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Efficient verification of quantum states and gates is crucial to the development of quantum technologies.
Although the sample complexities of quantum state verification and quantum gate verification have been studied
by many researchers, the number of experimental settings has received little attention and is poorly understood.
In this work we study systematically quantum state verification and quantum gate verification with a focus on the
number of experimental settings. We show that any bipartite pure state can be verified by only two measurement
settings based on local projective measurements. Any bipartite unitary in dimension d can be verified by 2d
experimental settings based on local operations. In addition, we introduce the concept of entanglement-free
verification and clarify its connection with minimal-setting verification. Finally, we show that any two-qubit
unitary can be verified with at most five experimental settings; moreover, a generic two-qubit unitary (except for
a set of measure zero) can be verified by an entanglement-free protocol based on four settings. In the course of
study we clarify the properties of Schmidt coefficients of two-qubit unitaries, which are of independent interest.
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I. INTRODUCTION

Quantum information processing has attracted increasing
attention recently due to its great potential and profound
implications. To harness the power of quantum information
processing, it is crucial to verify the underlying quantum
states and devices efficiently based on the accessible measure-
ments. Unfortunately, traditional tomographic approaches are
notoriously inefficient since the resource overhead increases
exponentially with the system size under consideration. To
overcome this problem, a number of alternative approaches
have been proposed recently; see Refs. [1-4] for an overview.

Among alternative approaches proposed so far, quantum
state verification (QSV) is particularly appealing because it
can achieve a high efficiency based on local operations and
classical communication (LOCC) [5-10]. Notably, efficient
verification protocols based on local projective measure-
ments have been constructed for bipartite pure states [5,11—
14], stabilizer states [8,10,15-19], hypergraph states [17],
weighted graph states [20], and Dicke states [21,22]. More-
over, the efficiency of QSV has been demonstrated in a
number of experiments [23-26]. Recently, the idea of QSV
was generalized to quantum gate verification (QGV) [27-29]
(cf. Refs. [30-34]), which enables efficient verification of
various quantum gates and quantum circuits based on LOCC.
Notably, all bipartite unitaries and Clifford unitaries can be
verified with resources that are independent of the system
size, while the resources required to verify the general-
ized controlled-NOT (CNOT) gate and generalized controlled-Z
(CZ) gate grow only linearly with the system size. The
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efficiency of QGV has also been demonstrated in several
experiments recently [35,36].

So far most works on QSV and QGV have exclusively
focused on the sample efficiency as the main figure of merit.
By contrast, the number of experimental settings has received
little attention, although this figure of merit is also of key
interest to both theoretical study and practical applications.
Even for bipartite pure states, it is still not clear how many
measurement settings are required to construct a reliable ver-
ification protocol. The situation is even worse in the case of
bipartite unitaries, not to mention the multipartite scenario.
This problem becomes particularly important when it is diffi-
cult or slow to switch measurement settings, which is the case
in many practical scenarios.

In this work we study systematically QSV and QGV with a
focus on the number of experimental settings based on LOCC.
We show that any bipartite pure state can be verified by two
measurement settings based on nonadaptive local projective
measurements. By contrast, at least d experimental settings
based on local operations are required to verify each bipar-
tite unitary in dimension d, while 2d settings are sufficient.
In addition, we introduce the concept of entanglement-free
verification, which is of special interest to both theoretical
study and practical applications. Moreover, we show that any
entanglement-free verification protocol can be turned into a
minimal-setting protocol and vice versa.

For each two-qubit unitary, we determine the minimum
number of required experimental settings explicitly. Our study
shows that any two-qubit unitary can be verified using only
five experimental settings, while a generic two-qubit unitary
(except for a set of measure zero) can be verified by an
entanglement-free protocol based on four settings. Explicit
entanglement-free protocols are constructed for CNOT, CZ,
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controlled-phase (C-Phase), and SWAP gates, respectively.
In the course of study we clarify the properties of Schmidt
coefficients of two-qubit unitaries and their implications for
studying the equivalence relation under local unitary transfor-
mations, which are of interest beyond the main focus of this
work.

The rest of this paper is organized as follows. In Sec. II
we briefly review the basic frameworks of QSV and QGV. In
Sec. III we determine the minimum number of measurement
settings required to verify each bipartite pure state. In Sec. IV
we clarify the relation between minimal-setting verification
and entanglement-free verification; in addition, we derive
nearly tight lower and upper bounds for the minimum number
of settings required to verify each bipartite unitary. In Sec. V
we clarify the properties of Schmidt coefficients of two-qubit
unitaries. In Sec. VI we determine the minimum number of
settings required to verify each two-qubit unitary. Section VII
summarizes the paper. To streamline the presentation, some
technical proofs are relegated to the Appendixes.

II. QUANTUM STATE AND GATE VERIFICATION

In preparation for the later study, here we briefly review
the basic frameworks of QSV [8-10] and QGV [27-29]
(cf. Refs. [30-32]).

A. Quantum state verification

Consider a quantum system associated with the Hilbert
space ‘H. A quantum device is supposed to produce the target
state | ) but actually produces the N states py, o2, ..., py in
N runs. To distinguish the two situations, we can perform a
random test in each run. Each test is determined by a test oper-
ator E;, which is associated with a two-outcome measurement
of the form {E;, I — E;}, where I is the identity operator. Here
the first outcome corresponds to passing the test. To guarantee
that the target state can always pass the test, the test operator
E; should satisfy the condition (W|E;|¥) = 1, which means
Ej|Y) = |W).

If the test E; is performed with probability p;, then the per-
formance of the above verification procedure is determined by
the verification operator Q = ), p;E;. Suppose (¥V|p|¥) <
1 — ¢, then the maximal probability that p can pass each test
on average is [8—10]

max tr(Qo)=1—-[1—-(R)]e=1—-v(RQ)e, (1)

(WlplW)<1—¢

where B(£2) is the second largest eigenvalue of €2, and v(2) =
1 — B(2) is the spectral gap from the maximal eigenvalue.
Note that a positive spectral gap is necessary and sufficient
for verifying the target state reliably, assuming that the total
number of tests is not limited.

Let e; =1 — (¥]p;|¥) be the infidelity of the state pre-
pared in the jth run and let & =) j€j/N be the average
infidelity. Suppose the states p;, 0z, ..., py prepared in the N
runs are independent of each other. Then the maximal proba-
bility that these states can pass all N tests is [1 — v(2)&]".
To ensure the condition & < ¢ with significant level §, the

minimum number of tests required reads [8—10]
Inés Ins!
N = ~ . 2)
In[1 — v(RQ)e] v(Q)e

Not surprisingly, a larger spectral gap means a higher effi-
ciency.

B. Quantum gate verification

Consider a quantum device that is expected to perform the
unitary transformation U/ associated with the unitary operator
U on H, but actually realizes an unknown quantum process A.
In order to verify whether this quantum process is sufficiently
close to the target unitary transformation, we need to construct
a set 7 = {|y;)}; of test states. In each run we randomly
prepare a test state from the set .7 and apply the quantum
process A. Then we verify whether the output state A(p;) is
sufficiently close to the target output state {/(p;) = U p;U " by
virtue of QSV as described in Sec. IT A, where p; = |y/;) (/]
[27,28]. By construction, the target unitary transformation can
always pass each test.

Suppose the test state |1/;) is chosen with probability p; >
0; denote the verification operator for the output state L/(p;)
by €2;. Then the average probability that the process A can
pass each test reads [28]

> it A(p)]. 3)
J

The target unitary transformation ¢/ can be verified reliably
if only U can pass each test with certainty. To clarify this
condition, we need to introduce additional terminology. Let
v; be the spectral gap of €2;. The test state [v;) is effective if
v; > 0; the set of effective test states is denoted by J¢gr. The
verification protocol is ordinary if v; > 0 for each j, in which
case every test state is effective, so that Z.¢ = .7. Otherwise,
the verification protocol is extraordinary.

