, (A9)

Akk′ (θn) = ak (θn)a∗
k′ (θn)ik+k′

(−1)k . (A10)

Accounting for linear independence of 〈Ĝk′
H̃Ĝk〉 terms one

can obtain Cn from equations∑
n

Akk′ (θn)Cn = Bkk′ , (A11)

where B10 = −B01 = i and Bkk′ = 0 for all other kk′. Depend-
ing on the choice of θn, the number of needed Cn’s to satisfy
L2 equations can vary, but it cannot exceed L2.

Minimization of the number of Cn coefficients and thus
the number of expectation values depends on the Ĝ spectrum.
For example, if every λn has its negative counterpart, −λn,
then the even (odd) degree functions a2k (θ ) [a2k+1(θ )] are real
even (odd) θ functions. This condition allows one to reduce
the number of needed Cn and θn parameters to ≈ L2/2, where

θn’s are chosen in pairs {±θk}Np/2
k=1 . Thus, in the case of L = 2,

the number of Cn’s is only 2 because θn = ±θ creates some
dependencies in Akk′ (θn) elements.

For L = 3 and λn ∈ {0,±1} one can derive the following
polynomial expansion of the exponential Ĝ operator:

eiθĜ = 1 + i sin(θ )Ĝ + [cos(θ ) − 1]Ĝ2. (A12)

Taking θ1,2 = ±θ does not eliminate terms 〈ĜH̃Ĝ2〉 and
〈Ĝ2H̃Ĝ〉 in the PSR expression, therefore another pair of θ ’s
θ3,4 = ±2θ is needed to eliminate these terms and to obtain
the gradient of energy in this case. Here, we present the final
expression

i〈[H̃, Ĝ]〉 = (α�1 − �2)β, (A13)

where

α = sin(2θ )(cos(2θ ) − 1)

sin(θ )(cos(θ ) − 1)
, (A14)

β = 1

2 sin(2θ )

[
1 − cos(2θ )

1 − cos(θ )
− 1

]−1

, (A15)

�k = 〈e−ikθĜH̃eikθĜ〉 − 〈eikθĜH̃e−ikθĜ〉. (A16)

This results in four expectation values required to obtain the
gradient with respect to the amplitude of the L = 3 Ĝ with the
symmetric eigenvalue spectrum λn ∈ {0,±1}.
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