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Experimental hierarchy and optimal robustness of quantum correlations
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We demonstrate a hierarchy of various classes of quantum correlations on experimentally prepared two-qubit
Werner-like states with controllable white noise. Werner states, which are white-noise-affected Bell states, are
prototypal examples for studying such a hierarchy as a function of the amount of white noise. We experimentally
generate Werner states and their generalizations, i.e., partially entangled pure states affected by white noise.
These states enable us to study the hierarchy of the following classes of correlations: separability, entanglement,
steering in three- and two-measurement scenarios, and Bell nonlocality. We show that the generalized Werner
states (GWSs) reveal fundamentally different aspects of the hierarchy compared to the Werner states. In
particular, we find five different parameter regimes of the GWSs, including those steerable in a two-measurement
scenario but not violating Bell inequalities. This regime cannot be observed for the usual Werner states.
Moreover, we find threshold curves separating different regimes of the quantum correlations and find the
optimal states which allow for the largest amount of white noise which does not destroy their specific quantum
correlations (e.g., unsteerable entanglement). Thus, we could identify the optimal Bell-nondiagonal GWSs which
are, for this specific meaning, more robust against the white noise compared to the Bell-diagonal GWSs (i.e.,
Werner states).
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I. INTRODUCTION

A. Entanglement, steering, and Bell nonlocality

Quantum entanglement [1] and its generalizations, i.e.,
quantum steering [2,3] and Bell nonlocality [4], are fun-
damental types of quantum correlations between spatially
separated systems (parties). These effects reveal the disparity
between classical and quantum physics from a fundamen-
tal point of view, but also play a pivotal role in quantum
information and its applications in quantum technologies
of second generation [5–8]. (i) Quantum entanglement (or
quantum inseparability) occurs when the state of one party
cannot be described independently of the state of the other
party [5]. (ii) Quantum steering, also referred to as Einstein-
Podolsky-Rosen (EPR) steering, refers to the ability of one
party (say, Alice) to affect the state of the other party (say,
Bob) through the choice of her measurement basis, which
cannot be explained by any local hidden state (LHS) models
[7,8]. Moreover, (iii) quantum nonlocality can be defined as
the effect detectable by the violation of the Bell inequality and
thus which cannot be explained by any local hidden variable
(LHV) models. Here we limit our interest to the two-qubit
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Bell inequality in the Clauser-Horne-Shimony-Holt (CHSH)
form [9]. Thus, we refer to this effect as Bell(-CHSH) non-
locality, having in mind that quantum nonlocality can also be
understood in a much broader sense [6].

The distinction between these effects is fundamental, and
their intuitive operational interpretation can be given from a
measurement perspective, i.e., by referring to their detection
using two types of measuring devices, which can be per-
fect or imperfect from physical and technological points of
view or trusted or untrusted from a cryptographic perspective,
i.e., with or without prior knowledge about the devices [10].
Specifically, (i) quantum entanglement between two systems
can be detected using trusted devices for both systems, (ii)
EPR steering can be tested by trusted devices for one system
and untrusted ones for the other, and (iii) quantum nonlocality
can be detected by untrusted devices on both sides. Such
interpretation has direct applications for quantum cryptology,
including secure communication. In the same measurement
scenarios, Bell nonlocality implies steering and steering im-
plies entanglement, but not vice versa, in general. Indeed,
there exist entangled [11] and steerable states which do not
violate Bell inequalities as well as unsteerable entangled states
[7,8].

B. Werner states and their experimental generation

Mixtures of a Bell state and a maximally mixed state (i.e.,
white noise) are prototypal examples of states revealing the
nonequivalence of entanglement and Bell nonlocality, which
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was first demonstrated by Werner over 30 years ago [11]. The
Werner states were later used to show a hierarchy of criteria
and a hierarchy of some classes of correlations (CC) (which
for short is here referred to as CC hierarchy), including quan-
tum steering (see, e.g., reviews in [5–8] and the very recent
work in Ref. [12] with references therein). The effect of white
noise on Bell states has also been studied theoretically to re-
veal a hierarchy of the following classes of temporal quantum
correlations [13]: temporal inseparability [14], violations of
temporal Bell-CHSH inequalities [15], and temporal steering
[16,17].

We stress that we only consider von Neumann’s projective
measurements in this work. Note that the quantum-correlation
regimes of states assumed for projective measurements are
different from those based on positive-operator-valued mea-
sures (POVMs). However, the same hierarchy relations, as
studied here, still hold assuming POVMs.

Generation of mixed states of discrete photons has been
investigated both theoretically [18–20] and experimentally
[21–34]. Temporal decoherence of optical polarization modes
in a birefringent material seems to be a rather widely used
technique in a number of experiments such as those reported
in Refs. [25,34]. This technique has also enabled the ex-
perimental generation of maximally entangled mixed states
(MEMSs) [35] by Peters et al. [32] and later by Aiello et al.
[30]. Recently, Liu et al. incorporated a tunable decoherence
channel [36] to generate the Werner states [23]. Alterna-
tive methods to generate or simulate temporal decoherence
include the generation of mixed states by exploiting a partic-
ular geometry of a spontaneous parametric down-conversion
(SPDC) source [21,31]. Barbieri et al. [33] and Cinelli et al.
[27] reported their refined two-photon sources capable of
preparing a broad range of mixed quantum states, including
MEMSs. A highly birefringent material, together with a wide
momentum spectrum of generated photon pairs (resulting in
effective spatial decoherence), was also used as an alternative
method to generate temporal decoherence [25]. Puentes et al.
applied wedge depolarizers and bucket detectors [24] and later
utilized scattering in various media [29]. Moreover, Zhang
et al. incoherently combined photons generated in two sepa-
rate SPDC sources to create mixed quantum states [26], while
Caminati et al. reported an experiment where mixed states
were generated by attenuating a high-gain SPDC source [28].
The idea of using a wide-temporal detection window, such that
a detected state appeared to be mixed, was also implemented
in several experiments [22,37]. It is also possible to use an
experimental setup that can be tuned (to change properties
of generated states) in times shorter than the measurement
integration time [38].

In this work we report experimental generation of both
Werner states and their generalizations, i.e., partially entan-
gled pure states affected by white noise, which we refer
to as generalized Werner states (GWSs). These states were
not the focus of the above-reviewed experiments. Some of
the experimental setups cannot generate these generalized
states (e.g., Ref. [30]), some could be used after specific
improvements (e.g., Ref. [23]), and the others might have
such capabilities, but these (e.g., Ref. [26]) have not been
used so far for demonstrating the CC hierarchy of the Werner
states or their generalizations. In this paper our experimen-

tally generated and reconstructed states are applied to reveal
a CC hierarchy.

The remainder of the paper is organized as follows. Two
approaches to study hierarchies of correlations are specified
in Sec. II. Measures of quantum correlations of general two-
qubit states are recalled in Sec. III. These include popular
measures of entanglement, steering, and Bell nonlocality.
Moreover, steering in the two-, three-, and multimeasurement
scenarios is explicitly discussed in Appendices C, B, and D,
respectively. In Sec. IV we define GWSs. Because GWSs are
a direct generalization of the usual Werner states based on
a Bell state, we refer to them as Bell-nondiagonal GWSs.
Our experiment is described in Sec. IV. We compare various
predictions of the quantum correlations for the theoretical and
experimental GWSs with those for the Werner states in Sec. V.
We also discuss fundamental differences in a CC hierarchy
for the Bell-diagonal and -nondiagonal GWSs in this section.
In Sec. VI we present our most counterintuitive theoretical
results. Specifically, we show in Sec. VI A that there exist
GWSs which are steerable in a two-measurement scenario
(2MS) but still admit LHV models. Such a regime cannot
be observed for the standard Werner states. In Sec. VI B
we show that some Bell-nondiagonal GWSs are more robust
against white noise than the diagonal GWSs, i.e., the Werner
states. In Sec. VI C we analyze lower and upper bounds on
steering for a large number of measurements. We show better
robustness against the white noise of unsteerable entangled
Bell-nondiagonal GWSs compared to the diagonal ones. An
example of a hierarchy of entanglement criteria is discussed
in Appendix E in comparison with the CC hierarchy for the
GWSs. We conclude in Sec. VII.

