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Non-Gaussian photonic state engineering with the quantum frequency processor
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Non-Gaussian quantum states of light are critical resources for optical quantum information processing, but
methods to generate them efficiently remain challenging to implement. Here we introduce a generic approach
for non-Gaussian state production from input states populating discrete frequency bins. Based on controllable
unitary operations with a quantum frequency processor, followed by photon-number-resolved detection of
ancilla modes, our method combines recent developments in both frequency-based quantum information and
non-Gaussian state preparation. Leveraging and refining the K-function representation of quantum states in the
coherent basis, we develop a theoretical model amenable to numerical optimization and, as specific examples,
design quantum frequency processor circuits for the production of Schrödinger cat states, exploring the perfor-
mance tradeoffs for several combinations of ancilla modes and circuit depth. Our scheme provides a valuable
framework for producing complex quantum states in frequency bins, paving the way for single-spatial-mode,
fiber-optic-compatible non-Gaussian resources.
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I. INTRODUCTION

The distinction between discrete-variable (DV) and
continuous-variable (CV) encodings offers a valuable
lens through which to classify and understand photonic
quantum information processing systems. Based on true (or
approximate) finite-dimensional Hilbert spaces, DV opti-
cal designs are typically associated with qubits encoded in
photons that are manipulated and subsequently measured
with single-photon detectors [1,2]. On the other hand, the
infinite-dimensional Hilbert spaces of CV quantum informa-
tion exploit collective photonic excitations (such as coherent
or squeezed states) and homodyne-heterodyne detection with
local oscillators as fundamental resources [3–6]. From a tech-
nical side, the DV-CV divide can prove quite stark, and
significant differences appear theoretically as well: For ex-
ample, security proofs for CV quantum key distribution have
generally proven much more challenging to establish due to
the infinite dimensionality involved [7,8].

Yet this dichotomy is far from absolute, with features
of particular quantum information processing approaches
blurring the DV-CV distinction entirely. At the implementa-
tion level, many DV photonic systems utilize subspaces taken
from a larger, intrinsically continuous Hilbert space—time
[9–12] and frequency bins [13–15] forming representative
examples of relevance to the present work. In an even
more direct fashion, in encodings such as the Gottesman-
Kitaev-Preskill (GKP) qubit [16–18], the logical quantum
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information is discrete, but the encoding occupies the full con-
tinuous Hilbert space. Here the CV aspects are not incidental
features of the chosen Hilbert space; rather, they prove critical
to the paradigm itself, providing the foundation for measuring
and correcting continuous errors on the logical qubit state.

The potential of error-corrected photonic quantum in-
formation processing with GKP qubits makes them an
appealing direction for research. But producing such states—
and non-Gaussian CV states more generally—is an extremely
challenging endeavor, with proof-of-principle GKP realiza-
tions so far limited to nonphotonic platforms [19,20]. The
discovery and analysis of Gaussian boson sampling (GBS)
[21,22], however, has provided a valuable framework for
preparing non-Gaussian optical states [23–26], based on ear-
lier important works on the universality of Gaussian states
and partial postselection [27–29]. Also straddling the inter-
face between CV and DV—in that it leverages both CV
fields and single-photon detection—GBS circuits can in prin-
ciple produce arbitrary non-Gaussian states through ancilla
modes and postselection on particular detection patterns, anal-
ogous to the probabilistic gates of linear-optical quantum
computation (LOQC) in the DV paradigm [1,2]. The design
[18,24–26,30,31] and implementation [32–34] of GBS-type
circuits for non-Gaussian state preparation have so far focused
on the path degree of freedom (DoF), a natural choice given
its long history in optics and well-known unitary decompo-
sition procedure [35,36]. But other DoFs offer promise as
well. As the focus of the present work, the frequency-bin
DoF enjoys several attractive features for scalable photonic
quantum information processing, including wavelength paral-
lelizability, compatibility with single-mode optical fiber, and
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CV state production with resonant parametric oscillators, both
free space [37,38] and integrated [39,40].

A major challenge of non-Gaussian state production with
frequency-bin encoding, however, is the realization of ar-
bitrary unitary operations. Recent work on the quantum
frequency processor (QFP) [15] in the LOQC mold has made
significant strides to this end; based on alternating application
of electro-optic phase modulators (EOMs) and pulse shapers,
the QFP can in principle synthesize any unitary frequency-bin
operation in a scalable fashion. Following the original pro-
posal [13], the QFP has been demonstrated experimentally on
both single- [41,42] and two-photon [43,44] states. Yet apart
from a classical communications example using quadrature-
encoded data [45], the research focus has been entirely within
the DV paradigm, so that the opportunities and limitations
of applying the QFP to CV—and hybrid DV-CV—systems
remain uncharted.

In this work, we develop and simulate a complete model
for non-Gaussian frequency-bin state engineering on the QFP.
Leveraging and expanding on the K-function formalism of
Ref. [26], we describe a resource-efficient method for com-
puting the output of a QFP excited by Gaussian inputs and
measured with photon-number-resolving (PNR) detectors ap-
plied to a subset of frequency modes. As examples of this
general approach, we design QFP circuits intended to produce
Schrödinger cat states in one undetected bin and explore the
impact of the number of components and ancilla modes on cir-
cuit performance, according to a cost function which balances
both state fidelity and success probability. Our approach fur-
nishes a general framework for non-Gaussian state production
in frequency-bin quantum systems, offering a springboard for
the design of practical experimental systems.