Aset 7 = {|y;)}; in H can identify the unitary transfor-
mation ! if the condition

A (D) =UAY ) (5D, Vi 4)
implies that A = U, that is,
Ap)=U(p), Yp e D(H), )

where Z(H) denotes the set of all density operators on the
Hilbert space H. In this case, the set .7 is referred to as an
identification set (IS). It turns out the set .7 can identify U/ iff
it can identify any other unitary transformation on H [32], so
it is not necessary to refer to a specific unitary transformation.
The significance of ISs to QGV is manifested in the follow-
ing lemma. Further discussions on ISs will be presented in
Sec. IV A.

Lemma 1. If the unitary transformation ¢/ can be verified
reliably by a protocol based on the set 7 = {[y;)}; of test
states, then .7 is an IS. If the set 5 of effective test states
is an IS, then the unitary transformation ¢/ can be verified
reliably. If the verification protocol is ordinary, then U/ can
be verified reliably iff .7 is an IS.

Proof. By construction, / can pass each test with cer-
tainty, so any quantum process A that satisfies the condition
in Eq. (4) can also pass each test with certainty. Suppose
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U can be verified reliably. Then only I/ can pass each test
with certainty, which implies that A = &/ when Eq. (4) holds.
Therefore, .7 is an IS.

Conversely, if a quantum process A can pass each test
with certainty, then we have tr[2; A(|y;) ()] = 1 for each
|¥;) € &, which implies that

A ) (D) =UAY) (5D, YY) € T, (6)
given that |v/;) € Je iff v; > 0. Now suppose the set Ty
of effective test states is an IS, then Eq. (6) implies that
A =U. Therefore, only the target unitary transformation U
can pass each test with certainty, which means U/ can be
verified reliably. |

If the verification protocol is ordinary, then Z4¢ = 7, so
the last statement in Lemma 1 follows from the first two
statements.

The sample complexity of QGV has been analyzed in
Refs. [27-29] based on the idea of channel-state duality, but
the details are not necessary to the current study. It turns out
the verification of the unitary transformation I/ is closely tied
to the verification of its Choi state, especially when the ver-
ification protocol is balanced, which means ) ipipi =1 /d
[28]. However, verification protocols with minimal settings
are in general not balanced as we shall see later. This observa-
tion shows that some important features in QGV do not have
natural analogs in QSV and deserve further studies.

III. VERIFICATION OF BIPARTITE PURE STATES
WITH MINIMAL SETTINGS

Given a bipartite or multipartite pure state |V), how many
measurement settings are necessary to verify |\W) reliably?
This problem is trivial if we can perform arbitrary entangling
measurements, in which case one setting is enough. Unfor-
tunately, it is not easy to realize entangling measurements
in practice, so here we focus on verification protocols based
on nonadaptive local projective measurements, which are
amenable to experimental realization. This is a fundamental
problem in the study of QSV that is of practical interest. How-
ever, it is in general very difficult to solve such an optimization
problem if not impossible given that the potential choices of
measurement settings are countless. Even in the bipartite case,
this problem has not been solved in the literature, although it
is known that any bipartite pure state can be verified by two
distinct tests based on adaptive local projective measurements
[12]. Note that one test based on adaptive local projective
measurements may entail many different measurement set-
tings, so the result presented in Ref. [12] does not resolve the
current problem under consideration.

Here we show that any bipartite pure state can be verified
by at most two measurement settings, thereby resolving the
minimal-setting problem in the bipartite scenario completely.

Theorem 1. Every bipartite pure product state can be
verified by one measurement setting. Every bipartite pure
entangled state can be verified by two measurement settings
but not one measurement setting.

Proof. Suppose the bipartite system is associated with the
bipartite Hilbert space Ha ® Hp of dimension dxy ® dg. In
the Schmidt basis, any bipartite pure state in H5 ® Hp can be

written as
r—1
W) =" xlii), (7)
j=0

where r = min{d,, dg}, and A are the Schmidt coefficients of
|W) arranged in nonincreasing order.

If |W) is a product state, then A; = §;0 and |¥) = |00). In
this case |W) can be verified by a verification protocol com-
posed of the single test Py = |W)(W| = |00)(00|. In addition,
Py can be realized by one measurement setting, that is, the
projective measurement onto the Schmidt basis.

If |¥) is entangled, then it cannot be verified by one
measurement setting based on a nonadaptive local projective
measurement because the pass eigenspace of any such veri-
fication operator has dimension at least 2, which means the
spectral gap is zero. To prove Theorem 1, it remains to show
that | W) can be verified by two measurement settings. Let

r—1
Pe=Y 1l ®)
j=0
Py =1 — |u)(u| @ I + |u)(u| ® [v) (], ©)

where

1 r—1
= — i), 10
|ut) ﬁj;‘m (10)

[0) := A0l0) + A1) 4+ -+ A, qlr—1). (1)

Then P; and P, are two test projectors for |\W) that can be
realized by nonadaptive local projective measurements. To
realize the test P, both Alice and Bob perform projective
measurements on the Schmidt basis, and the test is passed
if they obtain the same outcome j for j =0,1,2,...,r — 1.
To realize P,, Alice performs the two-outcome projective
measurement {|u)(u|, I — |u)(u|} and Bob performs the two-
outcome projective measurement {|v)(v|, I — |v)(v|}; the test
is passed except when Alice obtains the first outcome, while
Bob obtains the second outcome.

Now we can construct a simple verification protocol for
|W) by performing the two tests P and P, with probability
1/2 each. The resulting verification operator is given by Q =
(P, + P»)/2. According to Lemma 1 in Ref. [22], the spectral
gap of Q2 is given by v(Q2) = (1 — ,/q)/2 > 0 with

o r—1
q = 1PPP | = — (12)

where Pj = P; — |W)(¥] for j = 1, 2. Therefore, |¥) can be
verified by the strategy €2, which can be realized by two
measurement settings based on nonadaptive local projective
measurements. ]

IV. VERIFICATION OF UNITARY TRANSFORMATIONS
WITH MINIMAL SETTINGS

In this section we explore verification protocols of unitary
transformations with minimal settings. In addition we intro-
duce the concept of entanglement-free verification and clarify
its connection with minimal-setting verification. Verification
of bipartite unitaries is then discussed in more detail.
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A. Minimal identification sets

Recall that a set of pure states 7 = {[y;)}; in H is an IS
if it can identify unitary transformations on H (cf. Sec. II B)
[32]. Here we are particularly interested in ISs with as few
elements as possible. The set .7 is a minimal identification
set (MIS) if, in addition, any proper subset is not an IS. MISs
are crucial to constructing verification protocols for unitary
transformations with minimal settings.

To understand the properties of ISs and MISs, we need
to introduce several additional concepts. A set of pure states
T = {|y;)}; in H is a spanning set if it spans #; it is a basis
if it is a spanning set that is also linearly independent. The
transition graph of the set .7 is a graph whose vertices are in
one-to-one correspondence with the states |;); two vertices
Jj, k are adjacent if (v/;|yx) # 0. The set .7 is connected if
its transition graph is connected; note that here the definition
is different from the usual definition in topology. The set is a
connected spanning set if it is a spanning set that is connected;
the set .7 is a connected linearly independent set (CLIS) if it is
a linearly independent set that is connected. A connected basis
is a CLIS that is also a connected spanning set. By definition
a CLIS can contain at most d states, where d is the dimension
of H. Suppose the set .7 is nonempty; then a CLIS contained
in 7 is maximal if it is not contained in any other CLIS
contained in .7. Note that each state in .7 is contained in at
least one maximal CLIS. In particular, .7 contains at least one
maximal CLIS as a subset.

The following result proved in Ref. [32] clarifies the con-
ditions under which a set of pure states can identify unitary
transformations on H.

Lemma 2. A set of pure states in H is an IS iff it is a
connected spanning set.

By Lemma 2, at least d test states are required to identify
unitaries on . To saturate the lower bound d, the test states
must form a connected basis.

Lemma 3. A set of pure states in H is a MIS iff it is a
connected basis.

Lemma 3 clarifies the properties of MISs; it is a simple
corollary of Lemma 2 above and Lemmas 4 and 5 below,
which are proved in Appendix A.

Lemma 4. Suppose .7 is a connected spanning set in .
Then any maximal CLIS contained in .7 is a connected basis.