II. TWO APPROACHES TO STUDY A HIERARCHY
OF QUANTUM CORRELATIONS

Here we study a CC hierarchy, which is the hierarchy of
states with different correlation properties rather than types of
probability distributions, as in the case of certain research in
quantum information. We use the term correlation of a state by
referring to its entanglement, steering, and Bell nonlocality.
For clarity, we recall that (a) an entangled (separable) state
is a state that cannot (can) be factored into individual states
belonging to separate subspaces, (b) an EPR steerable (un-
steerable) state is the one described by the statistics which
cannot (can) be reproduced by an LHS model for a given
measurement set (see Sec. III B for more details), and (c) a
quantum nonlocal (local) state is the one described by the
statistics which cannot (can) be reproduced by an LHV model,
which in turn implies the violation (fulfillment) of a Bell in-
equality. Since we are focused on analyzing two-qubit states,
the Bell inequalities can be limited to the CHSH inequality.
Moreover, the steerability of states can be considered in the
limit of an infinite number of measurements, but it is usually
limited to practical resources, including a finite number of
measurements. We focus in this paper on the GWSs which
are steerable or unsteerable in 2MSs and 3MSs, corresponding
respectfully to measuring two or three Pauli operators. Thus,
we can consider subclasses of steerable states depending on
the number of performed measurements. In what follows, we
study in detail the hierarchy of correlation classes limited to
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analyzing the states which are (i) separable, (ii) entangled but
unsteerable in 3MSs, (iii) steerable in 3MSs but not in 2MSs,
(iv) 2MS steerable but local, and (v) nonlocal. The hierarchy
is extended in Sec. VI C to include the analysis of the GWSs
which are steerable for a larger number n of measurements
(i.e., n = 136).

In general, a hierarchy of quantum correlations can be
understood in several ways including (i) a hierarchy of con-
ditions (or criteria) for the observation of a given class of
quantum correlations and (ii) a hierarchy of different classes
of quantum correlations (i.e., a CC hierarchy). This division
is also closely related to experimental demonstrations of a
hierarchy by measuring (nonuniversal or universal) witnesses
of quantum correlations corresponding to performing partial
or full quantum state tomography (QST), respectively.

In this work we focus on analyzing a CC hierarchy of the
GWSs. We demonstrate different kinds of quantum correla-
tions in question by performing full QST and then calculating
the corresponding measures on the reconstructed states.

Below we explain the main differences between the two
approaches to study a hierarchy of quantum correlations and
explain why a complete experimental demonstration of the
studied CC hierarchy seems to be very challenging within the
present state of the art.

A. Hierarchy of criteria for a given class
of quantum correlations

Experimental demonstrations of Bell nonlocality via the
violations of the CHSH inequalities have been at the heart of
quantum information since its early days starting from the pi-
oneering experiments of Aspect et al. [39] and then refined in
hundreds of experiments, including significant-loophole-free
tests (see, e.g., [40–42] and the review in [6] for references).
Thus, if one talks about “demonstrating” the nonlocality of a
quantum state, one would normally expect to see a violation
of a Bell inequality, rather than QST. However, this approach
usually reveals only a hierarchy of criteria (i.e., either suffi-
cient or necessary conditions) for the observation of a specific
class of quantum correlations. This is because it is usually
based on measuring nonuniversal witnesses of quantum cor-
relations by testing the violation of specific inequalities. Note
that nonuniversal witnesses correspond usually to sufficient
but not necessary conditions of a specific quantum (temporal
or spatial) correlation effect. Thus, such a witness can usually
be determined without a complete QST.

Within this hierarchy approach, one can analyze a hierar-
chy of, e.g., different Bell inequalities or even the Bell-CHSH
inequalities but for different angles of polarizers in a descrip-
tion of Bell nonlocality, specifically, by choosing different
angles φ1, φ2, φ′

1, and φ′
2 as described in Eq. (4). By hav-

ing a priori information about a given generated state, one
can choose optimal angles of the polarizers to maximize the
violation of the Bell-CHSH inequalities and thus to be able
to quantify Bell nonlocality (i.e., to determine a nonlocality
measure) for the state. However, without knowing a priori a
given state, one has to measure many copies of the state at
different angles of the polarizers to find their optimal rotation.
Such scanning of the angles corresponds to (complete or par-
tial) QST.

The hierarchy of criteria has also been studied based on the
matrices of the moments of, e.g., the annihilation and creation
operators of bosonic or fermionic states of any dimension.
Indeed, a number of works demonstrated (i) a hierarchy of
sufficient conditions for observing entanglement (i.e., entan-
glement witnesses) which include the conditions based on
the Shchukin-Vogel criterion [43,44] which are related to the
Peres-Horodecki criterion and its generalized versions using
positive maps beyond partial transpose [45], (ii) a hierar-
chy of sufficient conditions for observing quantum steering
(i.e., steering witnesses) [46], (iii) a hierarchy of necessary
conditions for revealing Bell nonlocality (i.e., nonlocality re-
quirements) [47], and (iv) a hierarchy of sufficient conditions
for observing spatial [48] and spatiotemporal [49,50] nonclas-
sicality (i.e., nonclassicality witnesses).

An illustrative detailed example of a hierarchy of entangle-
ment criteria is discussed in Appendix E. Note that the upper
and lower bounds of measures of quantum correlations, which
correspond to their sufficient and necessary conditions, can be
determined using such a hierarchy of matrices of moments
without a complete QST. However, for an unknown state,
to make these bounds tight to a true measure, one needs to
increase the number of moments to be detected. This in turn
leads to a partial moment-based QST, which approaches more
and more a complete QST as explained in Appendix E 3. In
conclusion, this approach, in general, enables a direct but
partial demonstration of a hierarchy, which is discussed below.

B. Hierarchy of various classes of correlations

A hierarchy of various classes of correlations can be re-
vealed by their measures or by the conditions which are both
necessary and sufficient for their observation. It should be
stressed that we are focused on demonstrating such a CC
hierarchy in this paper.

Indeed, experimental methods for a complete demonstra-
tion of a CC hierarchy can be based on experimentally
reconstructed density matrices (in the case of standard single-
time spatial correlations) or the Choi-Jamiołkowski matrices
(in the case of temporal correlations) for a given system via
quantum state or process tomographies, respectively. This
approach enables the calculation of necessary and sufficient
conditions for observing and quantifying the amount of any
class of quantum temporal or spatial correlations for a given
state or process.

Experimental demonstration of such a CC hierarchy has
usually been done using a complete QST, although it can also
be done with an incomplete QST, as discussed in Appendix A.
Here we apply an indirect approach based on experimental de-
tecting and reconstructing states via a full QST and only then
calculating their correlation measures on the reconstructed
states. This approach has important fundamental and exper-
imental advantages, which include the following (in addition
to the above-mentioned ones).

(i) We want to test the above-mentioned five classes of
quantum correlations on the same footing (preferably us-
ing the same setup) based on either complete or incomplete
tomography. However, it is seen that we can determine exper-
imentally the Horodecki nonlocality measure without QST,
but detecting the negativity and the steerable weights (or,
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equivalently, steering robustness) can be done effectively only
via a complete QST.

(ii) We want to use the same experimental states for testing
different quantum properties. The problem is that we do not
have perfect control of especially the mixing parameter deter-
mining the amount of white noise in a pure state. Thus, we
cannot generate the same GWSs even using the same setup.
Such a state generation would be even more demanding using
different setups for testing different classes of correlations.
However, this is feasible using a full QST to reconstruct a
state, which is only then numerically studied for its quantum
correlations.