II. MATHEMATICAL BACKGROUND OF OUR APPROACH

For modeling our proposed system, we use a represen-
tation of Gaussian states in the coherent basis according to
the K-function formalism introduced in Ref. [26]. Here we
briefly review the results in Ref. [26] and then evolve those to
further worked-out formulas. Among other things, in Ref. [26]
it was proven that any N-mode pure Gaussian state |�〉 with
covariance matrix (CM) V and displacement vector �xβ can be
written in the coherent basis |�α〉 as

|�〉 =
∫

d2N �xα K (�xα )|�α〉, (1)

where

K (�xα ) = e− 1
2 (�xα−�xβ )T B(�xα−�xβ )+ 1

2 �xT
α Y�xβ

(2π )N (det �)1/4
, (2)

with � = V + I/2,

B = 1

2

(
A + i

2 (C + CT ) C − i
2 (A − B)

CT − i
2 (A − B) B − i

2 (C + CT )

)
, (3)

Y =
(

0 iI
−iI 0

)
, (4)

where A = AT , B = BT , and C are defined as the blocks of
�−1 as follows:

�−1 =
(

A C
CT B

)
. (5)

Note that we have simplified the expressions compared to
Ref. [26]. We note that since the CM V is symmetric,
� and �−1 are also symmetric. We work with the con-
vention h̄ = 1 (therefore the CM of vacuum is I/2) and
consider the qqpp representation where vectors are de-
fined as �xT

α = (�qT
α , �pT

α ) with �qT
α = (qα1 , . . . , qαN ) and �pT

α =
(pα1 , . . . , pαN ) the canonical position and momentum vectors.
The volume element for integration is then defined as d2N �xα =
dqα1 . . . dqαN d pα1 . . . d pαN , and αi = (qαi + ipαi )/

√
2.

The coherent basis representation is a valuable tool for
working on photon-subtraction-based or, more generally, par-
tial PNR detection schemes aimed at engineering Gaussian
states into desired non-Gaussian states. Photon subtraction
can be modelled either (i) as a beam splitter whose two
input ports are fed with the ith mode of |�〉 and vacuum
|0〉, respectively, followed by PNR detection on the lower
output port; or (ii) simply by acting the annihilation operator
âi, where the index i refers to the mode, on |�〉. Therefore,
the photon subtraction operator will act only on the basis
vectors of the state, i.e., coherent states in this instance. The
action of beam splitters or annihilation operators on coherent
states is straightforward, making this basis particularly effi-
cient for analytical or numerical evaluation. The situation is
similar for partial PNR detection on a Gaussian state written
as a coherent state expansion; the projection of a coherent
state on a Fock state is the well-known expression 〈n|α〉 =
exp(−|α|2/2)αn/

√
n!.

In Ref. [26], it was shown that the probability of a length-
N PNR pattern for an N-mode Gaussian state |�〉 with zero
displacements, i.e., �xβ = 0 in Eq. (1), is given by

Pn1...nN = |〈n1 . . . nN |�〉|2

= 1

det H
√

det �
N∏

i=1
ni!2ni

∣∣In1...nN

∣∣2
, (6)

where

In1...nN =
∫

d2N �xαR(�xα )
N∏

i=1

(qαi + ipαi )
ni , (7)

R(�xα ) =
√

det H
(2π )N

e− 1
2 �xT

α H�xα , (8)

and H = B + I/2. Equation (7) can be rewritten as

In1...nN =
{

0 � = odd,

Hf(σ ) � = even,
(9)

where � = ∑N
i=1 ni, Hf(σ ) is the hafnian (often specifically

called the “loop hafnian” in the literature [25]) of the matrix
σ with elements σi j = 〈sis j〉, where 1 � i, j � � and si =
qαi + ipαi . The hafnian in Eq. (9) represents the mean value
〈sn1

1 . . . snN
N 〉 under the Gaussian distribution of Eq. (8).

In this work, we will derive the explicit relation of the
matrix σ to the matrix H−1 and consequently to the matrix
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�−1 which describes the Gaussian state just before partial
PNR detection. This enables more efficient computation of the
output detection probabilities and the Fock coefficients of any
produced non-Gaussian state, for a given input Gaussian state.
We also simplify further the expressions. The following sub-
sections summarize simplifications, observations, and results
which improve on Eqs. (5)–(8).

A. The determinant and inverse of �

The matrix � is defined as � = V + I/2, where V is the
CM and I is the identity matrix. Since V corresponds to a
pure Gaussian state, it can be written as V = SpV0ST

p , where
Sp is an orthogonal symplectic matrix for a general passive
transformation (beam splitters and phase rotations, but not
squeezers) and V0 is the CM for a product of N single-mode
squeezed vacuum states, i.e., the diagonal matrix

V0 = 1

2
diag(e2r1 , . . . , e2rN , e−2r1 , . . . , e−2rN ), (10)

where r1, . . . , rN are the real and positive squeezing param-
eters for each of the N single-mode squeezed vacuum states
(note that the phase of the squeezing has been absorbed into
the orthogonal symplectic transformation Sp).

We have the following relation,

det � = det
[
Sp

(
V0 + I

2

)
ST

p

]
(11)

= det Sp det
(
V0 + I

2

)
det ST

p , (12)

from which we write

det � = det
(
V0 + I

2

)
(13)

since det Sp = det ST
p = 1 as both Sp and ST

p are symplectic
matrices. The right-hand side of Eq. (13) is the determinant of
a diagonal matrix from which we find

det � =
N∏

i=1

cosh2 ri. (14)

Therefore, Eq. (6) is rewritten as

Pn1...nN = |In1...nN |2

det H
N∏

i=1
ni!2ni cosh ri

. (15)

In the case where the input squeezing is the same among all
single-mode squeezed vacuum states, i.e., r1 = . . . = rN = r,
Eq. (14) reduces to det � = cosh2N r.

Now let us simplify Eq. (5). We can write � = Sp(V0 +
I/2)ST

p , and since ST −1

p = Sp is a symplectic orthogonal matrix
we have

�−1 = Sp

(
V0 + 1

2

)−1

ST
p . (16)

The symplectic orthogonal matrix Sp has the following block
matrix structure and properties:

Sp =
(

SA SB

−SB SA

)
(17)

ST
A SB = ST

B SA, (18)

SAST
B = SBST

A , (19)

ST
A SA + ST

B SB = I, (20)

SAST
A + SBST

B = I. (21)

Moreover, since V0 is diagonal we can write(
V0 + 1

2

)−1

= I +
(−T 0

0 T

)
, (22)

where T = diag(tanh r1, . . . , tanh rN ). In virtue of Eqs. (16),
(17), and (19), we find that in Eq. (5)

A = −SAT ST
A + SBT ST

B , (23)

C = CT = SAT ST
B + SBT ST

A , (24)

A + B = 2I. (25)

Therefore, in the most general case possible, Eq. (5) is
simplified to

�−1 =
(

A C
C 2I − A

)
, (26)

where A and C are given in Eqs. (23) and (24), respectively, as
functions of the passive symplectic transformation Sp and the
input squeezing parameters.