Lemma 5. Every connected spanning set in H contains
a subset that forms a connected basis. Every set in H that
contains a connected spanning subset is a connected spanning
set.

Suppose 7 is a connected spanning set that is composed
of k pure states. As an implication of Lemma 5, .7 contains a
connected spanning subset that is composed of k' pure states
as long as d < k' < k. To illustrate the above results, here we
present a connected spanning set . that is composed of the
computational basis and one additional state [31]:

T ={lN= Ulle)}, (13)

where

1 d—1
= — ). 14
%) ﬁ;om (14)

A connected basis contained in .7 can be constructed as
follows:

S ={IHYZ] Ulle)). (15)
According to Lemma 3, . is also a MIS.

B. Minimal-setting verification and
entanglement-free verification

Let U be a unitary operator on H and U the associated uni-
tary transformation. Recall that a general verification protocol
for U (which means a verification protocol for /) consists of
a set of input test states and the verification protocol for the
output state associated with each input state. For simplicity,
here we assume that each test state is a pure product state,
and the verification protocol for each output state is based on
nonadaptive local projective measurements. Such verification
protocols are most amenable to experimental realization.

We are particularly interested in the minimum number of
experimental settings required to verify U by ordinary verifi-
cation protocols, which is denoted by (U ) henceforth. When
extraordinary verification protocols are allowed, the minimum
number is denoted by 1. (U ). To be specific, one experimental
setting means the preparation of a pure product input state
and a nonadaptive local projective measurement on the output
state. Note that the number of experimental settings required
by any verification protocol is at least the number of test
states involved. In conjunction with Lemmas 1 and 2, this
observation implies that

pW) 2 p.U) =d (16)

for any unitary operator U acting on a d-dimensional Hilbert
space. For a simple noncomposite system, the two inequalities
can always be saturated, and the verification problem is trivial.
In the rest of this paper we shall focus on composite systems
and consider only ordinary verification protocols, in which
case it is in general highly nontrivial to determine w(U).
Although it is even more difficult to determine w.(U), our
results on p(U) provide valuable upper bounds for u.(U),
which are nearly tight in the bipartite setting.

A verification protocol for U is entanglement free if all
input test states and the corresponding output states (after
the action of U) are product states; in addition, all mea-
surements are based on local projective measurements. An
entanglement-free protocol does not generate any entangle-
ment in the verification procedure and hence the name.
Such verification protocols are particularly appealing to
both theoretical study and experimental realization. It turns
out entanglement-free verification is intimately connected to
minimal-setting verification. To clarify this point, we need to
introduce some additional terminology.

Denote by Prod the set of pure product states; denote by
Prod(U) the set of product states that remain product states
after the action of U':

Prod(U) = {|{/) € Prod | U|¥) € Prod}. (17)

The dimension of the span of the set Prod(U) is denoted by
dProd(U),

dproa(U) = dim span(Prod(U)), (18)
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which satisfies 0 < dpog(U) < d. A state |Y) in H satis-
fies the product-state constraint associated with U if |¢) €
Prod(U). A set of states satisfies the product-state constraint
if it is contained in Prod(U), so that each state satisfies the
constraint.

An entanglement-free IS (EFIS) 7 for U is an IS that
satisfies the product-state constraint, which implies that 7 C
Prod(U). Similarly, an entanglement-free MIS (EFMIS) is
a MIS that satisfies the product-state constraint. Note that
the definition of an EFIS (EFMIS) depends on the specific
unitary transformation under consideration, although the def-
inition of an IS (MIS) is independent of a specific unitary
transformation. The unitary operator U can be verified by
an entanglement-free protocol iff it admits an EFMIS, in
which case Prod(U ) contains an IS. Lemma 6 and Theorem 2
below further clarify the connections among the product-
state constraint as determined by Prod(U), minimal-setting
verification, and entanglement-free verification. The proof of
Lemma 6 is presented in Appendix B.

Lemma 6. Suppose U is a unitary operator acting on a
composite Hilbert space H of dimension d. Suppose .7 is
the set of test states of an entanglement-free verification pro-
tocol for U or an ordinary verification protocol composed
of d experimental settings based on local operations. Then
Z C Prod(U).

Theorem 2. Suppose U is a unitary operator on a compos-
ite Hilbert space H of dimension d. Then the following five
statements are equivalent:

1. uU)=d.

. Prod(U) is a connected spanning set.

. Prod(U) contains a connected basis as a subset.

. U admits an EFMIS.

. U can be verified by an entanglement-free protocol.

Corollary 1. Suppose U is a unitary operator on a compos-
ite Hilbert space ‘H of dimensiond. If u(U) = d orif U can be
verified by an entanglement-free protocol, then dp;,q(U) = d.

Corollary 1 is an immediate consequence of Theorem 2.

Proof of Theorem 2. Suppose w(U) = d. Then U can be
verified by an ordinary protocol composed of d experimental
settings that are based on local operations. Let .7 be the
set of test states; then .7 forms a connected basis according
to Lemmas 1 and 2. In addition, .7 C Prod(U) according
to Lemma 6. Therefore, Prod(U) is a connected spanning
set according to Lemma 5, which confirms the implication
1=2

Next, suppose Prod(U) is a connected spanning set. Then
Prod(U) contains a connected basis as a subset according to
Lemma 5, which confirms the implication 2 = 3.

Next, suppose Prod(U) contains a connected basis 7.
Then 7 satisfies the product-state constraint and is a MIS
according to Lemma 3. Therefore, .7 is an EFMIS for U,
which confirms the implication 3 = 4.

The implication 4 = 5 follows from the definition, given
that any EFMIS for U can serve as a set of test states of an
entanglement-free verification protocol.

Finally, suppose U can be verified by an entanglement-free
protocol; let .7 be the set of test states. Then .7 is an IS
contained in Prod(U) by Lemma 1 and is thus a connected
spanning set by Lemma 2. According to Lemma 5, .7 con-
tains a connected basis ., which enables us to construct a

|9 B SNV )

reliable verification protocol for U using only d experimental
settings. Therefore, u(U) = d, which confirms the implica-
tion 5 = 1 and completes the proof of Theorem 2. ]

C. Minimal settings for verifying bipartite unitaries

In this section we focus on the verification of general bipar-
tite unitaries and show that the minimum number of settings
required to verify a generic bipartite unitary grows linearly
with the total dimension.

Theorem 3. Suppose U is a unitary operator acting on a
d-dimensional bipartite Hilbert space . Then the minimum
number of experimental settings w(U) required to verify U
satisfies d < n(U) < 2d.

Proof. The inequality d < w(U) follows from the general
lower bound in Eq. (16). To prove the upper bound u(U) <
2d, note that the MIS .% in Eq. (15) can serve as a set of test
states; in addition, all states in . are product states as long as
the computational basis coincides with the standard product
basis. According to Theorem 1, the output state associated
with each input state can be verified by either one or two
measurement settings based on nonadaptive local projective
measurements. Therefore, ©(U) < 2d, which completes the
proof of Theorem 3. u

The following proposition clarifies the relation between
w(U) and dpyoq(U); see Appendix C for a proof.

Proposition 1. Let U be a unitary operator acting on a d-
dimensional bipartite Hilbert space H. If dpoq(U) < d, then

w(U) = dproa(U) + 2[d — dproa(U)]. (19)

In the case dpoa(U) =d, we have u(U)=4d if the set
Prod(U) is connected and w(U) = d + 1 otherwise.

V. TWO-QUBIT UNITARIES

In this section we discuss the basic properties of two-qubit
unitaries that are relevant to studying the minimal-setting ver-
ification and entanglement-free verification presented in the
next section. Here the discussion builds on the previous works
Refs. [37,38].