III. MEASURES OF QUANTUM CORRELATIONS
OF GENERAL TWO-QUBIT STATES

As a part of our introduction, we shortly recall standard
measures of quantum correlations for general two-qubit states
ρ, which can be written in the Bloch representation as

ρ = 1

4

(
I ⊗ I + u · σ ⊗ I + I ⊗ v · σ +

3∑
n,m=1

Tnmσn ⊗ σm

)
,

(1)
where ui = Tr[ρ(σi ⊗ I )] and vi = Tr[ρ(I ⊗ σi )] are the
elements of the Bloch vectors u = [u1, u2, u3] and v =
[v1, v2, v3] of the first and second qubits, respectively, and I
is the single-qubit identity operator. Moreover, the correlation
matrix elements Ti j = Tr[ρ(σi ⊗ σ j )] and σ = [σ1, σ2, σ3] ≡
[X,Y, Z] are expressed via the Pauli matrices.

A. Entanglement measures

Here we recall the standard definitions and physical
meaning of the two most popular measures of two-qubit en-
tanglement, i.e., the negativity and concurrence, which are in
the following sections compared with the measures of steering
and Bell nonlocality.

The negativity is defined as N (ρ) = max{0,−2μmin},
where μmin = min eig(ρ� ) and ρ� denotes a partial transpose
of ρ. It was first introduced in Ref. [51] as a quantitative
version of the Peres-Horodecki entanglement criterion [52].
The two-qubit negativity (or, more directly, the logarithmic
negativity log2[N (ρ) + 1]) has various quantum-information
interpretations. Specifically, (i) it is a measure of the entan-
glement cost under operations preserving the positivity of the
partial transpose for two-qubit systems [53,54], (ii) it gives an
upper bound of distillable entanglement [5], and (iii) it deter-
mines the dimensionality of entanglement, i.e., the number of
the degrees of freedom of entangled subsystems [55].

The Wootters concurrence [56], which is monotonically
related to the entanglement of formation, is given by C(ρ) =
max{0, 2λmax − ∑

j λ j}, where λ2
j = eig[ρ(σ2 ⊗ σ2)ρ∗(σ2 ⊗

σ2)] j , with σ2 denoting the Pauli Y operator, and λmax =
max j λ j . Note that both measures have been applied in quan-
tifying not only entanglement but also, e.g., nonclassicality
(quantumness) of single-qubit (or single-qudit) states [57–59].
These two related measures reach unity for the Bell states and
vanish for separable states. For the brevity of our presenta-
tion, we have plotted the negativity as the only entanglement
measure.

These entanglement measures of various two-qubit states
have been typically determined experimentally only indi-
rectly, based on a full QST, which is also the case in this
work. Note that an experimental universal test of entangle-
ment without a complete QST was proposed in Ref. [60] (see
Appendix A). This test is a necessary and sufficient criterion
of two-photon polarization entanglement. It is based on mea-
suring a collective universal witness of Ref. [61], which gives
tight lower and upper bounds for the negativity and concur-
rence, and can be used as an entanglement measure on its
own. However, since its quantum-information interpretation
and applications are limited, we prefer to use the standard
entanglement measures, even if they are determined indirectly
using experimental density matrices.

B. Steerable weight

The steerable weight [62] and the steering robustness [63]
are arguably the most popular measures of EPR steering
[7,8,64]. They can be applied for quantifying not only stan-
dard spatial steering, but also (after a minor modification) to
quantify temporal [13,16,17,65,66] and spatiotemporal [67]
steering.

An intuitive and general idea behind the steerable weight,
according to Skrzypczyk et al. [62], is based on the decompo-
sition of a given assemblage of Alice, σa|x, into its steerable
(σ s

a|x) and unsteerable (σ us
a|x) parts, for the values of a and x

specified in Appendices B and C, i.e.,

σa|x = μσ us
a|x + (1 − μ)σ s

a|x (2)

for μ ∈ [0, 1]. Note that the unsteerable assemblages σ us
a|x can

be created via classical strategies, and a model based on σ us
a|x

can be referred to as an LHS model. The steerable weight
S = 1 − μ∗ is defined as the maximum amount of unsteerable
assemblage σ us

a|x necessary to reproduce Alice’s assemblage
σa|x. This general definition can be formulated as solutions of
semidefinite programs (SDPs) as demonstrated in Refs. [7,62]
and are given explicitly in Appendices B and C for the 3MS
and 2MS, respectively. Moreover, sufficient and necessary
conditions for observing steering in multimeasurement sce-
narios are discussed in Appendix D.

The LHS models are relevant to quantum steering as fol-
lows [10]: A given state ρ is referred to as quantum (EPR)
unsteerable (in the communication from Alice to Bob) for
Alice’s measurement set {Ma|x} if one can find a variable λ

allowing for the Bell local decomposition [7,8]

p(ab|xy) =
∫

dλ π (λ)pA(a|x, λ)Tr(Mb|yσλ), (3)

where σλ is the local (hidden) quantum state of Bob and
pA(a|x, λ) is Alice’s response distribution. Otherwise a given
state for the measurement set {Ma|x} is referred to as quantum
(EPR) steerable, i.e., when its statistics cannot by reproduced
by an LHS model. Note that Eq. (7), which defines a Bell
local state, reduces in the special case to Eq. (3) by set-
ting pB(b|y, λ) = Tr(Mb|yσλ). It is usually assumed that Bob’s
measurements Mb|y enable a complete QST of his qubit. The
collection of Bob states σa|x = TrA(Ma|x ⊗ 1ρ), conditioned
on Alice’s measurements, is called an assemblage.
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The steerable weight and, equivalently, the steering ro-
bustness of Ref. [63] are defined via necessary and sufficient
conditions for quantum-information characterization of quan-
tum steering in the specified measurement scenarios. Thus,
a spatially separated two-qubit state ρ is referred to as
steerable (or more precisely Sn steerable) in the discussed
n-measurement scenarios if there exists a set of measurements
such that the steerable weight is nonvanishing, Sn(ρ) > 0.
Otherwise it is referred to as unsteerable (or Sn unsteerable).

The question arises why our interest is focused on an-
alyzing steering in two- and three- measurement scenarios
only, except in Sec. VI C and Appendix D. In principle, one
could also consider steering in the limit of an infinite num-
ber (of the types) of measurements, but this would require
knowing universal criteria (i.e., which are both sufficient and
necessary) for detecting this type of steering. Unfortunately,
such universal criteria are not known for the GWSs. Note
that the upper and lower bounds for steering have only been
calculated numerically so far for large but still finite numbers
n of measurements [i.e., at most for n = 136, as shown in
Fig. 8(a) based on the results of Refs. [68,69]]. Moreover, our
analysis of steering includes not only criteria but also steering
measures, as shown in Figs. 2–5. Unfortunately, the calcula-
tions of the steerable weight and the steering robustness are
much more involved beyond 3MS. Finally, we remark that
our experimentally generated states are not exactly GWSs, so
the calculations of their measures or even universal criteria
of steering beyond the 3MS are even more complicated com-
pared to those for the perfect GWSs.

C. Horodecki measure of Bell nonlocality

Here we recall the Horodecki measure [70,71] of quantum
nonlocality for two-qubit states. Note that quantum nonlo-
cality is usually studied and interpreted in the context of
Bell inequalities (including the CHSH inequality) and then
it is often referred to as Bell(-CHSH) nonlocality [6]. A
Bell inequality violation (BIV) demonstrates the impossibility
of any LHV models to fully reproduce quantum-mechanical
predictions [4]. For convenience, we use the terms BIV and
Bell(-CHSH) nonlocality interchangeably, in the context of
our two-qubit experiments. Note that BIV implies a violation
of local realism. So BIV can in principle be explained by
nonlocal (non)realistic theories, but also by local nonrealistic
ones. Moreover, quantum nonlocality can be defined without
referring to BIV. In addition, such (generalized) quantum
nonlocality can occur without quantum entanglement in, e.g.,
three qubits or two qutrits (three-level systems) [72]. Thus,
it should be stressed that, in general, BIV does not imply
quantum nonlocality nor does quantum nonlocality imply BIV
(see, e.g., Refs. [6,73]).