Consequently, matrix B of Eq. (3) simplifies to

B = 1

2

(
A + iC C − i(A − I )

C − i(A − I ) 2I − A − iC

)
. (27)

B. The determinant and inverse of H
The matrix H appearing in Eq. (8) is defined as

H = B + I/2. (28)

We find it easier if we transform as H̃ = W †HW using the
unitary matrix W defined as

W = 1√
2

(
I I

−iI iI

)
. (29)

Utilizing Eqs. (27), (28), and (29), we find

H̃ =
(

I A − I + iC
0 I

)
, (30)

from which we see that det H̃ = det I = 1. Since | det W |2 =
1, we have det H̃ = det H and conclude that

det H = 1. (31)

Therefore, Eqs. (8) and (15) are further simplified to

Pn1...nN = |In1...nN |2
N∏

i=1
ni!2ni cosh ri

, (32)

R(�xα ) = 1

(2π )N
e− 1

2 �xT
α H�xα . (33)

Let us derive a convenient expression for H−1. Again, we
work with H̃ and observe that

H̃−1 =
(

I −(A − I + iC)
0 I

)
(34)
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is indeed the inverse of H̃; i.e., it satisfies H̃H̃−1 = I . Since
H̃ = W †HW we find that H−1 = W H̃−1W † and finally

H−1 = 1

2

(
3I − A − iC i(A − I + iC)

i(A − I + iC) I + A + iC

)
. (35)

Therefore, using Eqs. (23), (24), and (35), any given passive
symplectic transformation Sp, and input squeezing parame-
ters, one can readily write H−1—the importance of which will
become apparent in the next subsections.

C. The relation of matrix σ to matrix H−1

Making use of Eq. (33), we can express the matrix elements
of σ as

σi j = 〈(qαi + ipαi )
(
qα j + ipα j

)〉
= 1

(2π )N

∫
d2N �xα exp

(
−1

2
�xT
αH�xα

)

×(qαi + ipαi )
(
qα j + ipα j

)

= d

dλi

d

dλ j
exp

(
1

2
�
TH−1 �


)∣∣∣∣ �
=−→
0

, (36)

where �
T = (�λT , i�λT ) is a 2N-dimensional vector with �λT =
(λ1, . . . , λN ) being a real N-dimensional vector. Viewing
1
2
�
TH−1 �
 in the exponential of the right-hand side of

Eq. (36) as a polynomial in λi, Eq. (36) is equal to the co-
efficient of λiλ j . This way, we can write

σi j = 2
(
H−1

i j − H−1
i+N j+N

)
. (37)

From the covariance matrix V , one can find matrix �−1 and
therefore matrix σ using Eqs. (35) and (37), which is required
in the calculation in Eq. (9).

The Gaussian moment problem of Eq. (7) represents a
hafnian calculation and is related to the Gaussian boson sam-
pling paradigm [21]. When the indices i, j are equal, this
corresponds to a loop, i.e., matching an object with itself.
Therefore, it is typically referred to as a loop hafnian.

D. Occurrence probability of any produced state

Equation (32) is the probability of finding ni photons in
each one of the i = 1, . . . , N modes. If we wish to engineer
the N-mode Gaussian state into an M-mode (M < N) non-
Gaussian one as in Fig. 1, we leave M modes undetected;
without loss of generality we assume the undetected modes
are the M upper modes. The probability of the PNR pattern
(nM+1, . . . , nN ) on the lower detected modes is precisely the
probability PnM+1,...,nN of producing the corresponding non-
Gaussian state. This probability is

P ≡ PnM+1,...,nN =
∞∑

n1,...,nM=0

Pn1,...,nN . (38)

For numerical simulations, the above sum must be trun-
cated to a finite upper limit, which should be chosen with
care to ensure that it encompasses all Fock coefficients of
non-negligible probability. This condition can be verified in
practice by successively increasing the limits and observing
no change to P.

FIG. 1. Concept of heralding an M-mode state |�〉 from N
single-mode, zero-displacement squeezed resource states and N × N
unitary operation U . Partial PNR detection on the N − M lower
modes produces a non-Gaussian state on the undetected M modes.

E. Fock expansion coefficients of the produced state

The non-Gaussian state |�〉 on the M undetected modes
(see Fig. 1) can be written as a partial projection on Fock states
of the detected modes:

|�〉 = 1√
P

〈nM+1 . . . nN |�〉

= 1√
P

∞∑
n1,...,nM=0

〈n1 . . . nMnM+1 . . . nN |�〉|n1 . . . nM〉

=
∞∑

n1,...,nM=0

cn1...nM |n1 . . . nM〉, (39)

where P is given in Eq. (38), |�〉 is the N-mode Gaus-
sian state just before partial PNR detection (i.e., the output
Gaussian state), and cn1...nM = 〈n1 . . . nM |�〉 are the Fock ex-
pansion coefficients of the heralded state |�〉.

Using Eqs. (7) and (39), we find

cn1...nM = In1...nM nM+1...nN

√
P

N∏
i=1

√
ni!2ni cosh ri

, (40)

where the numerator is given by Eq. (7). Therefore, for any
given partial PNR pattern (nM+1, . . . , nN ) one can compute
the Fock expansion coefficients of the produced state |�〉,
which can be benchmarked against a target non-Gaussian
state |�t 〉 through direct comparison of Fock coefficients or
collectively through fidelity F = | 〈�t |�〉 |2.

F. Summarizing comments

Let us close Sec. II with three remarks. First, we note
that our formalism provides an approach to computing
Gaussian states in the Fock basis complementary to that of
Refs. [25,31]. By incorporating the reduced dimensionality
of a pure state directly, our approach requires calculation of
fewer expansion coefficients to fully characterize the output,
in the case of pure state evolution; for example, for a photon
cutoff of nc, a pure single-mode output state is described by
nc + 1 complex coefficients cnK [Eq. (47)], while a mixed
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single-mode state formulation would require (nc + 1)(nc +
2)/2, after accounting for Hermiticity.