A. Canonical form of two-qubit unitaries

Let H = Ha ® Hp be the Hilbert space associated with
a two-qubit system shared by A and B. According to
Refs. [37,38], any two-qubit unitary operator Uap acting on
‘H can be expressed as follows:

Ung = Va @ WUVs @ Wg, (20)

where Vi, Wy, Vi, Wy are four qubit unitary operators,

U=U(a,a,a3) = e—zH(a,,az,%),

3
H(oy, o0, 3) = Z%Hk,

k=1 2n
O0< w3 <o <oy < /4,
Hi=01®01, H=0,80, H;=0Q03,
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and o1, 0y, 03 are the three Pauli operators. The operator
U (i, az, a3) can further be expressed as

3
Ulay, oz, 03) = ZCkUk@)Gk, (22)
k=0
where oy is the identity operator and the coefficients ¢ are
given by

Lo = COS (] COS ¥y COS 3 — i Sin oy sin o sin a3,

{1 = cos o Sin v Sin oy — I Sin @0y COS &3 COS O3,
(23)
£, = sin @ cos arp sin 3 — i COS &0 Sin &y COS '3,

g3 = sin @ sin oy COS o3 — [ COS (] COS ¢ Sin 3.
According to the equation
AU A=U
o3 U(ay, oz, —a3)oy = U(—ay, —an, —a3)
*
=U"(ay, 2, @3), (24)

U(oy, o, —a3) is equivalent to U*(«q, az, a3). Therefore,
any two-qubit unitary operator is equivalent to U («y, oo, o3)
or U*(a, an, a3) with

O3 <o <o < /b (25)

Since most quantities we are interested in, such as Schmidt
coefficients and the minimum number of experimental set-
tings, are invariant under local unitary transformations and
complex conjugation, so we can focus on U (¢, o, 3) with
the parameter range in Eq. (25) in the following discussion.

B. Schmidt coefficients of two-qubit unitaries

To further clarify the properties of two-qubit unitary oper-
ators, we need to find suitable invariants. Given a two-qubit
unitary operator U acting on the Hilbert space H = Ha ®
Hg, its Choi state

Wy) :=U|P)an ® |P)pp (26)

is a four-qubit pure state on H ® H, where

1 1
Phan = — Y Kalk)a, | P)pp = — Y |k)slk)p
|D) an ﬁ;uu a1 D)pa ﬁ? )Blk)B
27)

are two-qubit maximally entangled states shared by parties
AA’ and BB’, respectively. The Schmidt coefficients (rank)
of U are defined as the Schmidt coefficients (rank) of |Wy)
with respect to the partition between AA” and BB’. Note that
the Schmidt coefficients and Schmidt rank of U are invariant
under local unitary transformations.

Let

&) =0 RIP), k=0,1,2,3. (28)

Then the set {|®)};_, forms a Bell basis, which is equivalent
to the magic basis [39] up to overall phase factors. When
U = U (o, oz, a3) is the canonical two-qubit unitary defined
in Sec. V A, by virtue of Eq. (22), the Choi state |y ) can be
expressed as

3

Wy) = &l Pidan ® |P)pp- (29)
k=0

Now it is clear that the Schmidt coefficients of |V ) with
respect to the partition between AA’ and BB’ are || for
k=0,1,2,3, where ¢ are given in Eq. (23). Therefore, the
two-qubit unitary U (o, oz, @3) has Schmidt coefficients ||
for k =0, 1, 2, 3, which satisfy the following normalization
condition:

150> + 161> + [0 +151° = L. (30)

Note that U*(ay, a0z, a3) and U(ay, an, @3) have the same
Schmidt coefficients and Schmidt rank. So we can focus on
the parameter range in Eq. (25) when studying the Schmidt
coefficients and Schmidt rank of U (a1, o, a3).

The Schmidt rank of U(aq, an, @3) is determined in
Ref. [38] as reproduced in the following lemma, which can
also be verified directly by virtue of Eq. (23).

Lemma 7. Suppose 0 < a3 < oy < o) < /4. Then the
Schmidt rank of U(ay, o, a3) is 1 if ¢y = ap = a3 =0, is
2ifa; >0anda, = a3 =0,andis4 if ¢y > ay > 0.

The properties of Schmidt coefficients of two-qubit uni-
taries are summarized in Lemmas 8—10 and Corollary 2 below,
which are proved in Appendix D.

Lemma 8. Suppose 0 < a3 < op < o < /4. Then the
Schmidt coefficients of U («;, oz, a3) satisfy the following
relation:

[0l = 1C1] = [&2] = 183] = 0. (3D

The first inequality saturates iff o = 7 /4; the second in-
equality saturates iff oy = orj; the third inequality saturates
iff o = % or a3 = op; and the last inequality saturates iff
0y = 03 = 0.

Lemma 9. Suppose 0 < a3 < op < o) < /4. Then the
Schmidt coefficients of U(«ay, ap, a3) satisfy the condition
IS0l > |61 = 16| = 1831 > 0iff 0 <3 =2 = o1 < 7w/4.

When «; = oy = 7 /4, all Schmidt coefficients of the uni-
tary operator U(«y, az, o3) are equal to 1/2 irrespective of
the value of a3 [cf. Eq. (23)]. Such coincidence can also occur
when oy = 7 /4 and o, < 7 /4, in which case we have

20l* = |21 1% = 1[1 + cos(2a2) cos(2a3)],
(32)
16217 = 131> = 1[1 — cos(2a2) cos(2a3)],

so all Schmidt coefficients of U(«ay, oz, 3) are completely
determined by the product cos(2a)cos(2w3) or any given
Schmidt coefficient, as illustrated in Fig. 1. A specific choice
of two inequivalent unitary operators with the same Schmidt
coefficients is shown in Appendix E. On the other hand, the
following lemma shows that such coincidence of Schmidt
coefficients cannot occur when oy < 7 /4.

Lemma 10. Suppose 0 < o3 <ap <) <7/4 and 0 <
oy <o) <of </4 Then U(ay, az, a3) and U(a], o), of)
have the same Schmidt coefficients iff one of the following
two conditions holds:

’ ! /
ap=o), o =0a, o3=0o;, (33)

o =ao) = % cos(20r2) cos(2a3) = cos(2a)) cos(2as}).

(34)

Corollary 2. Suppose U and U’ are two two-qubit unitary
operators that have the same Schmidt coefficients s, 51, 52, 53,
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FIG. 1. Contour plot of |¢|? in the plane of a,-ar3, where |¢o]
is the largest Schmidt coefficient of U («; = 7 /4, a2, «3). The other
three Schmidt coefficients are determined by |¢y|* according to
Eq. (32). All unitaries corresponding to a given contour line share
the same Schmidt coefficients.

which satisfy so > s; > s, > s3. Then U’ is equivalent to
either U or U* under local unitary transformations. In other
words, U’ can be expressed as

U' =VyQ@WUVa @ Ws, (35)

where U = U or U*, and Vs, Wg, Va, Wg are suitable qubit
unitary operators.

The above analysis clarifies the properties of Schmidt
coefficients of two-qubit unitary operators. Given the assump-
tion 0 < a3 < oy < o < /4, the Schmidt coefficients of
U(ay, az, 3) must satisfy the conditions in Egs. (30) and
(31). However, the two conditions are not enough to guar-
antee the existence of a two-qubit unitary with a given set
of Schmidt coefficients. To demonstrate this point, we can
determine the ranges of the four Schmidt coefficients of
U (o1, an, a3) by virtue of Eq. (23), with the result

Sl <1, 0|4l <

| =

(36)

0<Inl<s5, 0<lal<

N

N =

By contrast, the constraints in Eqs. (30) and (31) alone would
imply that 0 < [¢2] < 1/+/3.