The Horodecki measure of Bell nonlocality for a two-qubit
state ρ quantifies the amount of the maximal violation of the
Bell-CHSH inequality [9],

|〈B〉| = |E (φ1, φ2)+E (φ′
1, φ2) + E (φ1, φ

′
2)−E (φ′

1, φ
′
2)| � 2,

(4)
which is given in terms of the Bell-CHSH operator B =
a · σ ⊗ (b + b′) · σ + a′ · σ ⊗ (b − b′) · σ. Moreover, φi and
φ′

i are two dichotomic variables of the ith (i = 1, 2) qubit

corresponding to the rotations of a polarizer in typical optical
implementations, while E (φ1, φ2) is the expectation value of
the joint measurement of φ1 and φ2, and analogously for
the other expectation values. For a given two-qubit state ρ,
the expected value of the Bell-CHSH operator B, which is
maximized over real-valued three-dimensional unit vectors a,
a′, b, and b′, reads [70,71]

max
B

Tr(ρBCHSH) = 2
√

M(ρ), (5)

where M(ρ) = max j<k{h j + hk} � 2, and h j ( j = 1, 2, 3) are
the eigenvalues of U = T TT , which is the real symmetric
matrix constructed from the correlation matrix T (and its
transpose T T) defined below Eq. (1). Thus, the Bell-CHSH
inequality is violated if M(ρ) > 1 [70,71]. To quantify the
degree of BIV and Bell nonlocality we apply the parameter
[74]

B(ρ) ≡
√

max[0, M(ρ) − 1]. (6)

Note that this nonlocality measure is exactly equal to the
concurrence and negativity for two-qubit pure states. For a
given state ρ, the Bell-CHSH inequality in Eq. (4) is satisfied
if and only if B(ρ) = 0. If B(ρ) = 1 then the inequality is
maximally violated, which is the case for Bell states. We refer
to B(ρ) as a Bell nonlocality measure.

In this work we refer to Bell nonlocal and local states with
the following meaning. Usually, a spatially separated state is
referred to as Bell local if local measurements and classical
communication can generate a correlation admitting an LHV
model [4,6]. Otherwise the state is referred to as Bell nonlocal.

More specifically, an LHS model can be introduced by
considering two distant observers (Alice and Bob) who share
an entangled two-qubit state ρ. Assume that Alice (Bob)
performs a set of measurements {Ma|x} ({Mb|y}) satisfying
Ma|x, Mb|y � 0 and

∑
a Ma|x = ∑

b Mb|y = 1, where x and y
label measurements and a and b are their outcomes. The
resulting statistics p(ab|xy) = Tr(Ma|x ⊗ Mb|yρ) are referred
to as Bell local (with respect to the measurement sets {Ma|x}
and {Mb|y}) if they allow for a Bell local decomposition [6]

p(ab|xy) =
∫

dλ π (λ)pA(a|x, λ)pB(b|y, λ), (7)

where λ is a shared local hidden variable distributed with
density π (λ), while pA(a|x, λ) and pB(b|y, λ) are local re-
sponse distributions. Thus, a state is called Bell local if it
can be reproduced by an LHV model with properly cho-
sen {λ, π (λ), pA(a|x, λ), pB(b|y, λ)}. Otherwise the state is
referred to as Bell nonlocal for the measurement sets {Ma|x}
and {Mb|y}. This Bell nonlocality can be witnessed by the
violation of a Bell inequality, which reduces to testing the
Bell-CHSH inequality in the case of two-qubit states. So, in
terms of the Horodecki measure, a given two-qubit state is
Bell local (nonlocal) if and only if B(ρ) = 0 [B(ρ) > 0].

The Horodecki measure of Bell nonlocality can be deter-
mined without a complete QST, which was experimentally
demonstrated in an entanglement-swapping device in [75]
(see Appendix A). However, here we apply a full QST for
determining ρE

GW and then calculating B(ρE
GW).

Note that various alternative approaches to quantifying
nonlocality have been proposed [6]. These include a nonlocal-
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ity measure introduced by Elitzur et al. in Ref. [76], which can
be interpreted as a fraction of a given ensemble that cannot be
expressed via local correlations. Thus, this quantifier has been
referred to as a fraction of nonlocality [77,78].

IV. GENERALIZED WERNER STATES AND THEIR
EXPERIMENTAL GENERATION

In this work we focus on comparing quantum correlations
of experimental states, which are special cases of those in
Eq. (1). Specifically, we directly generate Werner(-like) states
(also referred to as isotropic states or Bell states with white
noise) [11]

ρW = p|φ+〉〈φ+| + 1 − p

4
I ⊗ I, (8)

which are mixtures of any Bell state [say, |φ+〉 = (|00〉 +
|11〉)/

√
2)] and the maximally mixed state for various values

of the mixing parameter p ∈ [0, 1]. Note that the original
definition of the Werner state is based on the singlet state [11],
instead of |φ+〉. However, this local change does not effect
measures of entanglement, steering, and nonlocality. Thus, the
state defined in Eq. (8) is also often referred to as a Werner
state (see, e.g., Refs. [35,69,74,79,80]). This terminology is
used in this paper.

We are also interested in partially entangled states with
white noise, which we call GWSs, which are obtained from
Eq. (8) by replacing |φ+〉 by a general two-qubit pure state
|φq〉 = √

q|00〉 + √
1 − q|11〉 with the superposition coeffi-

cient q ∈ [0, 1]. Thus, the GWSs can be defined as

ρGW(p, q) = p|φq〉〈φq| + 1 − p

4
I ⊗ I. (9)

These states for q = 1
2 can be referred to as the Bell-diagonal

GWSs corresponding to the Werner states ρW(p), which are
diagonal in the Bell basis, while for q �= 1

2 we refer to them as
the Bell-nondiagonal GWSs. These states have been generated
by us in the experimental setup described below.

Experimental setup

Here we describe our experimental setup, which is de-
signed to be as versatile as possible, being capable of
generating a broad class of mixed quantum states in the form

ρ =

⎛
⎜⎝

A 0 0 E
0 B F 0
0 F ∗ C 0

E∗ 0 0 D

⎞
⎟⎠. (10)

This class of states includes (i) the Werner [11] and Werner-
like states, (ii) the Horodecki states, which are mixtures of a
Bell state and a separable state orthogonal to it [52], (iii) Bell-
diagonal states (including the Werner states), and (iv) various
types of MEMSs, e.g., those defined in [35]. Moreover, the
capabilities of our method are not limited to the Werner or
Horodecki states based on a “balanced” Bell state, but also
allow for (v) their generalized forms based on unbalanced en-
tangled states

√
1 − q|00〉 + √

q|11〉 for any q ∈ [0, 1] instead
of considering only q = 1

2 .
In this work we focus on experimentally generating the

Werner states and GWSs, which are prepared on a platform of

FIG. 1. Our experimental setups for (a) photon-pair generation
and (b) state synthesis: 1A and 1B (2A and 2B), photons propagating
in vertical (horizontal) planes; BD, beam displacer; BDA, beam
displacer assembly; D, detector; FC, fiber coupler; HWP, half wave-
plate; PBS, polarization beam splitter; PC, polarization controller;
QWP, quarter waveplate; I1 and I2, irises 1 and 2; and β-BBO, β

barium borate (a nonlinear crystal).