Second, extra care is required when dealing with
loop hafnians. Let us give an example. Say that one
wants to calculate 〈s2

1s2s3〉. To apply Wick’s formula, one
has to rewrite the mean value as containing four dif-
ferent objects, i.e., 〈s2

1s2s3〉 = 〈g1g2g3g4〉. Wick’s formula
gives the perfect matchings as 〈g1g2g3g4〉 = 〈g1g2〉〈g3g4〉 +
〈g1g3〉〈g2g4〉 + 〈g1g4〉〈g2g3〉, and then we substitute back
g1 = g2 = s1, g3 = s2, and g4 = s3, which gives 〈s2

1s2s3〉 =
〈s2

1〉〈s2s3〉 + 〈s1s2〉〈s1s3〉 + 〈s1s3〉〈s1s2〉.
For the calculation of loop hafnians, we find it more ef-

ficient instead to work with the formula found in Ref. [[46],
Prop. 1, p. 547] as it takes inherently into account the powers
of si. For the convenience of the reader, we give the for-
mula (adjusted to our notation) which is the nonzero result
of Eq. (9):

Hf(σ ) = 1(
�
2

)
!

n1∑
ν1=0

. . .

nN∑
νN =0

(−1)ν1+...+νN

×
(

n1

ν1

)
. . .

(
nN

νN

)(
1

2
�hT σ �h

) �
2

(41)

where �hT = (n1/2 − ν1, . . . , nN/2 − νN ), and νi, . . . , νN are
silent indices, i.e., they are summed. Equations (7) and (41)
can be used directly in Eq. (38) for the probability of find-
ing any non-Gaussian state in the undetected modes and in
Eq. (40) for the Fock expansion coefficients of such a state.
This tailored expression for the loop hafnian was noted for its
significant computational speed up in previous non-Gaussian
state engineering work as well [31]. Essentially, the improve-
ment is obtained when the dominant bottleneck in Wick’s
formula stems from repeated factors (e.g., s1 in the example
above) rather than many nonrepeated factors (e.g., s2 and s3 in
the example above). This is certainly the case in our work,
where we consider many photons in the single undetected
mode to fully characterize the postselected state (up to nmax ≈
40), with only a few PNR detectors (two or four).

Third and finally, the formulas above enable calculation
of the coefficients 〈n1...nN |�〉 for any diagonal input covari-
ance matrix V0 and passive symplectic mode transformation
Sp—i.e., any covariance matrix for a pure Gaussian state—
without numerical evaluation of a single matrix inverse or
determinant: These expressions have all been reduced to
straightforward matrix or scalar operations in the above.
This simplification has a profound impact on the efficiency
of the numerical procedure in Sec. IV A, eliminating time-
consuming inverse calculations from the optimization loop.

III. QUANTUM FREQUENCY PROCESSOR

Up to this point, the mathematical formulation has been
completely general with respect to the underlying optical
modes, applicable equally well to any photonic DoF. In
this section, we refine our focus to frequency bins specifi-
cally. Fundamentally, the QFP is designed to realize arbitrary
unitary operations on a discrete set of equispaced, clearly
separated frequency modes, or bins. Inspired by the LOQC
approach of Knill et al. [1]—whereby single photons, lin-

FIG. 2. Setup explored for non-Gaussian state preparation with
the QFP. The case of Ns = 3 input squeezed modes is shown for con-
creteness. (a) Hardware view. Squeezed states in distinct frequency
modes traverse the sequence of EOMs and pulse shapers in the QFP.
The condition for successful heralding is the detection of ns photons
each in all but one of the central Ns bins and zero photons in all
adjacent bins. The undetected mode is left in state |�〉. (b) Logical
view. Each rail denotes an individual frequency bin, with the QFP
functioning as a complex interferometer.

ear optics, detectors, and feed-forward unite for universal
quantum computing—the original QFP proposal [13] suc-
ceeded in showing that EOMs [47] and pulse shapers [48,49],
alternating in series, could realize a universal gate set, arguing
further that any unitary could be synthesized such that the
combined number of EOMs and pulse shapers Q (see Fig. 2)
scales like O(d ), where d is the dimension of the targeted
unitary.

In order to understand the basic principles of operation,
consider a discrete set of frequency modes, each centered at
ωn = ω0 + n�ω (n ∈ Z) and associated with an annihilation
operator ân. The corresponding output operators b̂n relate to
the inputs ân as

b̂n = eiφn ân (42)

for a line-by-line pulse shaper and

b̂n =
∞∑

k=−∞
fn−kâk (43)

for an EOM driven with phase function ϕ(t ) periodic at the
inverse mode spacing T = 2π

�ω
, so that eiϕ(t ) = ∑

n fne−in�ωt

and fn = 1
T

∫ T
0 dt eiϕ(t )ein�ωt . As written, this formulation

contains an infinite number of frequency bins; in the interests
of numerical tractability, though, we can limit the total number
of considered modes to N and discretize the temporal period
as tn = nT

N (n ∈ {0, 1, ..., N − 1}). Under this approximation,
the total N × N unitary for a sequence of Q components
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becomes [13]

U = (FDQF †)DQ−1 · · · (FD3F †)D2(FD1F †), (44)

where F is the discrete Fourier transform with elements Fmn =
1√
N

e2π imn/N (m, n ∈ {0, 1, ..., N − 1}). Each Dq is a diagonal
unitary matrix; the odd-numbered q signify an EOM with
elements (Dq)nn = eiϕ(q) (tn ), and the even-numbered q indicate

a pulse shaper with (Dq)nn = eiφ(q)
n . We bookend the QFP with

EOMs in our example, rather than pulse shapers, based on
previous experience where we have observed no increase in
circuit performance with the addition of a front- or back-end
pulse shaper [42].

We note that the alternating pattern in Eq. (44) also makes
sense conceptually: Each device multiplies the input field
by a phase-only function, either in the time domain for the
EOM or the frequency domain for the pulse shaper; thus,
discrete Fourier matrices appear naturally as finite approx-
imations to the continuous Fourier transformations between
time and frequency representations. Accordingly, the form in
Eq. (44) accurately reflects the physical situation as long as
N is sufficiently large so that photon probability amplitudes
do not reach the edge of the truncated simulated domain and
artificially “wrap around” to the other side; in practice, this
situation can be avoided by limiting the maximum EOM mod-
ulation index or applying bandpass filters to the pulse shaper
matrices.

