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The monogamy relations of entanglement are highly significant. However, they involve only amounts of
entanglement shared by different subsystems. Results on monogamy relations between entanglement and other
kinds of correlations, and particularly classical correlations, are very scarce. Here we experimentally observe a
tradeoff relation between internal quantum nonseparability and external total correlations in a photonic system
and found that even purely classical external correlations have a detrimental effect on internal nonseparability.
The nonseparability we consider, measured by the concurrence, is between different degrees of freedom within
the same photon, and the external classical correlations, measured by the standard quantum mutual information,
are generated between the photons of a photon pair using the time-bin method. Our observations show that to
preserve the internal entanglement in a system, it is necessary to maintain low external correlations, including
classical ones, between the system and its environment.
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I. INTRODUCTION

Since the Einstein-Podolsky-Rosen paradox [1] was first
proposed in 1935, quantum entanglement [2] has drawn
considerable attention. Subsequently, the Bell inequality [3]
provided a further demonstration that quantum entanglement
differs from any classical correlation. As part of the ongoing
progress in the research on quantum entanglement, the prop-
erties of multipartite quantum systems must be characterized.
Most explorations of multipartite systems to date have fo-
cused on quantum entanglement. For example, the important
traditional entanglement monogamy relation for three qubits
[4,5], say A, B, and C, states that the entanglement shared
by qubits A and B and that shared by qubits A and C limit
each other. This monogamy relation has been generalized to
the multipartite systems case [6]. Recently, Camalet derived
a new type of monogamy relation that is a tradeoff between
the internal entanglement within one system and the external
entanglement of that system with another system [7,8], which
has been observed experimentally [9].

On the other hand, relations between quantum entangle-
ment and other kinds of correlations, and particularly classical
correlations, have attracted far less attention. It is well known
that, while the distribution of quantum correlations, such as
entanglement, is constrained, classical correlations can be
shared freely. The question of whether any limitation exists
between quantum correlations (e.g., entanglement or non-
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separability) and classical correlations then naturally arises.
This issue has been addressed for the three-system scenario
mentioned above [10] and, more recently, for a composite
system correlated to another system [11]. In this last case,
it has been demonstrated that internal entanglement has a
tradeoff relation not only with external entanglement but also
with other forms of external correlations, total correlations
for instance, as illustrated in Fig. 1. In particular, even purely
classical external correlations limit internal entanglement and
vice versa.

In this study, we provide an experimental demonstration
of this monogamy relation in a photonic system. Instead of
internal entanglement, we consider the analog for two degrees
of freedom of a single system, a photon in our experiments,
known as quantum nonseparability [9,12,13]. The time-bin
method [14,15] is used to prepare purely classical correlations
between two photons. This is a novel use of this technique
for that purpose. The considered tradeoff relation may play
an important role in the evolution of open systems [16,17],
where the internal entanglement (or nonseparability) of the
open system and the external correlations with the system
environment, influence each other continuously. Therefore,
our results show that it is necessary to maintain low external
correlations, including classical correlations, to allow more of
the internal entanglement or nonseparability of the system to
be preserved.

II. THEORETICAL BACKGROUND

Consider any finite-dimensional system A, which consists
of two subsystems (or has two degrees of freedom), and any
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FIG. 1. Theoretical sketch. The internal quantum entanglement
(or nonseparability) of system A, quantified by E (ρA), and the total
correlations between A and another system B, quantified by I (ρAB),
limit each other. Quantum entanglement (nonseparability) can exist
between different subsystems (different degrees of freedom) of A. In
addition, system A and system B can also be viewed as a system (A)
and its environment (B), respectively. Therefore, reduction of the cor-
relations (including classical correlations) between the system and
its environment can be highly beneficial for preserving the internal
entanglement of the system.

other system B (see Fig. 1). The entanglement (or the quantum
nonseparability) between the two subsystems (or degrees of
freedom) of A and the total correlations between A and B limit
each other [11]. This relation can be described quantitatively
using an inequality that involves an entanglement monotone
E and a correlation monotone C. Monotone C is required
to vanish for product states and to be nonincreasing under
local operations, i.e., operations that do not affect either A
or B [11,18]. Monotone E must vanish for separable states
and be nonincreasing under local operations and classical
communication [2,19].