quantum linear optics using the experimental setup depicted
in Fig. 1. Qubits are encoded into polarization states of single
photons. The process of type-I SPDC occurring in a cascade of
two nonlinear β-BBO crystals serves as a source of entangled
photons [81]. When pumped by a beam at a wavelength of
λ = 355 nm, the source generates two polarization-entangled
photons in mutually different spatial modes at λ = 710 nm
[Fig. 1(a)]. The state of these photons can be expressed in
the form |φ+〉 = (|00〉 + |11〉)/

√
2, where |0〉 and |1〉 de-

note horizontally (H) and vertically (V ) polarized photons,
respectively. Due to the geometry of type-I SPDC, photons are
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generated in symmetrically opposite directions on the surface
of a cone with its axis coincidental with the pump beam. We
choose to couple photon pairs propagating in the vertical and
horizontal planes, denoting them by (1A,1B) and (2A,2B),
respectively [see Fig. 1(a)]. Assuming that only two pho-
tons were generated (so higher-photon-number processes are
negligible), these photons are simultaneously in either modes
(1A,1B) or (2A,2B). Employing a half-wave plate (HWP) at
45◦ in the 2B mode, the state |φ+〉 is transformed into the
Bell state |ψ+〉 = (|01〉 + |10〉)/

√
2. Thus, we obtain states

spanning the two subspaces |φ+〉 and |ψ+〉.
Our goal is to prepare the Werner states and their gen-

eralizations for various values of the mixing parameter p.
The main idea behind the design of our setup is to decrease
temporal coherence of the states |φ+〉 (in the modes 1A and
1B) and |ψ+〉 (in the modes 2A and 2B) using beam displacer
assemblies (BDAs). A BDA consists of a pair of beam displac-
ers (BDs) with an HWP inserted between them. This allows
us to split and subsequently rejoin the horizontal and vertical
components of a photon polarization state. By introducing a
difference in the propagation time between these two com-
ponents (which is done by tilting one BD) we can achieve
their mutual phase difference (by fine tilting) and tunable
distinguishability (by coarse tilting). Polarization-sensitive
losses can easily be implemented by partially blocking one of
the polarization paths. Subsequently, the modes (1A,2A) and
(1B,2B) are incoherently mixed in fiber couplers.

First, the subspace |φ+〉 is adjusted while arms 2A and
2B (belonging to the subspace |ψ+〉) are blocked. By means
of the polarization-sensitive losses in BDA1, we regulate the
intensity ratio of the matrix elements A and D [see Eq. (10)] in
the computational basis, i.e., |00〉 and |11〉 (or |HH〉 and |VV 〉
in the polarization terms). The ratio accounts for

RA,D = 4pq + 1 − p

4p(1 − q) + 1 − p
, (11)

where p and q are both tuned parameters. The next step
consists of tuning the decoherence by observing coincidence
counts in the projections | + +〉 and | + −〉, where |±〉 =
(|0〉 ± |1〉)/

√
2 stand for diagonal and antidiagonal polariza-

tion states, respectively. We find such a coarse tilt of BD1 so
that the visibility accounts for

ν = 2E

A + D
, (12)

while the phase is set by fine-tuning the tilt using a piezoac-
tuator, which minimizes the signal in the | + −〉 projection by
setting the effective value of E to be real.

Second, when adjusting the subspace |ψ+〉 in turn, the
arms 1A and 1B are blocked. In analogy with the adjustment
of the |φ+〉 subspace, the same two steps are performed. This
time, however, the target intensity ratio RB,C is equal to 1
because B = C. The coarse tilt of BD3 needs to be sufficient
to decrease the coherence of the state completely since ν = 0,
resulting in F = 0. The phase becomes meaningless.

Finally, all arms are unblocked and both subspaces are
balanced to adjust the ratio between the matrix elements A and
B. While having the projection of |00〉 and |01〉, the required

ratio is

RA,B = 4pq + 1 − p

1 − p
. (13)

For this purpose, we partially close the irises in the 1A and 2A
couplers, which are depicted in Fig. 1(b) by labels I1 and I2,
respectively.

After all the adjustments are implemented, the measure-
ment itself is carried out and it consists of a standard full QST
[82]. Polarization projection is performed on both photons uti-
lizing a set of quarter and half waveplates, as well as polarizers
and single-photon detectors. Coincidence detections within a
2-ns window are detected under all 36 twofold combinations
of single-photon projections onto the basis states |0〉, |1〉, |+〉,
|−〉, and (|0〉 ± i|1〉/√2, where the latter states are the right-
and left-hand circularly polarized states, respectively. Den-
sity matrices are estimated via a maximum-likelihood method
[83–87].

Because of experimental imperfections, the setup produces
states with the p and q parameters slightly different from
those targeted by the above-described procedure. To observe
better agreement with theoretical predictions, we estimate
the best-fitting parameters pest and qest by finding such a
ρGW(pest, qest ) that its fidelity with the experimentally re-
constructed density matrix is maximized. We find that the
deviations of the estimated value of the mixing parameter pest

from the value of p, which is set with a limit precision in our
experiment, are on average equal to 0.01 for the Werner states
and 0.03 for the GWSs. For the estimated value of the su-
perposition parameter qest, the observed parameter deviations
from a given value of q are equal on average to 0.02. The
maximal deviation values are 0.03 for both Werner states and
GWSs. Note that the superposition parameter q is manually
set by an HWP in the source part of the setup shown in
Fig. 1(a). Experimental data as well as the estimated density
matrices are provided in the Supplemental Material [88].

The states ρW and ρGW can also be expressed by Eq. (10)
with F = 0. In this matrix, the subspace spanned by the states
|φq〉 for q ∈ [0, 1] is represented by the elements A, D, E ,
and E∗, while the corresponding subspace for the white-noise
term corresponds to only diagonal elements (A, B,C, D). For
the reasons specified below, we set, in our experiments, the
superposition coefficient at q = 0.9, in addition to q = 0.5.

Note that it is irrelevant to replace |φq〉 by a four-term su-
perposition state |φabcd〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉 at
least in the analysis of nonclassical correlations. This is be-
cause |φabcd〉 can be reduced to |φq〉 solely by local rotations,
so the studied two-qubit quantum correlations are unchanged.
As mentioned above, the GWSs are not diagonal in the Bell
basis, except q = 0, 1

2 , 1. This property greatly complicates
analytical calculations of correlation measures. So, for the
Bell-nondiagonal GWSs, we present analytical formulas of
the entanglement and nonlocality measures only, contrary to
the corresponding results for the Werner states, which include
also our formulas for the steerable weights.

We begin our detailed comparative analysis by presenting
various theoretical relations between chosen correlation mea-
sures for the Werner states and GWSs showed in Figs. 2 and
3, respectively. These curves show the negativity N (or equiv-
alently the concurrence C), the steerable weights S2 and S3,
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1 2 3 5

FIG. 2. Four correlation regimes of the Werner states corre-
sponding to those listed in Table I. Note that regime 4 is missing.
Theoretical plots for the negativity N (or, equivalently, the concur-
rence C), the steerable weights S2 and S3, and the Bell nonlocality
measure B are shown as a function of the mixing parameter p. Exact
definitions of the depicted quantum correlation measures are given in
Sec. V.

and the Bell nonlocality measure B as a function of the mixing
parameter p. Each colored region starts where a given corre-
lation measure becomes nonzero with an increasing value of
the mixing parameter p. We refer to these regions as quantum
correlation regimes, which are also listed in Tables I and II.

V. HIERARCHY OF THE CLASSES OF CORRELATIONS
FOR WERNER-LIKE STATES

A. Entanglement of Werner-like states

It is well known that, for Werner states, the concurrence
and negativity, which were defined in Sec. III A, are equal to
each other and are given by a linear function of the mixing
parameter p, i.e.,

N (ρW) = C(ρW) = max [0, (3p − 1)/2], (14)

as shown in Fig. 2 by the dot-dashed curve. The good agree-
ment of the negativities calculated for the theoretical and
experimental Werner states is shown in Fig. 4(a).