Diagonal unitary decompositions in the form of Eq. (44)
have appeared in a variety of photonic DoFs, including posi-
tion or momentum [50,51], parallel waveguides [52], and time
bins [53]—whenever the physical system can be modeled as
the application of phase shifts in alternating Fourier-transform
pairs. As shown in Ref. [54], one can analytically design
such systems by starting with the beam splitter and phase-
shifter decomposition of path encoding [35,36], and then
expressing each beam-splitter layer as six alternating phase
masks; however, this introduces significant resource overhead,
so that there currently exists no recipe to compute the Dq

matrix elements required to synthesize a desired target ma-
trix U optimally—i.e., without an intermediate conversion
step to an equivalent path circuit. Accordingly, numerical
optimization has been employed extensively in QFP designs
for basic gates such as the Hadamard [41,43], controlled-
NOT [44], cyclic hop [45], and arbitrary single-qubit unitaries
[42]. From the perspective of photon statistics, the most
complicated QFP gate explored so far is the two-ancilla
controlled-Z in Ref. [13] containing a total of four pho-
tons. In contrast, the non-Gaussian CV cases considered
in the present work deal with many-photon states inher-
ently, so the mathematics involved proves markedly more
complex.

Figure 2 provides an overview of our non-Gaussian state
engineering system. As previously mentioned in Sec. II, our
mathematical formalism applies to a system like Fig. 1 where
the M undetected modes can be any of the total N modes
without loss of generality. In the following application, we
choose M = 1 and select this single undetected mode as the
K th mode, which is at the center of a set of Ns modes that
are populated with single-mode squeezed vacuum states at
the input; the remaining N − Ns modes are initially vacuum.

For our simulations, we take the phase of the squeezing to be
zero for all cases. After application of U , the K th mode is left
undetected and ns photons are detected in each of the other
central Ns − 1 modes. Production of the desired state in the
K th mode is heralded by simultaneously detecting vacuum in
the remaining N − Ns modes: in essence, a bucket detector for
all remaining modes, reminiscent of heralded QFP gates in the
DV case [13]. The requirement of such vacuum postselection
is a consequence of the presence of an infinite set of ancilla
modes in the frequency-bin DoF, which must be detected to
ensure that the output state is pure.

Given the massive design space available for non-Gaussian
QFP circuits—in terms of input states, unitaries, and output
patterns—we have attempted in the specific configuration of
Fig. 2 to provide a relatively simple construction that never-
theless retains key features anticipated for successful circuits.
By placing the output mode of interest in the center of the
squeezed inputs, we maximize opportunities for multipho-
ton interference with relatively weak modulation amplitudes,
and selecting from the modes initially populated with pho-
tons for PNR detection with ns > 0 should permit reasonable
success probabilities. Of course, there is no guarantee that
such intuitions are globally optimal, and thus work into other
configurations will be extremely valuable in the future such
as, e.g., including the choice of detection pattern within the
optimization algorithm itself, rather than taking it as given.
Yet the present setup offers a feasible foundation for this
initial investigation.

Finally, before proceeding further, we note that several fea-
tures of the design in Fig. 2 share commonalities with previous
work in frequency-based quantum information. Extensive re-
search in CV quantum frequency combs [37,38,55,56] has
focused on frequency-bin encoding for cluster-state-based
quantum computing; in fact, a recent theoretical investigation
specifically incorporated EOMs, finding that highly intricate,
multidimensional cluster states could be produced by mod-
ulating a comb of two-mode squeezed states at multiples of
the frequency-bin spacing [57]. Although these aspects over-
lap strongly with our approach, the addition of pulse shaper
layers in the QFP provides considerably more complexity in
the unitaries available, and our explicit examination of PNR
detection allows us to attain non-Gaussian states that are not
available within existing Gaussian cluster state models. On
another front, researchers have recently introduced an alter-
native GKP qubit encoding consisting of a single photon in
a discrete grid of spectrotemporal modes [58]. While similar
in that this also leverages the frequency DoF, we follow the
more traditional construction of non-Gaussian states in which
quantum information resides in the field quadratures of optical
modes, making our analysis inherently multiphoton rather
than single-photon in nature.

IV. CIRCUIT DESIGN EXAMPLES

Having detailed the mathematical formalism in Sec. II
and highlighted the specific features of the QFP in Sec. III,
we now apply the complete framework toward the de-
sign of quantum circuits that produce desired non-Gaussian
output states, according to the configuration presented in
Fig. 2.
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A. Numerical optimization

As noted in the previous section, quantum system design
with the QFP lacks an optimal analytical unitary decomposi-
tion procedure, so that numerical optimization is in general
required to obtain a QFP configuration realizing a desired
unitary. In the context of non-Gaussian state design, the need
for numerical optimization in itself is not unique, but has
proven a fixture in path encoding as well [18,25,30]. However,
the QFP case does present additional practical constraints,
most notably with respect to the stellar decomposition [59]
leveraged in previous path-encoded designs [25,30].

In this approach, rather than designing a quantum circuit
to implement some target state |�t 〉 directly, a Fock-
truncated core state |�core〉 is sought instead—related to
|�t 〉 via a squeezing and displacement operation, |�t 〉 =
S(z)D(β ) |�core〉. Suppose that the mode unitary found to
produce |�core〉 is U ; then, by absorbing the displacement
and squeezing operation into a new set of inputs and mode
unitary U ′, an interferometer for the desired full state |�t 〉 can
be produced immediately via the analytical decomposition
scheme of Refs. [35,36]. In the QFP case, however, if a set of
EOM and pulse shaper solutions are found that can implement
the core state preparation circuit U , the absence of an available
analytical decomposition procedure means that there is no
functional connection from this solution [i.e., the Dq matrices
in Eq. (44)] to the modified configuration that would realize
U ′; instead, numerical optimization must again be employed
on U ′, effectively doubling the rounds of numerical design
compared to path encoding. Accordingly, in what follows
we concentrate on synthesizing circuits that produce the full
target state |�t 〉 immediately, avoiding this intermediate core
state step.