The inequality described above can be written more specif-
ically as

E (ρA) � ξ [C(ρ)], (1)

where ρ is the global state of A and B, ρA is the state of A, and
ξ is a nonincreasing function. For any number of correlations
c, there are states ρ such that C(ρ) = c and the two sides
of the inequality are infinitely close to each other. We note
that C in Eq. (1) can be an entanglement monotone because
such a measure is also a correlation monotone. This inequality
thus generalizes the relation between the internal and external
entanglements studied in Refs. [8,9]. Equation (1) has been
obtained by assuming that E is convex and that C satisfies
the following requirement. When A and B are in a pure state
|ψ〉, C(|ψ〉〈ψ |) is only dependent on the nonzero eigen-
values λ1(ρA), . . . of ρA, i.e., C(|ψ〉〈ψ |) = f (λ1(ρA), . . . ).
Equation (1) can be derived when the function f is contin-
uous.

Because inequality (1) holds when C is a measure of the
total correlations, it implies that even purely classical correla-
tions between A and B have a detrimental effect on the internal
entanglement of A. This can be seen clearly in the case where
systems A and B are in a classical-classical state

ρ =
∑

i, j

pi j |i〉〈i| ⊗ | j〉〈 j|, (2)

FIG. 2. Relationship between the internal quantum nonsepara-
bility and the external classical correlations. The zero axes and the
solid lue line delimit the allowed region when systems A and B
are not entangled, which is shown as the lower white region. The
upper grey region cannot be reached with separable states. When
the mutual information between the non-entangled A and B is larger
than ln(2

√
3), the internal concurrence of A necessarily vanishes.

The dashed red line is obtained using Eqs. (6) and (7). The square
blue dots represent theoretical sampling results for the two-parameter
family of states that generalizes Eq. (5) and the rhombus red dots with
the error bars represent the experimental results. The error bars result
from the imperfections of the interferometer and the deviations of the
polarization devices.

where {|i〉} ({| j〉}) denote orthonormal states of A (B) and
pi j are probabilities that sum to unity. For such a state ρ, not
only is there no entanglement between A and B, but also the
quantum discord measures vanish [20]. The classical-classical
states (2) obey Eq. (1) with ξ being replaced with a nonin-
creasing function ζ , which is lower than ξ (see Fig. 2) [11].

The total correlations are usually quantified using the mu-
tual information

I (ρ) = S(ρA) + S(ρB) − S(ρ), (3)

where S is the von Neumann entropy, which is readily com-
putable for any global state ρ. For general states, the mutual
information is not larger than 2 ln d , where d is the Hilbert
space dimension of A. For the classical-classical states (2),
the mutual information cannot exceed ln d . This measure is
a correlation monotone [21]. We use it in the following to
evaluate the correlations between A and B. In this case, one has
ζ (ln d ) = 0 for any E . In other words, for a classical-classical
state ρ, the internal entanglement E (ρA) must necessarily
vanish when I (ρ) reaches the corresponding maximum value
of ln d . Note that here inequality (1) with C = I and ζ in place
of ξ is actually valid for all separable states ρ.

For a system A that consists of two two-level subsystems
(or two two-level degrees of freedom), the concurrence is a
familiar entanglement monotone that can be evaluated for any
state ρA [22]. Because it is a convex roof measure, it is convex
[19]. Its maximum value is 1. When E is the concurrence
and C is the mutual information (3), the function ζ can be
obtained using the results of Ref. [23]. This function vanishes
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FIG. 3. Experimental setup. The type-I phase-matching spontaneous parametric down-conversion process generates an entangled photon
pair that is decohered after passing through a sufficiently long quartz plate. The two correlated photons are then distributed to Alice (the upper
part) and Bob (the lower part) through optical fibers. In Alice’s section, the polarization and the path are nonseparable. BBO: β-barium-borate
crystal; QP: quartz plate; QWP: quarter-wave plate; HWP: half-wave plate; BS: beam splitter; RM: reflective mirror; PBS: polarizing beam
splitter; BD: beam displacer; SPD: single-photon detector.

in the interval [ln(2
√

3), 2 ln 2]. In the interval [0, ln(2
√

3)],
its inverse function is given by

ζ−1(e) = max{μ(1 + e) + μ(1 − e) + (1 − e) ln(3)/2,

μ[1 + e − κ (e)] + μ[1 − e − κ (e)]

− κ (e) ln κ (e)}, (4)

where μ(e) = −e ln(e/2)/2 and κ (e) = (
√

4 − 3e2 − 1)/3.
The function ζ is shown as a solid blue line in Fig. 2.