To further clarify the constraints on the Schmidt coeffi-
cients of two-qubit unitaries, it is convenient to introduce
some additional variables. Let

g:%, j=1,2,3. (37)
1 — 1ol
Geometrically, (|ol?, |¢112, &2/, [¢3/%) can be regarded as
the barycentric coordinate of a point in a three-dimensional

ICol* = 0.25

[Co* =0.3 |Gol* = 0.4

FIG. 2. Accessible Schmidt coefficients of two-qubit unitaries
U(ay, ap, a3) for the parameter range 0 < o3, an, oy < /4. The
red-shaded region in each ternary diagram represents the set of ac-
cessible points specified by the barycentric coordinate (£, &, &) =
(12112, 12212, 12312) /(1 — |&o|%), where || is the largest Schmidt coef-
ficient, and |¢,], |&2], |¢3] are the other three Schmidt coefficients; cf.
Eq. (23). The left, right, and top corners of the big black triangle cor-
respond to the coordinates (1,0,0), (0,1,0), and (0,0,1), respectively.
The shaded region within each blue dashed triangle represents the set
of accessible points for the smaller parameter range 0 < o3 < ap <
oy < /4, in which case |1, |¢2], |¢3] are in nonincreasing order.

probability simplex according to Eq. (30). The accessible
Schmidt coefficients correspond to a subset in the probability
simplex. In addition, when |{y| < 1, (&1, &, &3) is the barycen-
tric coordinate of a point in a two-dimensional probability
simplex, which corresponds to a normalized cross section of
the three-dimensional probability simplex.

Figure 2 illustrates the accessible region of Schmidt coef-
ficients for six normalized cross sections associated with six
distinct values of |¢y|, where |{p| is the largest Schmidt co-
efficient. The shaded region within each blue dashed triangle
represents the set of accessible ordered Schmidt coefficients
as determined by (&1, &, &3) for the parameter range 0 < a3 <
oy < o) < /4. By contrast, the whole red-shaded region in
each ternary diagram represents the set of accessible Schmidt
coefficients for the larger parameter range 0 < o3, o, @) <
/4. In the latter case, Eq. (31) no longer applies, but we
have

1%l 2 151, j=12,3, (38)

80 |&o| is still the largest Schmidt coefficient.

VI. VERIFICATION OF TWO-QUBIT UNITARIES
WITH MINIMAL SETTINGS

A. Product-state constraint

To construct a minimal-setting protocol for verifying the
two-qubit unitary U (1, oz, a3), we first need to clarify the
product-state constraint, which is tied to the set Prod(U) de-
fined in Eq. (17).

To better understand the product-state constraint, it is in-
structive to consider the magic basis [39], which is composed
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of the four maximally entangled states:

1 i
®;) = —(]00 11)), |®2) = —=(|00) — |11)),
1) = —=(00) £ 1)), [#2) = —=(00) 1)

i 1 %)
d3) = —(|01 10)), |®4) = —(|01) — |10)).
93) = Z=(01) 4 110), (4] = —=(01) ~[10)

Suppose the input state |¢g) has the form |¢g) = Z:Zl V| D)
with 22:1 lx|?> = 1. Then the concurrence [39] of the input
state reads

4

ZVkZ :

k=1

C(l¢o)) = (40)

After the action of U («y, oz, @3), the output state has the
expansion

4

6) =D e My Dp), (41)
k=1
where

Al =0ap — o +as,

Ay = —o +ar + o3,
(42)
Az =0 +on — a3,
)&4 = —0] — 0 — (3.
The concurrence of the output state reads
4
Cp)) = D e ™y (43)
k=1

The product-state constraint demands that C(|¢g)) = 0 and
C(¢)) =0:
4 4
doyi=0. ) eyt =0. (44)
k=1 k=1

When 0 < o) + o < /2, Eq. (44) is equivalent to the fol-
lowing equations:

Vi =ravi + rays,
sin(2a; + 2a3)
sinay + 2a;)’

. sin(2ay + 2a3)
= 200 — 2 _
r3 = expli2a; — 2a3 + )] Sin(2e, + 200)

[( 2 2 n )] sin(2oz2 — 20[3)
ra1 = expli(—20y — 203 + 1) ] —m——,
H P ! 3 sin(2a; + 202)

(=2 205+ 7] sin(2a; — 2a3)
7. = €X — — LU ) —-.
42 = CXpUL—2m = <3 sin(a; + 20

2 2 2
Vs =131y F 1y,

r31 = expli(2ay — 203 + )]

(45)

If the product-state constraint holds, then y} and y} are
completely determined by y; and y,. Taking into account
the normalization condition Zi:l |¢|> = 1 and ignoring the
overall phase factors, we can deduce that there are in general
two free real parameters.

When oy +ar =0 or oy + ap = /2, Eq. (45) does not
apply, in which case it is more convenient to consider the
product-state constraint in the computational basis. Now any

two-qubit pure product state can be expressed as
albl
(a1 b\ _|aib;
|¢)0) = (Clz) 02y (b2> - a2bl . (46)
azbz

After the action of U (a1, a2, @3), the output state reads
|¢) = Ulgo) = ) “47)

where
c1 = (6o + &)arby + (&1 — L2)azba,
c2 = (S0 — &)arby + (&1 + §2)asby,
c3 = (6o — &3)azxby + (&1 + L2)aiba,
c4 = (So + &3)acby + (&1 — §2)arby,

and ¢ for k = 0, 1, 2, 3 are defined in Eq. (23). According to
Ref. [39], the concurrence C of the output state reads

C1¢)) = 2|cics — cac3]. (49)

(48)

To satisfy the product-state constraint, the concurrence C(|¢))
should vanish, which means

C1Cq4 — CpC3 = 0. (50)

B. Minimal setting and entanglement-free verification
of two-qubit unitaries

In this section we determine the minimum number of
experimental settings required to verify an arbitrary two-
qubit unitary and derive a simple criterion for determining
whether a general two-qubit unitary can be verified by an
entanglement-free protocol. Our main result is summarized in
the following theorem.

Theorem 4. Suppose U is a two-qubit unitary operator
with Schmidt coefficients sy, 51, 52, s3 arranged in nonincreas-
ing order. Then

5 ifsg>s1 =85 =s53>0,

n) = {4 otherwise, (D

and the unitary operator U can be verified by an entanglement-
free protocol unless so > 51 = s, = 53 > 0.

Theorem 4 is a corollary of Lemma 9 in Sec. VB and
Theorem 5 below. Define

7
3;:{(a1,a2,a3)0<a3<a2<a1 < Z}’ (52)
Sk ::{(a,a,a) O<a<%}, Spr =S\ S (53)

Theorem 5. Suppose 0 < a3 < op < o) < /4. Then

4 if (ay, o, a3) € Sgr,

/“L(U(alv oy, (X3)) = {5 if (al, o, Ol3) e SE (54)

U (a1, an, a3) can be verified by an entanglement-free proto-
col iff ((X], o, Ol3) (S SEF-

Proof. To prove Theorem 3, it suffices to prove Eq. (54),
which implies the last statement in the theorem according to
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Theorem 2. To prove Eq. (54), we shall first construct a four-
setting entanglement-free protocol for verifying U (o, a2, ¢3)
when (a1, as, a3) € Sgr. To this end we need to consider
three different cases and construct an EFMIS in each case (cf.
Theorem 2).

(1) o =(X2=7T/4

In this case, according to Egs. (47)—(50), the product-state
constraint under the computational basis reads

a1a2b1b2 COS(20[3) =0. (55)

In addition, |&| = |¢1] = 8] = 1431 = 1/2 according to
Eq. (23). So a pure product state satisfies the product-state
constraint if one of the reduced states is an eigenstate of o3.
Based on this observation we can construct an EFMIS as
follows:

|p1) = 10+),
lp3) = 1-0),

where |+) = LZ(|0) =+ |1)) are two eigenstates of o;. Note

that these product states remain as product states after the
action of U (a1, a3, 3) as expected. In addition, the transition
graph of these states is connected. Therefore, U (ay, az, 3)
can be verified by an entanglement-free protocol based on four
experimental settings, which confirms Eq. (54).

2) aj=ary=a3=0

In this case, U(ay, a2, @3) is equal to the identity, so all
product states satisfy the product-state constraint, and it is
easy to construct an EFMIS. Actually, the EFMIS constructed
in case 1 still works. Therefore, U («;, s, a3) can be verified
by an entanglement-free protocol based on four experimental
settings, which confirms Eq. (54).

3) a1 > oz and oy < /4.