To begin the optimization process, we first define the target
state |�t 〉 in the Fock basis, i.e., the coefficients τn = 〈n|�t 〉.
We employ MATLAB’s particle swarm optimization (PSO) tool
[60] to find the Ns nonzero input squeezing values of the total
length-N vector of inputs

�r = (0, . . . , 0, rK−� Ns
2 , . . . , rK−1, rK ,

rK+1, . . . , rK+� Ns
2 , 0, . . . , 0),

(45)

and a QFP unitary, U , that when applied to the N-mode input
followed by detection of ns photons in each of the remain-
ing Ns − 1 squeezed modes, produces a state |�〉. Letting nc

denote the photon number at which we truncate the state for
numerical simulations, we therefore must compute a total of
nc + 1 coefficients (including vacuum) to fully describe the
heralded output. To find the optimal squeezing values and U ,
PSO varies the phase shifts applied to the N QFP modes by the
pulse shapers, each EOM’s phase modulation function ϕ(t ),
and the Ns nonzero elements of �r in order to minimize the
cost function

C = P log10(1 − F ), (46)

where F and P are the fidelity of |�〉 with respect to |�t 〉
and the probability of producing |�〉, respectively. We have
found a logarithmic cost function of this form useful for penal-
izing F < 1 more strongly than P < 1, emulating the effect
of a constraint on F without the computational cost associ-

ated with a strict constraint function. With the revelations of
Secs. II A and II B, the Fock coefficients of |�〉 in the K th
mode can be expressed as Eq. (40), which we write in the
form

cnK = I�n
√

P
N∏

i=1

√
ni!2ni cosh ri

, (47)

where �n = (0, ..., 0, ns, ..., ns, nK , ns, ..., ns, 0, ..., 0) is the
vector of photon numbers over all output modes, so that P
and F can be written as

P =
nc∑

nK =0

⎛
⎜⎜⎜⎝

|I�n|2
N∏

i=1
ni!2ni cosh ri

⎞
⎟⎟⎟⎠ (48)

and

F = |〈�t |�〉|2 =
∣∣∣∣∣

nc∑
nK =0

τ ∗
nK

cnK

∣∣∣∣∣
2

. (49)

With the cost function defined, we now lay out the recipe
for evaluating F and P at each PSO iteration. First, we cal-
culate (V0 + I

2 )−1 using �r in Eq. (22). U is calculated by
substituting the N phase shifts for each pulse shaper and each
EOM’s ϕ(t ) into Eq. (44), which we convert to symplectic
form, Sp, via

Sp = W

(
U 0
0 U ∗

)
W †, (50)

where W is defined by Eq. (29) and U ∗ corresponds to
element-by-element conjugation (no transpose). �−1 is then
calculated by Eq. (16), and the blocks A and C extracted per
Eq. (26). A and C are used to find H−1 with Eq. (35). The
matrix elements of σ are found by using H−1 in Eq. (37).
Because we detect vacuum in all the QFP modes except
for the center Ns, �hT = (0, . . . , 0, ns

2 − νK−� Ns
2 , . . . ,

nK
2 −

νK , . . . , ns
2 + νK+� Ns

2 , 0, . . . , 0) in Eq. (41) renders unimpor-
tant all the elements of σ other than the center Ns × Ns block.
Therefore, we proceed to evaluate Eq. (47) using only the
center block of σ , for nK ∈ {0, 1, . . . , nc} and are left with
the Fock coefficients cnK of |�〉.

We choose to compute �−1 in this manner for computa-
tional reasons. As a large matrix—2N × 2N in general and
128 × 128 in our case—� is time-consuming to invert. We by-
pass this time sink by calculating �−1 directly with Eq. (16),
rather than performing � = SpV0ST

p + I/2 and inverting �. An
alternative route to reaching �−1 is to calculate the A and
C matrices using Eqs. (23) and (24), respectively, and then
substituting them into Eq. (26). While valid, this path involves
four separate matrix products, making it less computationally
efficient than using Eq. (16) that requires only one matrix
product.

We take further action to streamline the nc + 1 calculations
of I�n needed to find the Fock coefficients of |�〉, dominated by
Hf(σ ) in Eqs. (9) and (41). σ is the only quantity in Eq. (41)
that will change in the successive iterations of PSO; therefore,
we can precompute a number of the elements of Eq. (41)
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outside the optimization loop and use them for every PSO iter-
ation. Calculating these elements upfront proves imperative to
expediting the optimization process when nc becomes large.

Consider a given value nK . First, we define the length-Ns

vector

�sT = (ns, ..., ns, nK , ns, ..., ns), (51)

the sum of photons in the output modes

� =
Ns∑

i=1

si = (Ns − 1)ns + nK , (52)

and index vectors for each mode �νT
i = (0, 1, ..., si ), where the

maximum si for each mode is taken from Eq. (51).
Then we find all combinations of the entries of the ν vec-

tors and store them in a matrix D, where each row corresponds
to a unique length-Ns listing of elements, one drawn from
each �νi. Because we choose to detect the same number of
photons, ns, in the Ns − 1 modes, D will be of dimension
(ns + 1)Ns−1(nK + 1) × Ns and will take on the role of the
nested summations that appear in Eq. (41). We calculate
the exponent of the (−1) factor in Eq. (41) for all terms of
the nested summation and store them in �W , whose elements
are defined as

Wi =
Ns∑
j=1

Di j . (53)

Similarly, the product of binomials in Eq. (41) is calculated
for all terms in the nested summation and stored in �X ,

Xi =
Ns∏
j=1

(
s j

Di j

)
. (54)

�hT for all the terms in the nested summation are stored in
vectors

�ZT
i =

( s1

2
− Di1, . . . ,

sNs

2
− DiNs

)
. (55)

The Hf(σ ) calculation is then reduced to a single summation
over these precomputed elements,

Hf(σ ) =
κ∑

i=1

1(
�
2

)
!
(−1)WiXi

(
1

2
�Zi

T
σ �Zi

) �
2

, (56)

where κ = (ns + 1)Ns−1(nK + 1). Keep in mind this process
must be repeated for all values nK ∈ {0, 1, . . . , nc} giving us
all necessary precomputed �s, �, �W , �X , and �Zi elements.