We find that the negativity and concurrence for the GWSs
read

N (ρGW) = C(ρGW) = max
{
0, 1

2 [p(1 + 4
√

x) − 1]
}
, (15)

with x = q(1 − q), which is plotted in Fig. 3 by the dot-dashed
curve. Figure 5(a) demonstrates the good fit of the negativities
calculated for the theoretical and experimental GWSs for dif-
ferent values of the superposition parameter q. Note that not
only N (ρW) but also N (ρGW) is a linear function of the mixing
parameter p for a fixed value of the superposition coefficient
q. In a special case for a pure state |φq〉 (i.e., when p = 1),
Eq. (15) reduces to N (|φq〉) = C(|φq〉) = 2

√
q(1 − q).

1 2 3 4 5

FIG. 3. Five correlation regimes of the GWSs corresponding to
the regimes in Table II. Curves are analogous to those in Fig. 2, but
for the superposition parameter q = 0.9 or, equivalently, q = 0.1.

Equation (15) vanishes for p ∈ [0, pN (q)] at the threshold
value given by

pN (q) = 1/[1 + 4
√

q(1 − q)], (16)

which is plotted in Fig. 6. It can be seen that N[ρW(p)] > 0 if
p > 1

3 and N[ρGW(p, 0.9)] > 0 if p > p′
N = 5

11 . These thresh-
old values are below those for the other measures of quantum
correlations and also marked in Figs. 6 and 7.

Note that N (ρGW) = C(ρGW) should hold for the ideal
GWSs, including the Werner states. However, our experi-
mental GWSs do not exactly satisfy this condition. Thus,
we calculate both measures, because their difference shows
how much our experimental states deviate from the ideal
Werner states. These deviations quantify also the precision
of our measurements. Specifically, the observed experimental
differences between the negativity and concurrence are on the
average 0.02% for the Werner states and 0.06% for the GWSs.
Thus, on the scale of Figs. 4(a) and 5(a) one could not see any
differences between N (ρE

GW) and C(ρE
GW).

B. Steering of Werner-like states in the three-measurement
scenario

Steering in a 3MS on Alice’s side can be quantified by
the steerable weight S3 of Ref. [62], as defined as an SDP
in Appendix B. We find that this steerable weight S3 for the
Werner states is a linear function of the mixing parameter p,
specifically,

S3(ρW) = max

(
0,

√
3p − 1√
3 − 1

)
, (17)

which means that the state ρW(p) is steerable in the 3MS if
p > 1/

√
3 [see Fig. 4(d) and Table I]. By contrast, the steer-

able weight S3 for the GWSs is a nonlinear function of the
mixing parameter p for q �= 1

2 . This is shown for q = 0.9 in
Fig. 5(d). It can be seen that these GWSs are steerable for p >
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TABLE I. Hierarchy of classes of correlations for the Werner states ρW(p) depending on the mixing parameter p. The four regimes of
vanishing or nonvanishing different classes of quantum correlations correspond to the regimes shown in Figs. 2 and 4.

Regime B S2 ≡ Si j
2 S3 N p Expt.

1 B = 0 S2 = 0 S3 = 0 N = 0 p ∈ [0, 1
3 ] direct

2 B = 0 S2 = 0 S3 = 0 N > 0 p ∈ ( 1
3 , 1√

3
] direct

3 B = 0 S2 = 0 S3 > 0 N > 0 p ∈ ( 1√
3
, 1√

2
] direct

4 B = 0 S2 > 0 S3 > 0 N > 0 p ∈ ∅ impossible

5 B > 0 S2 > 0 S3 > 0 N > 0 p ∈ ( 1√
2
, 1] direct

pS3 = 0.7390 (see also Table II). This means that ρGW(p, 0.9)
is steerable for a much shorter range of the mixing parameter p
than that for ρW(p) ≡ ρGW(p, 1

2 ). Figures 4(d) and 5(d) show
the weight S3 for our experimental states compared to those
for the theoretical states. These results show good agreement
of the theory with our experimental results.

C. Steering of Werner-like states in two-measurement scenarios

To quantify steering of the Werner states and GWSs in
2MSs on the Alice side, we apply the steerable weights Si j

2
of Ref. [62] defined in Appendix C. We find that the weights
Si j

2 for the Werner states are equal to each other, S2(ρW) ≡
SXY

2 (ρW) = SXZ
2 (ρW) = SY Z

2 (ρW), being a linear function of
the mixing parameter p, i.e.,

S2(ρW) = max

(
0,

√
2p − 1√
2 − 1

)
. (18)

This implies the steerability of the states in the 2MS if
p > 1/

√
2 [see Fig. 4(c) and Table I]. However, the steer-

able weights for the GWSs become much more complicated.
We find that SXY

2 (ρGW) � SXZ
2 (ρGW) = SY Z

2 (ρGW) ≡ S2(ρGW)
and there exist two threshold values p′

S2
and p′

B, as listed in
Table II. Specifically, (i) SXZ

2 (ρGW) = SY Z
2 (ρGW) > 0 if p >

p′
S2

= 0.8370 . . . and (ii) SXY
2 (ρGW) > 0 if p > p′

B = 5/
√

32,
which is the same threshold parameter as that for the Bell
nonlocality measure B > 0, as discussed above. Moreover, the
dependence of Si j

2 (ρGW) on the mixing parameter p becomes
nonlinear for q �= 1

2 . Different values of the threshold param-
eters for p′

B and p′
S2

imply the occurrence of region 4 for the

GWSs, which is shown in Figs. 3, 6(a), and 7(c) and explained
in detail in Sec. VI A.

D. Nonlocality of Werner-like states

To estimate the degree of quantum nonlocality or, equiva-
lently, to quantify the violation of the Bell-CHSH inequality
for two-qubit states [9], we use the Horodecki measure
[70,71], which is as defined in Sec. III C. The Bell nonlocality
measure for the Werner states reads

B(ρW) =
√

max(0, 2p2 − 1), (19)

which instantly implies a standard result that the Werner
states are nonlocal if p > 1/

√
2 (see also Table I). However,

if p ∈ ( 1
3 , 1/

√
2), the Werner states are entangled without

BIV (admitting an LHV model), as already demonstrated by
Werner in [11].

We find that the Bell nonlocality measure for the GWSs is
given by

B(ρGW) = max{0,
√

p2[1 + 4q(1 − q)] − 1}. (20)

Note that for pure states (p = 1), Eq. (20) reduces to the stan-
dard result B(|φq〉) = N (|φq〉) = 2

√
q(1 − q). It can be seen

that B(ρGW) is zero for the values of the mixing parameter in
the range p ∈ [0, pB(q)] with the threshold value given by

pB(q) = 1/
√

1 + 4q(1 − q), (21)

which is plotted in Fig. 6. For the diagonal GWSs (with
q = 1

2 ), we can reproduce the well-known threshold value
pB( 1

2 ) = 1/
√

2 for the Werner states. In another special case
for q = 0.9, which was set in our experiments, we have the

TABLE II. Hierarchy of classes of correlations exhibited by the Bell-nondiagonal GWSs ρGW(p, q) for different values of the mixing
parameter p and a fixed value of the superposition parameter at q = 0.9 or, equivalently, q = 0.1. This table lists the five regimes shown in
Figs. 3, 5, and 6(a). The threshold values read p′

N ≡ pN (q) = 5
11 = 0.45(45) and p′

B ≡ pB(q) = 5/
√

32 = 0.8574 . . ., as given by Eqs. (16)
and (21) for q = 0.9 (or 0.1), respectively, while p′

S3
≡ pS3 (q) = 0.7390 . . . and p′

S2
≡ pS2 (q) = 0.8370 . . . were obtained numerically. The

term hybrid experiment refers to averaging of two directly generated experimental states according to Eq. (23). Here 2MS and 3MS stand for
two- and three-measurement scenarios, respectively.