We now consider a system A that consists of two two-level
subsystems (or two two-level degrees of freedom) and a four-
level system B in a classical-classical state of the form

ρ (p) = p2|00〉〈00| ⊗ |α〉〈α| + (1 − p)2|+〉〈+| ⊗ |β〉〈β|
+ p(1 − p)(|11〉〈11| ⊗ |γ 〉〈γ | + |−〉〈−| ⊗ |δ〉〈δ|),

(5)

where p ∈ [0, 1], |α〉, |β〉, |γ 〉, and |δ〉 are orthonormal
states, and |00〉 = |0〉 ⊗ |0〉, |11〉 = |1〉 ⊗ |1〉, and |±〉 =
(|0〉 ⊗ |1〉 ± |1〉 ⊗ |0〉)/

√
2 with orthonormal states |0〉 and

|1〉 of the subsystems of A. Below, we will see how states
(5) can be prepared experimentally. The corresponding mutual
information (3) is given by

I (ρ (p) ) = −2p ln p − 2(1 − p) ln(1 − p), (6)

which reaches all values in the interval [0, 2 ln 2] when p
varies from 0 to 1/2. The concurrence of the reduced density
operator ρ

(p)
A is given by

E
(
ρ

(p)
A

) = max{0, (1 − 2p)(1 − p) − 2
√

p3(1 − p)}, (7)

which decreases from 1 to 0 as p increases and vanishes when
p > 0.302.

The curve described by [I (ρ (p) ), E (ρ (p)
A )], as p varies from

0 to 1/2, is shown as a dashed red line in Fig. 2. The extreme
cases where p = 0 and p = 1 can be readily understood from
expression (5). For the global state ρ (0) = |+〉〈+| ⊗ |β〉〈β|,
A and B are uncorrelated and the two subsystems of A are
maximally entangled, which means that I = 0 and E = 1. For
ρ (1) = |00〉〈00| ⊗ |α〉〈α|, A and B are uncorrelated and the
two subsystems of A are also uncorrelated, which means that
I = E = 0. For p = 1/2, ρ

(1/2)
A is the maximally mixed state

of A and thus the two subsystems of A are uncorrelated and
E = 0. For any p, the mutual information (6) and the concur-
rence (7) satisfy inequality (1) with the function ζ given by
Eq. (4), i.e., in Fig. 2, the dashed red line is entirely in the
light-blue shaded region. In the Appendix A, a two-parameter
family of states that generalizes Eq. (5) is considered. The
blue dots in Fig. 2 correspond to such states.

III. EXPERIMENTAL RESULTS

To test the relation between internal quantum nonseparabil-
ity and external correlations experimentally, we first prepare
some states as per the form of Eq. (5) and measure them
to evaluate the corresponding concurrence and mutual infor-
mation. Polarization and path degrees of freedom are used
for the preparation of these states. As Fig. 3 shows, pairs of
entangled photons are generated, and the two photons of a
pair travel along two different paths via single-mode fibers.
The upper path belongs to Alice, which receives photon A,
and the lower path belongs to Bob, which receives photon B.
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In the following, we will describe these two parts of the setup
in detail.

In the entangled-photon-pair source, the entangled state
|ψ〉 = cos θ |HH〉 + sin θ |VV 〉, where |H〉 and |V 〉 denote,
respectively, horizontal and vertical polarization states of a
photon, is produced via a type-I phase-matching spontaneous
parametric down-conversion process in a joint β-barium-
borate (BBO) crystal [24]. The angle θ is adjustable. The
laser used here is a semiconductor laser with a wavelength
of 404 nm and power of approximately 100 mW. Then, a
suitably long quartz plate causes this state to be completely
decohered into the mixed state ρd = cos2 θ |HH〉〈HH | +
sin2 θ |VV 〉〈VV |. The two photons are subsequently dis-
tributed to Alice’s and Bob’s parts of the setup, where
operators act on them to produce the target states as shown
in Eq. (5). In both Alice’s and Bob’s parts, there is an up path
and a down path. In the following, we use two conventions for
both photons A and B: (i) both |H〉 and the path state |up path〉
represent |0〉; and (ii) both |V 〉 and the path state |down path〉
represent |1〉.