B. Coherent cat states

As examples of our method, we seek to generate even
Schrödinger cat states with coherent amplitudes α ranging
from 0.5 to 3 in steps of 0.25. For each α value |�t 〉 is
therefore set to

|�t 〉 = |α〉 + |−α〉√
2(1 + e−2|α|2 )

, (57)

where |±α〉 ≈ e− 1
2 |±α|2 ∑nc

n=0
(±α)n√

n!
|n〉. We truncate |±α〉 at

nc = 40 for all α values, which encompasses all the Fock
support to high precision at α = 3, and therefore for any |�t 〉

with α < 3 as well. Indeed, the truncation error defined as
εnc = 1 − ∑nc

n=0 | 〈n|�t 〉 |2 is less than 10−14 for α � 3 and
nc = 40. This choice is highly conservative, as one could
likely consider smaller nc values such as nc = 20 or 30 for
added computational speedup, for which the errors remain
small: ε20 < 10−3 and ε30 < 10−8 at α = 3.

To make these results as tractable as possible for experi-
ment, we limit ϕ(t ) to a single sine wave and constrain each
element of (rK−� Ns

2 , . . . , rK , . . . , rK+� Ns
2 ) to a maximum of

1.5 (corresponding to a squeezing value of approximately
13 dB). We proceed to optimize with Q ∈ {3, 5, 7} total QFP
elements, N = 64 QFP modes, and Ns ∈ {3, 5} input squeezed
states, along with a 32-mode bandpass filter on each pulse
shaper to prevent unphysical solutions that reach the edge
of the N = 64-mode truncation. The nonzero PNR detectors
are set to herald on ns = 1, which ensures that � in Eq. (9)
will be even when computing even Fock coefficients in the
undetected mode K (nK ∈ {0, 2, . . . , 40}). The target cat state
coefficients are real numbers; however, the coefficients found
by optimization are in general complex. Therefore if the state
found by optimization is perfect (fidelity equal to one), it
should have a constant phase for all Fock coefficients.

To elucidate how the size of the cat state changes with
α we plot, in Fig. 3(a), |�t 〉 (target) and |�〉 (circuit), with
Ns = 3 and Q = 3, for α ∈ {1, 1.5, 2}. The plots in Figs. 3(b)
and 3(c) illustrate how the quality of |�〉 changes with Ns and
Q for single α values, whereas Fig. 4 shows the overall trends.
While running PSO, it became apparent that our chosen cost
function [Eq. (46)] did not favor high-fidelity solutions as
strongly as intended, but in certain cases converged to solu-
tions with higher P but F � 1. For example, in Fig. 4 for
α = 2.5, Q = 3, and Ns = 5, the output |�〉 with the lowest
C is a state with F = 0.47 (not even visible in the plotted
range). Consequently, we include in Fig. 4 not only the states
|�〉 with the lowest cost C, but also higher cost solutions,
found with different initial conditions, that attain fidelities
F > 0.9 (corrected). We emphasize that this distinction does
not reflect any issues in the optimization procedure itself, but
rather in our selection of the cost function; to encourage PSO
to find even higher fidelity states, future tests could consider
alternative cost functions that more aggressively penalize low
fidelities.

Our results are comparable to those achieved by a sim-
ilar photon subtraction method performed in the path DoF
by Quesada et al. [31]: For an even cat state with α ≈ 1.3
and zero loss, both approaches produce states with similar
fidelity. Our states do exhibit a higher success probability;
however, this improvement is expected as Ref. [31] uses a
single squeezed input with a fixed value while we optimize our
Ns individual input squeezing values. And although the impact
of probabilistic state production will depend on both the pro-
tocol implemented and available resources, we nevertheless
note that the range of values found here (0.01 � P � 0.2)
are of the same order as many standard gates in DV LOQC
with unentangled ancillas—e.g., the heralded controlled-
NOT succeeds with P = 2/27 [61]—suggesting that they
are in a reasonable scale for photonic quantum information
processing.

For a set amount of resources, constant Ns and Q, the output
state quality found by PSO decreases as α increases. This can
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FIG. 3. Wave functions in the quadrature basis 〈q|�〉 (top) and photon number probabilities |〈n|�〉|2 (bottom) for example target and QFP
output states. (a) α ∈ {1, 1.5, 2}, Q = 3, and Ns = 3. (b) α = 2.25, Q ∈ {3, 5, 7}, and Ns = 5. (c) α = 1.75, Q = 3, and Ns ∈ {3, 5}.

be attributed to the fact that |�t 〉 becomes noticeably more
non-Gaussian as α is increased [see Fig. 3(a)]. Figure 4 reveals
that while increasing the complexity of the QFP through the
number of elements Q can moderately improve the success
probability [cf. Fig. 3(b)], it does not lead to markedly higher
fidelities in these examples. In contrast, for any Q, the addition
of more ancilla resource states (larger Ns) can substantially
improve fidelity, particularly for larger values of α, albeit with
about an order of magnitude reduction in success probability
(see Fig. 4). Intuitively, this behavior makes sense; the extra
photons available provide a greater variety of interference
possibilities in design, yet also reduce the success probabil-

ity through additional PNR detector conditions that must be
satisfied.

V. DISCUSSION

A. Further generalizations

The formalism we have presented currently relies on sev-
eral assumptions, most notably specialization to single-mode
squeezed vacuum inputs and the neglect of photon loss. Math-
ematically speaking, single-mode squeezed vacuum states are
especially convenient because of their zero displacement in
phase space (�xβ = 0) and diagonal covariance matrix V0.
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FIG. 4. Fidelity (top) and success probability (bottom) plotted as functions of α (in steps of 0.25) for various combinations of Ns and Q.
Corrected results are shown for the Ns = 5, Q = 3 case (see Sec. IV B for disambiguation).