Regime States B SXY
2 S2 ≡ SX Z

2 = SY Z
2 S3 N p Expt.

1 separable B = 0 SXY
2 = 0 S2 = 0 S3 = 0 N = 0 p ∈ [0, p′

N ] direct

2 3MS unsteerable but entangled B = 0 SXY
2 = 0 S2 = 0 S3 = 0 N > 0 p ∈ (p′

N , p′
S3

] direct

3 steerable in 3MS but not in 2MS B = 0 SXY
2 = 0 S2 = 0 S3 > 0 N > 0 p ∈ (p′

S3
, p′

S2
] direct

4 Bell local but 2MS steerable B = 0 SXY
2 = 0 S2 > 0 S3 > 0 N > 0 p ∈ (p′

S2
, p′

B] hybrid

5 Bell nonlocal B > 0 SXY
2 > 0 S2 > 0 S3 > 0 N > 0 p ∈ (p′

B, 1] direct
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FIG. 4. Quantum correlations for the theoretical and experimen-
tal Werner states as a function of the estimated mixing parameter
pest: (a) negativity N , (b) Bell nonlocality measure B, and steerable
weights (c) S2 and (d) S3.

threshold value p′
B ≡ pB(q = 0.9) = pB(q = 0.1) = 5/

√
32.

Thus, the GWSs ρGW(p, 0.9) for p ∈ (p′
N , p′

B) = ( 5
11 , 5/

√
32)

are entangled without Bell nonlocality, which occurs for a
wider range of the mixing parameter p compared to that
for the Werner states, i.e., p′

B − p′
N ≈ 0.4029 > 1/

√
2 − 1

3 ≈
0.3738, as it is explained in detail in Sec. VI B.

In Fig. 4(b) we plot B(ρW) in comparison to the numer-
ically calculated B(ρE

W) for the experimental Werner states
ρE

W(p) for various values of the mixing parameter p and fixed
q = 0.9. Analogous results for the Bell nonlocality measure
B(ρGW) for the GWSs generated experimentally, ρE

GW(p; q =
0.9), are shown in Fig. 5(b) in comparison to those for the
ideal GWSs, ρGW(p; q = 0.9). Note that B(ρGW) > 0 if p >

p′
B (see also Table II), assuming q = 0.9 or 0.1, which is

clearly larger than the corresponding threshold value 1/
√

2
for the Werner states. Both Figs. 4(b) and 5(b) show relatively
good agreement of our experimental results compared to the
corresponding theoretical predictions. More details about the
accuracy of our experimental results were given in Sec. IV.

VI. COUNTERINTUITIVE RESULTS

Here we present the, arguably, most interesting theoretical
results of our paper for the states generated experimentally
(either directly or in a hybrid way).

A. Steerability S2 without Bell nonlocality

Here we show that Bell-nondiagonal GWSs are steerable
in 2MSs on Alice’s side but still admit an LHV model. So the
existence of such quantum correlations cannot be revealed by
the violation of the Bell-CHSH inequality. The GWSs exhibit-
ing the S2 steerability without Bell nonlocality correspond to
regime 4 in Table II and are shown in Figs. 3, 6(a), and 7(c).

FIG. 5. Same as in Fig. 4 but for the GWSs for the estimated
superposition coefficient qest ≈ q = 0.9 (see the text for details).

Our analytical and numerical results clearly demonstrate
that regime 4 cannot be observed for the Werner states,
for which pB( 1

2 ) = pS2 ( 1
2 ) holds, as can be seen in Fig. 2.

However, this degeneracy is broken for the GWSs with q �=
0, 1

2 , 1. We find this result interesting, although the amount of
the required white noise destroying the correlations is small
[i.e., maxq �B,S2 (q) = 0.023] compared to all the other cases
shown in Fig. 7, except Fig. 7(e).

Moreover, regime 4 can be observed for the mixing
parameter p limited to a very narrow range [p′

S2
, p′

B] ≈
[0.837, 0.857] assuming q = 0.9 (or, equivalently, 0.1), as
shown in Figs. 5(b) and 5(c). We have experimentally gen-
erated the GWSs for p = 0.8 and 0.9, but unfortunately they
are outside the desired range [p′

S2
, p′

B].
To solve this problem, we recall that mixtures of any two

GWSs, say, ρGW(p1, q) and ρGW(p2, q) for a fixed value of q,
are also GWSs. Specifically,

ρE
GW(p, q) = p2 − p

p2 − p1
ρGW(p1, q) + p − p1

p2 − p1
ρGW(p2, q).

(22)
Thus, we can use this property to produce (or simulate) a
GWS, which was not measured directly in our experiment,
e.g.,

ρGW(0.85, q) = 1
2

[
ρE

GW(0.8, q) + ρE
GW(0.9, q)

]
, (23)

simply by balanced postmeasurement numerical mixing of
the two experimental GWSs ρE

GW(p, q) for p = 0.8 and 0.9
assuming q = 0.9. We refer to this method as a hybrid ex-
perimental generation, as written in Table II for regime 4.
By contrast to this regime, we have directly generated ex-
perimental states in all other regimes listed in Tables I and
II. Moreover, all the states plotted in our figures correspond
to those directly generated experimentally without using any
postmeasurement numerical mixing.
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FIG. 6. Threshold mixing parameters pi(q) versus the superposi-
tion parameter q for the GWSs. (a) The threshold curves separate the
five regimes in the hierarchy of the classes of quantum correlations,
which are listed in Table II. (b) Transitions between various curves,
requiring the largest amount of white noise, are indicated by arrows.
It can be seen that the only arrow e for the Werner states (i.e., the
GWSs at q = 1

2 ) is marked for the transition between the curves
pS2 (q) and pS3 (q). All the other arrows are plotted at q �= 1

2 . This
explains the meaning of enhanced robustness of the Bell-nondiagonal
GWSs against the white noise compared to that of the Werner states.
The locations at qopt and the lengths of the labeled arrows are listed
in Table III. The unlabeled arrows are located at q′

opt = 1 − qopt.

Our prediction of the existence of states in regime 4
is a surprising result and our experiment just confirms it.
This prediction seems to be especially counterintuitive in the
context of the Girdhar-Cavalcanti article in [89] (see also
Refs. [90,91]), which seemingly implies the impossibility
of generating states in this regime. However, the Girdhar-
Cavalcanti theorem is valid in a 2-2 measurement scenario
only, i.e., for “a scenario employing only correlations be-
tween two arbitrary dichotomic measurements on each party”
[89]. Our steering measures S2 and S3 refer to 2-3 and 3-3
measurement scenarios, respectively. Indeed, we always as-
sume a full tomography on Bob’s side corresponding to the
measurement of the three Stokes parameters 〈σx〉, 〈σy〉, and

FIG. 7. Differences �i j (q) = pi(q) − pj (q) of the threshold
mixing parameters versus the superposition parameter q for the
GWSs corresponding to the transitions shown by the arrows in Fig. 6.
The red-colored regions show explicitly the improved robustness
against the white noise of the Bell-nondiagonal GWSs compared
to the diagonal ones in the Bell basis (i.e., the standard Werner
states), except the case shown in (e). Combined red and cyan re-
gions correspond to the regimes listed in Table II. Panels show:
(a) entangled states without nonlocality, corresponding to regimes
2–4; (b) 3MS-steerable states without nonlocality, regimes 3 and
4; (c) 2MS-steerable states without nonlocality, regime 4; (d) 2MS-
unsteerable entangled states, regimes 2 and 3; (e) steerable states in
3MS but not in 2MS, regime 3; and (f) 3MS-unsteerable entangled
states, regime 2.

〈σz〉, while the projective measurements on Alice’s side can
be limited to 2MS or 3MS. It is seen that our and Girdhar
and Cavalcanti’s steering results refer to different measure-
ment scenarios. Thus, the observation of regime 4 in our
steering scenarios does not imply the violation of the Girdhar-
Cavalcanti theorem.