In Alice’s part, two operations are performed on pho-
ton A with different probabilities. The first operation is U1 :
(|0〉, |1〉) → (|11〉, |+〉), which has probability 1 − p. The
second operation is U2 : (|0〉, |1〉) → (|00〉, |−〉), which has
probability p. We fix the two half-wave plates (HWPs) af-
ter the first beam displacer (BD) at angles of 45◦ and
22.5◦, respectively. Note that the beam displacers used in
our experiments always shift the photons with the horizontal
polarization upward and keep the photons with the vertical
polarization on the original path so that the BD prepare the
nonseparability between polarization and path degree of free-
dom. Therefore, after the first two BDs, operation U1 has been
fulfilled. The beam splitter (BS) then gives two paths of differ-
ent lengths 
1 and 
2. On the shorter path, an operation U such
that U2 = UU1 is performed, while the longer path involves
direct reflection to the measurement device. The ratio between
these two paths is adjusted using a movable attenuator. The
two HWPs after the first BS are fixed at angles of −45◦ and
45◦, respectively.

In Bob’s part, two operations are also enacted on the pho-
tons with probabilities 1 − p and p and the lengths of the
two paths are also 
1 and 
2. The operation V1 : (|0〉, |1〉) →
(|00〉, |10〉) is performed on the longer path and the operation
V2 : (|0〉, |1〉) → (|01〉, |11〉) is performed on the shorter path.
The photon B states |01〉, |10〉, |00〉, and |11〉 correspond,
respectively, to the states |α〉, |β〉, |γ 〉, and |δ〉 in Eq. (5).
Unlike U1 and U2, the operations V1 and V2 can be completed
using only BSs. The outputs of the second BS have realized
the expansion of the one-qubit space to two-qubit space. The
ratio between the two operations can also be tuned via a
movable attenuator.

Here we use the time-bin method, that is, the coinci-
dence detection only records the photon pairs that arrive at
the coincidence counter within the time window, to prepare
the classical-classical states. As described above, when both
photons of a pair travel the longer (shorter) paths, the oper-
ation U1 (U2) is performed on photon A, and the operation
V1 (V2) is performed on photon B. Therefore, the state of the
photon pair becomes ρ = (1 − p)(U1 ⊗ V1)ρd (U †

1 ⊗ V †
1 ) +

p(U2 ⊗ V2)ρd (U †
2 ⊗ V †

2 ), which is the same as Eq. (5). It
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FIG. 4. Experimental data. The two curves present the theoretical
values of the internal concurrence E (ρ (p)

A ) (dashed green line) and
the external mutual information I (ρ (p) ) (solid yellow line), given by
Eqs. (7) and (6), respectively, as functions of p = cos2(θ ). The mu-
tual information reaches a maximum when p = 0.5. The concurrence
E (ρ (p)

A ) vanishes for p > 0.302. When p = 0, the mutual information
vanishes and the concurrence reaches its maximum value of 1. When
p = 1, both the concurrence and the mutual information are zero.
The experimental values (dots) correspond to states (5) with θ equal
to {0, π/16, π/8, 3π/16, π/4, 9π/32, 11π/32, 3π/8, 13π/32,
7π/16, 15π/32, and π/2}. The error bars result from the quality
of the interferometer and the fluctuations in the photon count.

should be noted that the time-bin method has been employed
for coherently synthesizing quantum entangled states exten-
sively in many previous works. However, here we can use it
for incoherently producing classical correlations with suitable
postselection.

After state preparation, determination of the method re-
quired to measure the prepared states is also a crucial problem.
They are four-qubit states encoded in polarization and path
degrees of freedom [9,25–27]. As shown in Fig. 3, the exper-
imental setup contains four standard polarization tomography
setups (SPTSs) that each consist of one HWP, one quarter-
wave plate, and a polarizing beam splitter. The first SPTS,
on each side is used to measure the polarization states and
collapses these states to |H〉 so that the polarization infor-
mation is erased. Then, the final BDs, on both sides, convert
the path information into polarization information to help the
subsequent SPTSs to measure the path states. Using the four
SPTSs, full quantum state tomography can be performed and
the complete 16×16 density matrix ρ can be reconstructed
[28]. The reduced density matrices ρA and ρB are then derived
from the experimentally determined state ρ, and the mutual
information (3) and the concurrence of the state ρA are calcu-
lated.

By adjusting the angle θ of the HWP before the BBO
crystal, and the transmissivities of Alice’s and Bob’s at-
tenuators so that p = cos2(θ ), we prepared 12 states. We
used the values 0, π/16, π/8, 3π/16, π/4, 9π/32, 11π/32,
3π/8, 13π/32, 7π/16, 15π/32, and π/2 for θ . The aver-
age fidelity of these states, as described using Eq. (5), is
beyond 95% [29]. The detailed fidelities of the prepared
is listed in Table I in the Appendix C. Figure 4 shows
the theoretical and experimental values of the internal con-
currence and external mutual information as functions of
p. The experimental results for θ from π/4 to π/2, are
represented as red dots with error bars in Fig. 2. They
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are all in the allowed region determined by inequality (1)
with the function ζ given by Eq. (4), which experimentally
demonstrates the tradeoff relation between internal nonsepa-
rability and external purely classical correlations. The errors
in the experiment mainly resulted from the quality of the in-
terferometer, for which the visibility was approximately 50:1,
and fluctuations in the photon count.