Now, it is more convenient to consider the magic basis.
Suppose the state |¢g) has the expansion |¢g) = 22=1 Vi | Pr)

with the normalization condition 22=1 lv|>=1. Then
the product-state constraint is satisfied if the coefficients
YE, V3, vi. vi have the form as shown in Appendix F. More-
over, an EFMIS can be constructed as follows (in the magic
basis):

|f2) = |1+),

(56)
|p4) = 140),

Y1 Y1
N 2 _| "

|p1) = v | |2) v |
)Z )Z

(57)

Y1 -
| N e
lp3) = v | |4) v
— VY4 —V4

Therefore, U (o, oz, @3) can be verified by an entanglement-
free protocol based on four experimental settings, which
confirms Eq. (54).

To complete the proof of Theorem 5, it remains to
determine w(U (o, oz, @3)) in the case (ay, on, &3) € SE,
which means 0 < o) = oy = a3 < /4. Suppose the in-
put state |¢o) has the expansion |¢y) = Zz=1 k| ®x) with
Zzzl lyx|*> = 1 in the magic basis. According to Eq. (45),
the product-state constraint amounts to the following

equality:

i vivivi)= (. vi. —vi—vi.0),  (58)

which implies that dpoq(U) = 3. So U(wy, a2, o3) cannot
be verified by an entanglement-free protocol according to
Theorem 2. Nevertheless, U(a, az, a3) can be verified by
a five-setting protocol based on local operations, given that
w(U (o, az, a3)) = 5 according to Proposition 1. This result
confirms Eq. (54) and completes the proof of Theorem 5. W

Next, we generalize Theorem 5 to the whole parameter
range 0 < a3, ap, o) < 2. Define

S = {(a1, @2, 3)|0 < a3, @, @ < 27}, (59)
~ T T T T T T
SE = {(Ek1+zia, Ekz—f-z:l:a, Ek3+zia>
T
0<a<Z’ kl,kz,k3=0,1,2,3}, (60)
Ser =S\ Sk (61)

The following corollary is proved in Appendix G.
Corollary 3. Suppose 0 < o3, ap, o; < 2. Then

4 if (o1, 0, @3) € Sr,

w(U( (e, oz, @3)) = {5 if (o, o, o3) € S (62)

U (o, an, a3) can be verified by an entanglement-free proto-
col iff (Ol] , 0, 053) (S] SE]:.

Theorem 5 and Corollary 3 imply that generic two-qubit
unitary transformations (except for a set of measure zero) can
be verified by entanglement-free protocols based on four ex-
perimental settings. In principle we can reach arbitrarily high
precision as long as sufficiently many tests can be performed.
Nevertheless, certain special unitary transformations cannot
be verified by entanglement-free protocols, in which case five
experimental settings are necessary. Note that the minimum
number of settings is not continuous, which is expected for a
discrete figure of merit. For each unitary U in the later case,
we can find a nearby unitary U’ that can be verified by an
entanglement-free protocol. In this way U can be verified ap-
proximately by an entanglement-free protocol. However, the
precision is limited by the entanglement infidelity between U’
and U; in addition, the target unitary transformation U cannot
pass all the tests with certainty. To enhance the precision, we
can find a better approximation to U, but the precision is still
limited for any given approximation. Although any two-qubit
unitary transformation can be verified with five measurement
settings (only four settings in the generic case), quite often the
sample efficiency can be improved by increasing the number
of measurement settings. The tradeoff between the sample
efficiency and the number of experimental settings deserves
further studies.

C. Examples

In this section we present explicit EFMISs for several
well-known two-qubit gates, from which entanglement-free
verification protocols can be constructed immediately.

062439-9



LI, ZHANG, LI, AND ZHU

PHYSICAL REVIEW A 104, 062439 (2021)

1. cNor

The CNOT gate is equivalent to U (%, 0, 0) according to the
following decomposition:

1 0 0 O

0O 1 O T > Y

0 10 :vA®WBu<Z,o,o>vA®WB, (63)
0O 0 1 O

I /1 1 -1 /1 1
w=pl L) =gl )

1 /1 i\ - (1 O
w=s(l L) m=(o )

To construct an entanglement-free protocol for verifying the
CNOT gate, it suffices to construct an EFMIS. To this end, we
can first construct an EFMIS for U (%, 0, 0) and then apply
a suitable local unitary transformation, although it is easy to
construct an EFMIS for the CNOT gate directly. According
to Egs. (47)—(50), the product-state constraint for U (%, 0, 0)
under the computational basis can be expressed as

(a7 — @) (b} — b3) = 0. (65)

(64)

A product state satisfies the constraint iff one of the reduced
states is an eigenstate of oj. Based on this observation, an
EFMIS can be constructed as

[#1) = [0+), [¢2) = [1+),

|#3) = [=0), |¢a) = [40),
where |+) = (|0) £ |1))/\/§ are the two eigenstates of o.

By multiplying the local unitary operator (V4 ® Wg)', we can
construct an EFMIS for the CNOT gate as

(66)

I<Jf1> =I+-), |¢~>2> =|-=) 67
[$3) = [10),  |¢4) = |00).
2.¢z

The CZ gate is equivalent to the CNOT gate according to the
identity

CZ = (I ® H)CNOT(I ® H), (68)

where H is the Hadamard gate. Therefore, any EFMIS for
the CNOT gate can be turned into an EFMIS for the CZ gate
by simply applying the local unitary operator I ® H. For
example, one EFMIS for the CZ gate can be constructed by
applying I ® H to the states in Eq. (67), which yields

= 1 = —1 )
l61) = [+1), [¢2) =|-1) )
|p3) = [1+4),  |¢a) = [0+).
3. C-Phase

The C-Phase gate with nontrivial phase 0 < ¢ < 2m reads

1 00 0
01 0 0
00 1 0 (70)
0 0 0 o

The conjugate of the C-Phase gate is equivalent to U (%, 0, 0)
according to the following decomposition:

1 0 O 0
010 0] ¢ o
0 0 1 0 —VA®WBU<Za070>VA®WB7
0 0 0 €%
(71)
where
v 1 ( 1 1 ) . 1 <1 —1)
A= —= ;¢ —i2 1> A= —= k)
T\ —e ) e 2 2 1 1
V2 V2 a2)

1 [ ¢if et - 1 /1 1
W = —= ) ) . W = —
’ ﬁ(e‘” —6"4> ° ﬁ(l —1)

According to Eqs. (47)-(50), the product-state constraint
forU (%, 0, 0) under the computational basis can be expressed
as

(a2 — &) (b} — b2) sin % =0. (73)

A product state satisfies the constraint if one of the reduced
states is an eigenstate of oj. So the states in Eq. (66) also
form an EFMIS for U (%, 0, 0). By applying the local unitary
operator (Vy ® Wg)f, we can construct an EFMIS for the
C-Phase gate (and its conjugate) as

1) =1-0),  I¢2) = [+0),
lp3) = —[1+).  [¢4) = [0+).

Note that this EFMIS applies to the C-Phase gate with an
arbitrary phase. Incidentally, the four states in Eq. (69) also
form an EFMIS for the C-Phase gate with an arbitrary phase.

(74)

4. SWAP
The SWAP gate is equal to U(%, 7, 7) up to an overall
phase factor according to the following identity:
1 0 0
0 0 1 O 1+i (m 77w
= ul-—,—,—). 75
01 0 0|75 (4 1 4) (75)
0 0 1

Due to this identity, the EFMIS for U (%, %, %) presented in
Eq. (56) is also an EFMIS for the SWAP gate. In addition, any
product state satisfies the product-state constraint, so any MIS

composed of product states is an EFMIS for the SWAP gate.