Importantly, the latter facilitated closed-form expressions for
det � [Eq. (14)] and �−1 [Eq. (26)], markedly simplifying
calculations for the numerical optimizer. However, the co-
variance matrix just before the partial PNR detection (i.e.,
just after the passive Gaussian unitary operator U of Fig. 1)
nevertheless remains completely general for a pure Gaus-
sian state. Indeed, the covariance matrix of a pure Gaussian
state is of the form SVvacST , where Vvac is the covariance
matrix of vacuum and S is any symplectic matrix which
includes squeezing, i.e., S = SpSsS′

p, where Sp and S′
p are pas-

sive transformations and Ss is the symplectic transformation
for squeezing. Since passive transformations have no effect
on vacuum, the most general covariance matrix for a pure
Gaussian state can thus be written as SVvacST = SpV0ST

p ,
which is precisely the covariance matrix assumed in our anal-
ysis. For example, any two-mode squeezed state (like those
produced in quantum frequency combs [37,38,55,56]) can be
expressed as the interference of two single-mode squeezed
states on a beam splitter, whose unitary can be readily incor-
porated on the front end of the circuit in Fig. 2.

Yet although the diagonal input covariance matrix V0 does
not reduce the generality of our formulation, the absence
of displacement is significant. Incorporating nonzero dis-
placements will not affect the covariance matrix we have
used; it will, however, introduce additional variables into the
optimization procedure for generating desired non-Gaussian
states. Since we have been able to obtain high fidelities for our
purposes using zero-displacement inputs only, we leave the
effects of displacement to be thoroughly studied in the future.

It should be possible to move beyond unitary operations
as well. For example, by coupling each frequency bin to ad-
ditional environmental modes, then tracing these out, photon
loss can be added into the formulation, following the outline
in Ref. [26]. The specifics of how the final expressions can
be simplified in this case—as well as how they might com-
pare with those of the Q-function approach adopted for loss
in Ref. [31]—remain open questions. Nevertheless, such an
extension will be extremely important from an experimental

perspective, and new in the context of QFP design. QFP theory
up to this point has concentrated on DV gates with Fock
states, where loss reduces photodetection events but does not
otherwise modify the (postselected) quantum state. On the
other hand, the prepared states here depend heavily on both
loss and detector efficiency, making this elaboration critical
to predicting experimental performance. Moreover, in light of
the insertion loss of commercial discrete fiber-pigtailed EOMs
and pulse shapers, both loss modeling and loss mitigation will
be vital in advancing this field. To this end, integrated EOMs
[62,63] and pulse shapers [64,65] with the potential for much
higher efficiencies seem particularly promising, and in our
view on-chip QFP integration is a prerequisite for practica-
ble non-Gaussian state generation according to the approach
proposed here.

B. GKP states

While the generation of cat states is nontrivial in itself,
a long-standing challenge in CV encoding is the realization
of GKP qubit states for error correction. The value of GKP
qubits, called |0〉 and |1〉 in the logical basis, lies in their in-
finite series of equispaced delta functions, |1〉 being displaced
from |0〉 by

√
π when plotted in the q-quadrature basis. Since

these ideal states are unphysical, approximate states |0̃〉 and
|1̃〉 were presented in the original GKP proposal [16], which
consist of a sum of Gaussian peaks with standard deviation �,
all under another Gaussian envelope with standard deviation
1
k . � = k = 0.15 is required for |0̃〉 and |1̃〉 to maintain a 99%
error correction rate [66]. Due to the limited understanding
of how ns and ancilla mode placement affect the quality of
the output state, finding effective QFP circuits for direct GKP
state production is beyond the scope of the present investiga-
tion, but provides an important direction for future work.

An alternative path to quality approximations of GKP
qubits, for which our system is already well suited, is the
so-called “cat breeding” protocol [67–69]. In the first version
of the protocol [67], two cat states are squeezed by some
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amount r, where r = − ln �. The squeezed cat states are
combined on a balanced beam splitter, and a homodyne mea-
surement is made on one of the output modes. When the result
of the homodyne measurement for a single output mode’s
p-quadrature is zero, the other output mode is left in a state
with three equispaced peaks. The height of the peaks follows a
binomial distribution, and the width of the peaks is determined
by the amount of squeezing applied to the initial cat states.
Successive iterations of the protocol, where the beam splitter
inputs are the states produced by the previous iteration, yield
higher order binomial states. To ensure that the final state
has the correct spacing associated with GKP states, the initial

cat states must have a coherent amplitude α = √
2

m−1√
πer ,

where m is the number of iterations of the protocol to be
executed. The larger r and m are, the more closely the result-
ing state will resemble the approximate GKP state, making
access to large cat states vital to the protocol. The version
of the protocol presented by Eaton et al. [69] replaces the
homodyne measurement by PNR detection. Because PNR
detection neglects the phase of the output, fine control over the
relative phase of the input states is needed to achieve the same
comblike output as in the homodyne approach. By detecting
four photons at one output mode after a single iteration of
the protocol, Ref. [69] numerically generated states with a
fidelity of 0.996 with respect to an approximate GKP state
(� = k = 0.545) at a success probability of 0.09.

As presented in Sec. IV B, our system can generate cat
states up to a size α = 2 with 99.87% fidelity when Ns = 5
and Q = 7. These capabilities make our non-Gaussian state
engineering system a viable candidate to meet the resource
state demands set by cat breeding protocols.

VI. CONCLUSION

We have introduced a complete model for the production
of non-Gaussian quantum states using the QFP, a device de-
signed to implement arbitrary linear-optic transformations on
discrete spectral modes [70]. Our mathematical formulation
using the K-function expansion enables efficient calculation

of multimode Gaussian states in the photon-number basis,
providing a valuable framework for analysis in any photonic
DoF. Applying this to the QFP specifically, we have designed
basic quantum circuits that produce non-Gaussian cat states
with a variety of amplitudes, revealing a clear fidelity versus
success probability tradeoff with the number of squeezed an-
cillas. Given the multitude of configurations possible—along
with the rapidly evolving nature of quantum computation with
non-Gaussian resources such as GKP qubits—many unsolved
challenges remain on the path toward large-scale quantum in-
formation processing in this paradigm. Nonetheless, our work
furnishes an important foundational tool for designing CV
quantum systems in frequency bins and should contribute to-
ward the realization of fiber-compatible, single-spatial-mode,
and parallelizable quantum information processors based on
non-Gaussian photonic states.

Data and MATLAB codes used in this paper are available
from the authors on request [70].
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