IV. DISCUSSION

The entanglement and classical correlation tradeoff rela-
tion observed in the present experiment may be useful in
the exploration of a number of fields, ranging from quantum
communication [30] and quantum computation [31] to open
systems and many-body physics [32]. This relation does not
apply solely to the considered optical system; it can also be
observed in several other physical systems, including cold
atoms and trapped ions. This tradeoff relation is thus a fun-
damental result for the development of quantum information
science, particularly for a quantum communication network.

For open systems [33], external correlations between the
system and the environment is a major concern because they
may damage the entanglement inside the system. According
to our results, external total correlations and internal quantum
nonseparability limit each other. Even purely classical exter-
nal correlations can have a detrimental effect on the internal
quantum nonseparability. Therefore, to preserve the internal
entanglement or nonseparability of the system as much as pos-
sible, the correlations, including the classical ones, between
the system and the environment, must be reduced as low as
possible.

In conclusion, we have presented the tradeoff relation be-
tween internal quantum nonseparability and external classical
correlations in a photonic system experimentally. It is remark-
able that the realization involves use of the time-bin method to
produce purely classical correlations between the photons of
a photon pair. Furthermore, polarization and path degrees of
freedom of one of the photons of a pair have been entangled
to realize the internal nonseparability experimentally. The
classical-classical states are of major significance in this work
and we have proposed a convenient and efficient method to
prepare these states.
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APPENDIX A: DERIVATION OF EQ. (4)

When A consists of two two-level systems, E is the con-
currence, and C is the mutual information, the function ζ

mentioned in the main text is given by

ζ (c) = max
λ∈�|h(λ)=c

max{0, λ1 − λ3 − 2
√

λ2λ4},

where � refers to the set of tuples of four probabilities sum-
ming to unity, arranged in decreasing order, and h is the
Shannon entropy, i.e., h(λ) = −∑

i λi ln λi [11,23].
To determine ζ , we first consider χ defined by

χ (e) = max
λ∈�|k(λ)=e

h(λ),

where k(λ) = λ1 − λ3 − 2
√

λ2λ4. To find the maximum value
of h(λ) under the constraints k(λ) = e,

∑
i λi = 1, and 0 �

λ4 � λ3 � λ2 � λ1 � 1, we introduce x and y such that
0 � x � y � 1 and let λ4 = x2 and λ2 = y2. The conditions
k(λ) = e and

∑
i λi = 1 can be rewritten as λ2∓1 = [1 ± e −

(x ∓ y)2]/2, and the above inequality requirements on the
probabilities λi determine the e-dependent domain De of (x, y)
which exists for e ∈ [−1/2, 1]. More precisely, De is given
by x � 0, y � −x + (1 − e − 2x2)1/2, y � x/3 + (3 + 3e −
2x2)1/2/3, and y � −x/3 + (3 − 3e − 2x2)1/2/3.

The first- and second-order derivatives of h with respect to
x and y can be written as

∂zh = −4z ln z + (z − z̄) ln λ1 + (z + z̄) ln λ3,

∂2
z h = −4 ln z − (1 + e)/λ1 − (1 − e)/λ3 + ln(λ1λ3),

∂2
zz̄h = (1 + e)/λ1 − (1 − e)/λ3 + ln(λ3/λ1),

where z = x or y, x̄ = y, and ȳ = x. The function h has a
critical point in the interior of De for some values of e, but
it is not a maximum, as shown by the fact that the Hessian
determinant, ∂2

x h∂2
y h − (∂2

xyh)2, is negative at this point. For
e > 0, the boundary of De contains a line segment on the
y axis. On this line segment, the maximum value of h is
at y = κ (e)1/2 and is equal to μ[1 + e − κ (e)] + μ[1 − e −
κ (e)] − κ (e) ln κ (e). The functions κ and μ are defined in
the main text. On the boundary of De and for x > 0, the
maximum value of h is at x = y = √

(1 − e)/6 and is equal
to μ(1 + e) + μ(1 − e) + (1 − e) ln(3)/2, or is reached in the
limit x → 0. Consequently, χ is given by the right side of
Eq. (4) in the main text.