VII. SUMMARY

We studied systematically QSV and QGV with a focus
on the number of experimental settings based on local op-
erations. We showed that any bipartite pure state can be
verified by only two measurement settings based on local
projective measurements. The minimum number of experi-
mental settings required to verify a bipartite unitary increases
linearly with the total dimension. In addition, we introduced
the concept of entanglement-free verification, which does not
generate any entanglement in the verification procedure. The
connection with minimal-setting verification is also clarified.
Finally, we determined the minimum number of experimental
settings required to verify each two-qubit unitary. It turns
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out any two-qubit unitary can be verified using at most five
settings based on local operations, and a generic two-qubit
unitary requires only four settings. In the course of study
we derived a number of results on two-qubit unitaries and
their Schmidt coefficients, which are of independent interest.
Our work significantly promotes the current understanding
on QSV and QGV with respect to the number of required
experimental settings, which is instructive for both theoretical
studies and practical applications. In addition, our work shows
that verification protocols with minimal settings are in general
not balanced and thus do not have natural analogs in QSV,
which reflects a key distinction between QGV and QSV that
is not recognized before. In the future it would be desirable to
generalize our results to the multipartite setting.
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APPENDIX A: PROOFS OF LEMMAS 4 AND 5

Proof of Lemma 4. Suppose on the contrary that .% is a
maximal CLIS contained in .7 and that .% is not a basis for
‘H. Let H; be the span of .% and let H, be the orthogonal
complement of ;. Then H,; and H, have dimensions at least
one; in addition, 7 contains a ket |) that is supported neither
in H; nor in H, since otherwise 7 cannot be connected.
Therefore, . U {|y)} € .7 is a CLIS that contains . as
a proper subset. This contradiction completes the proof of
Lemma 4. |

Proof of Lemma 5. The first statement in Lemma 5 follows
from Lemma 4; note that any maximal CLIS contained in the
connected spanning set forms a connected basis. To prove the
second statement, suppose .7 is a set of kets in 7 and contains
a connected spanning set .. Then .7 is also a spanning set. In
addition, each ket in .7 is not orthogonal to at least one ket in
. As a consequence, the transition graph of .7 is connected
given that the transition graph of . is connected. So 7 is
itself a connected spanning set, which completes the proof of
Lemma 5. ]

APPENDIX B: PROOF OF LEMMA 6

Proof. For an entanglement-free verification protocol, the
conclusion follows from the very definition. So it remains to
consider the case in which the verification protocol is com-
posed of d experimental settings based on local operations.
Then we have d < |.77| < d, where the lower bound follows
from the fact that .7 is a spanning set and the upper bound
follows from the fact that the number of experimental settings
cannot be smaller than the number of test states. It follows
that |.7| =d and .7 is composed of d product states. In
addition, the number of experimental settings is equal to the
number of test states. So the output state associated with each
input state in .7 is also a product state given that at least
two measurement settings are required to verify an entangled

output state (cf. Theorem 1). Therefore, .7 C Prod(U ), which
completes the proof of Lemma 6. |

APPENDIX C: PROOF OF PROPOSITION 1

Proof. To prove Eq. (19) in Proposition 1, we shall first
prove the following inequality:

w(U) 2 dproa(U) + 2[d — dproa(U)]. (ChH

Let 7 be the set of test states of a verification protocol of U
that can be realized by w(U) experimental settings. Then 7
is a finite spanning set (of 7{) whose cardinality satisfies d <
| 7| < uU). Let ' =ProdU)N.S and T" =T\ T.
Then

dim span(.7") < dproa(U), (C2)

dimspan(.7") > d — dimspan(.7”’) > d — dp;oq(U). (C3)

The output state associated with each input state in 7' is a
product state, so one measurement setting is required to verify
it. By contrast, the output state associated with each input state
in 7" is entangled, so at least two measurement settings are
required to verify it according to Theorem 1. Therefore,

wlU) > 7’| +2|7"| > dimspan(.7") + 2 dim span(.7")
> dim span(.7") + 2[d — dim span(.7")]
=2d — dim span(.7") > 2d — dpya(U), (C4

which implies Eq. (C1).

Next, suppose dprog(U) < d. To prove Eq. (19), it remains
to prove the opposite inequality to Eq. (C1). Let .# be a subset
of Prod(U) that is composed of dpoq(U ) linearly independent
states. By adding d — dpoq(U) — 1 suitable product states, we
can construct a set . of d — 1 linearly independent product
states. Now we can add a product state that is not in the span
of .’ and is not orthogonal to any state in .. The resulting
set . forms a connected basis for H and so can identify
unitaries. In addition, the output state associated with each
state in . is a product state and so can be verified by one
measurement setting based on a local projective measurement.
The output state associated with each state in .&”” \ .% can be
verified by two measurement settings according to Theorem 1.
Therefore,

nwU) <17+ 2|y” \ S| = dproa(U) + 2[d — dproa(U)]
= 2d — dproa(U), (C5)

which implies Eq. (19) given the opposite inequality in
Eq. (C1)

Now let us consider the case in which dpq(U) = d. If
the set Prod(U) is connected, then it contains a connected
basis composed of product states by Lemma 5. Moreover, the
output state associated with each state in the basis is also a
product state and so can be verified by one measurement set-
ting. Therefore, U can be verified by d experimental settings,
which means w(U) = d.

If the set Prod(U) is not connected, then the set of test
states of any valid verification protocol for U contains at
least one state not contained in Prod(U ), which implies that
w(U) = d + 1 [cf. the derivation that leads to Eq. (C1)]. To
complete the proof of Proposition 1, it remains to construct
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a verification protocol for U that requires only d + 1 ex-
perimental settings. Let . be a subset of Prod(U) that is
composed of d — 1 linearly independent states. We can add a
product state that is not in the span of . and is not orthogonal
to any state in .. The resulting set .’ forms a connected
basis for H and so can identify unitaries. In addition, the
output state associated with each state in .# is a product and
so can be verified by one measurement setting based on a local
projective measurement. The output state associated with the
additional product state can be verified by two measurement
settings according to Theorem 1. Therefore, U can be verified
by d + 1 experimental settings, that is, u(U) < d + 1. In
conjunction with the opposite inequality derived above, we
conclude that uw(U) = d + 1 when dp;,q(U) = d and the set
Prod(U) is not connected. |

APPENDIX D: PROOFS OF LEMMAS 8-10
AND COROLLARY 2

Proof of Lemma 8. Letc; = cosajands; = sina; for j =
1,2, 3. Then the four Schmidt coefficients of U («y, a2, a3)
can be expressed as follows:

|&o] = c%c%c% + szs%s%,
6] = czs%s% + szc%c%,
(D1)
&) = szcgsg + czs%cg,
1631 = /518363 + cie3ss.
Now the assumption 0 < a3 < ap < o) < /4 implies that
V2
0<S3<S2<S1<7<61<62<63<1, (D2)
which in turn implies that
1S0l* = 161* = (c] — s7) (e3¢5 — 5353) > 0,
111> = |02l* = (3 — 83) (573 — ¢1s3) = 0, (D3)
16* — 161 = (] = 57) (5563 — 353) > 0
Therefore,
[Gol Z 1211 2 16| 2 1531 2 0 (D4)

which confirms Eq. (31) in Lemma 8. The first inequality
|¢ol > |¢1] is saturated iff ¢? = s3 or ¢3¢3 = s%s%, which holds
iff ozl = /4. The second inequality || > |&z] is saturated
iff ¢ = 53 or sic5 = 73, which holds 1ff o =0, The third

inequality |&] > |3 1s saturated iff ¢7 = s7 or s3c3 = c3s3,
which holds iff &y = 7 or (x3 = ozz Finally, the last inequality
|¢3] = 0 is saturated 1ff 52 s2 = s3 = 0, which holds iff «; =

o3 = 0. |

Proof of Lemma 9. If 0 <a; =a; =a3 <mw/4, then
Lemma 8 implies that |{y| > [¢1] = || = [¢43] > 0.

Next, suppose |¢o| > [¢1] = 82| = 1¢3] > 0. Then the in-
equality |¢o| > |¢1| implies that o« < /4 according to
Lemma 8; in addition, the equalities || = [¢2] = |¢3] imply
that oy = oy = «3; finally, the inequality 3] > O implies that
o > 0. Combining these results we can deduce that 0 < o} =
oy = a3 < w /4, which completes the proof of Lemma 9. W

Proof of Lemma 10. If the condition in Eq. (33) holds,
that is, o; = oz} for j=1,2,3, then U(ay,a;, a3) and
U (o}, o), o}) have the same Schmidt coefficients. If the con-
dition in Eq. (34) holds, then U (¢, a2, 3) and U (o], &}, 0})
also have the same Schmidt coefficients according to Eq. (32).

To prove the converse implication in Lemma 10, let C; =
cos(2wj), S; = sin(2e;), C} = cos(2a}), and S} = sin(2oz})
for j =1,2,3; then the assumptions 0 < a3 < oy < o) <
m/4and 0 < of < o < o) < w/4 imply that

0<C<G<GL, 0<C <C<C <. (D5)

In addition, C; = 0 iff o; = 7 /4; similarly, C’ =0 iff a] =
/4. Furthermore according to Eq. (23), the Schmldt coeffi-
cients of U (¢, ay, a3) satisfy the following relations:

150l* + 1517 = 3(1 = C1©5y),
150* — |02 = $Co(Cy + C3),
1Z0l* = 1631* = $G3(C1 + @),

(D6)

and the Schmidt coefficients of U(«], o}, ) satisfy similar
relations.

Suppose U (i, a2, 3) and U(wy, ), o3) have the same
Schmidt coefficients. Then Eq. (D6) implies that

CiC, =CiCy, GG =CCy, CC; = CiG. (D7)
If os <<y <m/4, so that C3 > C, > C; > 0, then
Eq. (D7) implies that C;- =C; and oz;- =a; for j=1,2,3,
which confirms Eq. (33).

If oy = @y = /4, then we have C; = C, = 0, which im-
plies that C; = C); = 0 and o] = o) = o0} = oy = /4 given
Egs. (D5) and (D7). In this case Eq. (34) holds.

If o =m/4 and a3 < oy < /4, then C; =0 and C; >
C, > 0, which implies that C{ =0, C},C}, > 0, and «| =
/4 given Eq. (D7). In addition, by virtue of Eq. (32) we
can further derive that C,C3 = CCj since U(ay, a2, «3) and
U (o}, o}, %) have the same Schmidt coefficients. So Eq. (34)
also holds in this case. |

Proof of Corollary 2. As shown in Sec. V A, U is equiva-
lentto U (a1, an, a3) or U*(ay, oz, ar3) with the constraint 0 <
a3 <oy <ap <m/4,andU’ is equivalent to U(af, o), o) or
U*(af, ay, o) with 0 < o < oe2 < a] < /4. By assump-
tion U («;, o2, a3) and U (@}, o), a%) have the same Schmidt
coefficients sy, s1, 52, §3, which satisfy so > 51 > s > 53, so
we have o < 7w /4 and of < /4 by Lemma 8. In addition,
o = oe} forj=1,2,3and U(ay, a2, @3) = U(ery, @), o) ac-
cording to Lemma 10. Therefore, U’ is equivalent to either U
or U* under local unitary transformations. |

APPENDIX E: TWO INEQUIVALENT UNITARY
OPERATORS WITH THE SAME SCHMIDT COEFFICIENTS

According to Eq. (32), we can choose the following param-
eters:

b4 11 17

o) = T o) = arccos 16’ o3 = arccos \/;, (El)
T
4

) /5 ) 13 2)
. o, = arccos =, o, = arccos —,
2 8 3 16
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which satisfy cos(2a}) cos(2ar}) = cos(2az) cos(2a3). It is
easy to verify that the two inequivalent unitary operators
U(ai, az,3) and U(oj, o, o) have the same Schmidt
coefficients:

37 37 27 27
o Ve Ve Ve (E3)
128 128 128 128

APPENDIX F: EFMIS FOR U («a;, a3, a3) WHEN
0<as<ay <oy <nm/dya; > a3, AND o; < /4

In this Appendix we construct an EFMIS for the unitary
U(ay, a2, 03) when 0 < a3 < o <oy < /4, oy > a3, and
oy < 7 /4, which corresponds to the third case in the proof of
Theorem 5.

Suppose in the magic basis the input state |¢g) has the
expansion |¢g) = 22:1 ve| Dk), where the coefficients satisfy
the normalization condition

4
donlF=1. (F1)
k=1

Then the product-state constraint holds if the coefficients
YZ, V2, vi, y} can be expressed as follows:

2[6(] 2[(12

Yoo v ="y,
)/32 = expliCo; + 20 — 2003 4 7)]
sin(2ey + 2a3) + sin(ep + 223) 5
X

sin(2er, + 20) e

2 __
Y =¢€

v} = expli(—2a3 + )]

sin(2o; — 2a3) + sin(2aty — 203)

sin(o; + 2a2) Yoo
where
2 sin(2a; + 2a5)
Y0 =3 sin(2ay + 2a2) + 2[sin(a;) + sin(2az )] cos(2a3)

(F3)

is determined by the normalization condition in Eq. (F1).
Moreover, an EFMIS can be constructed as follows (in the
magic basis):

4! Y1
N ) _|="
1) = vl |¢2) v |
)z V4
(F4)
4! 4
| 7 N e
l3) = v | |p4) "
—V4 —V4
The Gram matrix of the four states reads
I & & M
) 1 hy —g3
G= , F5
& 1 81 (F5)

h —g g 1
Withh] = g1 +g4 — 1,]’12 = g2 +g4 — landgj =1- 2|)/]|2
for j = 1,2, 3, 4. Its determinant is 64|y, y2y3y4|2 # 0, which

implies that the four states in Eq. (F4) span the whole Hilbert
space. In addition, we have

81,82,83, 8 #0 (F6)

as proved below, which means the corresponding transition
graph is connected, so the states in Eq. (F4) indeed form an
EFMIS.

Proof of Eq. (F6). We shall prove Eq. (F6) by reduction
to absurdity. Suppose g, =0 or g, = 0; then |y|? = 1/2.
Let §; =sin(2t;) and C; = cos(2e;) for j =1,2,3. From
Eq. (F3), we can deduce that

(51 + 82)C = 0. (F7)

Therefore, «; = ap = a3 = 0 or /4, which contradicts the
assumption. This contradiction shows that g; # 0 and g, # 0.

Suppose g3 = 0; then |y3|?> = 1/2. From Egs. (F2) and (F3)
we can deduce that

G183+ GS3 =G5 + 516, (F8)

Meanwhile, the assumptions o > o3 and oy < 7 /4 imply
that &, > 0,5, > S3, 81 > S3, and

C1S3 + G853 < G152 + S1C, (F9)

which contradicts Eq. (F8). This contradiction shows that
83 # 0.

Suppose g4 = 0; then |y4|> = 1/2. From Egs. (F2) and (F3)
we can deduce that

—(Ci1 + )83 = sin(Ray + 2a0). (F10)

However, this equation cannot hold given the assumptions

o) > a3 and oy < /4. This contradiction shows that g4 # 0
and completes the proof of Eq. (F6). ]

APPENDIX G: PROOF OF COROLLARY 3

Proof. Corollary 3 follows from Theorem 5 and the fol-
lowing equations:

wU (o +7/2, 00, 03)) = p(U(a, o2, @3)), (G1)
p(U e, oz + /2, 03)) = p(U(e, a2, @3)), (G2)
w(U (e, 02, 03 +7/2)) = p(U(a, 02, @3)), (G3)
pU (/4 — a1, a2, 03)) = p(U(w /4 + a1, a2, 3)),  (G4)
wU (o, /4 — oz, 03)) = p(Ulon, /4 + a2, a3)),  (GS)
p(U e, a2, w /4 — a3)) = p(U(en, a2, w/4 + a3)).  (G6)

Equations (G1)-(G3) mean u(U (v, an, a3)) is periodic in
oy, o, a3, respectively, with the common period of 7 /2.
Equations (G4)—(G6) mean w(U (1, oz, 3)) is invariant un-
der reflection with respect to the three planes specified by
o) =m /4, ay = /4, oz = 1 /4, respectively.
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Equation (G1) follows from

Ular, az, a3) = i(o1 @ o)U (a1 + /2, a2, 3),  (GT)

given that u(U) is invariant under local unitary transforma-
tions. Equations (G2) and (G3) can be proved in a similar way.

Equation (G4) follows from
U /4 — a1, a2, a3) = —io{U* (7 /4 + a1, o2, 03)07,

(G8)

given that p(U) is also invariant under complex conjugation.
Equations (G5) and (G6) can be proved in a similar way. W
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