Since χ is a continuous and strictly decreasing function on
[−1/2, 1], χ (−1/2) = 2 ln 2 and χ (1) = 0, it has an inverse
function χ−1 with domain X = [0, 2 ln 2]. Consider any c ∈
X and define ec = χ−1(c). As seen above, there is λ ∈ � such
that k(λ) = ec = χ−1(c) and h(λ) = χ (ec) = c. Now let λ be
any tuple of � such that h(λ) = c and let e = k(λ). Assuming
e > ec implies χ (e) < χ (ec) = c, and so, by definition of
χ (e), h(λ) < c. As this last inequality cannot hold, one has
necessarily k(λ) � χ−1(c), and hence

max
λ∈�|h(λ)=c

k(λ) = χ−1(c).

When χ−1(c) � 0, i.e., for c ∈ [ln(2
√

3), 2 ln 2], k(λ) is non-
positive for any λ ∈ � such that h(λ) = c, and so ζ (c) = 0.
When χ−1(c) > 0, ζ (c) is equal to χ−1(c), as given by Eq. (4)
in the main text.

APPENDIX B: DERIVATION OF EQS. (6) AND (7)

Consider a system A consisting of two two-level systems
and a four-level system B in a classical-classical state of the
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form

ρ = p(1 − q)|00〉〈00| ⊗ |α〉〈α| + (1 − p)q|+〉〈+| ⊗ |β〉〈β|
+ pq|11〉〈11| ⊗ |γ 〉〈γ |
+ (1 − p)(1 − q)|−〉〈−| ⊗ |δ〉〈δ|, (B1)

where p, q ∈ [0, 1], |α〉, |β〉, |γ 〉, and |δ〉 are orthonormal
states, |00〉 = |0〉 ⊗ |0〉, |11〉 = |1〉 ⊗ |1〉, and |±〉 = (|0〉 ⊗
|1〉 ± |1〉 ⊗ |0〉)/

√
2 with |0〉 and |1〉 denoting orthonormal

states of the subsystems of A. Since S(ρ) = S(ρA) = S(ρB),
the corresponding mutual information between A and B is

I (ρ) = −p ln p − (1 − p) ln(1 − p)

− q ln q − (1 − q) ln(1 − q),

which simplifies to Eq. (6) in the main text for q = 1 − p.
Note that it is invariant under the changes p ↔ 1 − p and q ↔
1 − q.

The concurrence E between the two subsystems of A is
determined by the eigenvalues μi of ρAσ ⊗ σρ∗

Aσ ⊗ σ where
σ = −|1〉〈0| + |0〉〈1| and ρ∗

A = ρA is the complex conjugate
of ρA written in the standard basis {|00〉, |01〉, |10〉, |11〉}.
It reads as E (ρA) = max{0, 2 maxi

√
μi − ∑

i
√

μi}. The

TABLE I. Fidelities of prepared states.

θ 0 1
16 π 1

8 π

Fidelities 98.81 ± 0.11% 95.66 ± 0.35% 95.25 ± 0.24%
θ 3

16 π 1
4 π 9

32 π

Fidelities 95.30 ± 0.31% 95.27 ± 0.33% 95.80 ± 0.22%
θ 11

32 π 3
8 π 13

32 π

Fidelities 95.01 ± 0.48% 95.55 ± 0.42% 94.70 ± 0.28%
θ 7

16 π 15
32 π 1

2 π

Fidelities 94.68 ± 0.37% 95.64 ± 0.26% 97.20 ± 0.15%

eigenvalues μi are q2(1 − p)2, (1 − q)2(1 − p)2, and twice
p2q(1 − q). They are given by the same expressions with q
replaced by q̃ = min{q, 1 − q} = (1 − |2q − 1|)/2. Since the
last one is doubly degenerate, 2 maxi

√
μi − ∑

i
√

μi can be
positive only when maxi

√
μi = (1 − q̃)(1 − p), and so

E (ρA) = max{0, (1 − 2q̃)(1 − p) − 2p
√

q̃(1 − q̃)},
which simplifies to Eq. (7) in the main text for q = 1 − p.
Clearly, E (ρA) is also invariant under the change q ↔ 1 − q.

APPENDIX C: FIDELITIES OF PREPARED STATES

Here the fidelities of the classical-classical states prepared
experimentally are listed in the following table.
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