B. Increased robustness against white noise of Bell-nondiagonal
generalized Werner states

Even a quick analysis of Figs. 6(b) and 7 and Table III
shows one of the main theoretical results of this paper,
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TABLE III. Transitions between the threshold values of different correlations of the GWSs for the optimal superposition parameter qopt ,
which maximizes the white-noise robustness �i f (qopt ) = pi(qopt ) − pf (qopt ) for i �= f ∈ {N, S2, S3, N}. These transitions correspond to the
arrows shown in Fig. 6(b), and the length of a given arrow is given by �i f (qopt ). The parameter pi (pf ) is the threshold value of the mixing
parameter p for the initial (final) class of correlations or, equivalently, the position of the beginning (end) of the corresponding arrow. The last
column shows the relative robustness with respect to the standard Werner states (i.e., the GWS for q = 1

2 ). Note that, for every qopt, there is a
second optimal value of the superposition parameter, q′

opt = 1 − qopt, exhibiting the same quantum correlation properties.

Transition qopt pi(qopt ) pf (qopt ) �i f (qopt ) �i f ( 1
2 ) �i f (qopt ) − �i f ( 1

2 )

(a) pB → pN 0.1170 pB = 0.8412 pN = 0.4375 0.4037 0.3738 0.0299
(b) pB → pS3 0.2692 pB = 0.7481 pS3 = 0.6171 0.1310 0.1298 0.0012
(c) pB → pS2 0.0625 pB = 0.9001 pS2 = 0.8779 0.0222 0 0.0222
(d) pS2 → pN 0.1508 pS2 = 0.7971 pN = 0.4113 0.3858 0.3738 0.0120
(e) pS2 → pS3 0.5000 pS2 = 0.7071 pS3 = 0.5774 0.1298 0.1298 0
(f) pS3 → pN 0.0630 pS3 = 0.7959 pN = 0.5071 0.2888 0.2440 0.0448

i.e., increased robustness against the white noise of Bell-
nondiagonal GWSs compared to the standard (Bell-diagonal)
Werner states. Below we give a more intuitive and detailed
explanation of this result.

We recall that Bell diagonal (nondiagonal) GWSs are the
maximally (partially) entangled states affected by white noise.
Let us analyze the amount of white noise (i.e., 1 − p) which is
necessary to make the transition of a GWS from one threshold
value, say, pi(q), to another (final) value, p f (q), for a given
value of the superposition parameter q. Thus, the required
white noise can be quantified by

�i f (q) ≡ pi(q) − p f (q) (24)

for i �= f ∈ {N, S3, S2, B}, which is plotted in Fig. 7 and nu-
merically given in Table III.

For example, let us consider the maximally entangled
Werner state admitting an LHV model, i.e., ρW(pB). Our
question is about the minimum amount of white noise which
should be added to this state to make it separable, i.e., ρW(pN ).
The answer is �BN (q = 1

2 ) = 1/
√

2 − 1
3 ≈ 0.3738. We find

that, in the case of the GWSs, the minimum amount of
white noise needed to convert the maximally entangled GWS
ρGW[pB(q), q], admitting an LHV model, to the closest sep-
arable state ρGW[pN (q), q] can be larger than that for the
Werner states, �BN (q) > �BN ( 1

2 ), for some values of the su-
perposition parameter q corresponding to the red regions in
Fig. 7(a). Assuming that q = 0.9 (as set in our experiments),
we obtain �BN (0.9) = 0.4029 > 0.3738. Actually, the largest
value maxq �BN (q) = �BN (q′) = 0.4037 can be achieved for
q′ = 0.8829 and 1 − q′, which can be calculated by solving
the sixth-order equation (1 + 4x2)3 = x2(1 + 4x)4 with x =√

q′(1 − q′).
The same conclusion about higher robustness of the Bell-

nondiagonal GWSs against white noise compared to that of
the Werner states can also be drawn for other transitions,
indicated by the arrows in Figs. 6(b) and 7 and also listed in
Table III. The only exception is observed for the transition
corresponding to �S2,S3 (q), which reaches the largest value
for the Werner states, as shown in Fig. 7(e).

More white noise should be added to a Bell state to reach
any threshold value p j compared to that for any partially en-
tangled state, because 1 − p j ( 1

2 ) > 1 − p j (q) for q �= 1
2 and

j ∈ {N, S3, S2, B}, i.e., the amount of white noise destroying

completely any quantum properties of the states, including
entanglement, steering, and nonlocality. So, in that sense, the
Werner states are more robust against white noise than the
nondiagonal GWSs. However, by choosing proper reference
states or proper transitions, one can draw the opposite con-
clusion, as we have demonstrated in this section and clearly
visualized in Figs. 6(b) and 7.

C. Increased robustness of steering for a larger
number of measurements

Our paper is focused on analyzing steering in only the two-
and three-measurement scenarios. Nevertheless, in Appendix
D we also discuss steering in multimeasurement scenarios
including the case of steering in the limit of an infinite number
of types of available measurements.

Specifically, we analyze lower and upper bounds on steer-
ing for a much larger number n of measurements (even n =
136). We demonstrate that entangled GWSs, which are un-
steerable for a very large (or in principle infinite) number
of measurements, can be more robust against white noise if
they are nondiagonal in the Bell-state basis compared to the
diagonal ones (i.e., the Werner states).

First, we recall that, while the analyzed entanglement mea-
sures reveal the property of a given state independent of its
measurements, the measures for steerability and Bell non-
locality additionally depend on the available measurements.
Thus, one can raise the following questions. (i) Is a larger
spread (corresponding to higher robustness) between different
classes of correlations in the GWSs an artifact stemming from
the fact that the considered steering and Bell-nonlocality mea-
sures perform better on less entangled states? This question
can also be rephrased: (ii) Can one expect to find the same
robustness behavior for some tight bounds for Bell nonlocal
states and steerable states (taking into account any measure-
ment scenario)?

We answer these questions by calculating tight upper (pup
S )

and lower (plow
S ) bounds on steering for the GWSs for a large

number of measurements. These numerical bounds strongly
suggest that the hierarchy also holds for an arbitrary number
of measurements. Indeed, similar analysis can be performed
for Bell nonlocality of the GWSs, as discussed in [68], to show
that the Horodecki measure fully describes the nonlocality in
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FIG. 8. (a) Same as in Fig. 6(a) but with additional regions
(regimes) 6–8 of steerability in the limit of a large number of
measurements. Also shown are the differences (b) pup

S − pN and
(c) plow

S − pN , where pN is given by Eq. (16): (b) supremum of
unsteerable entangled states, regimes 7 and 8, and (c) unsteerable en-
tangled states, regime 8. The curve pup

S is the border between regimes
6 and 7, which corresponds to a sufficient condition for steerability
of Ref. [7], while the curve plow

S is the border between regimes 7
and 8, which corresponds to a sufficient condition of unsteerability
based on the algorithm and numerical data of Refs. [68,69] assuming
136 projective measurements. Panels (b) and (c) show, analogously
to those in Fig. 7, that the optimal robustness of steering assuming
a large number of measurements compared to the entanglement of
the GWSs is observed for the Bell-nondiagonal GWSs with the
superposition parameter q �= 1

2 (as denoted by solid blue lines).

two-qubit states with no restriction on the number of measure-
ments.

Two bounds on multimeasurement steering are shown in
Fig. 8. Specifically, the upper bound pup

S , which corresponds
to the border curve between regimes 6 and 7 in Fig. 8(a), is
a sufficient condition for the steerability of the GWSs. This
bound was obtained numerically in Refs. [68,69] from a crite-
rion of Ref. [7] using an SDP technique for 13 measurements
on the Bloch sphere. Moreover, the lower bound plow

S , which
is shown by the curve between regimes 7 and 8, corresponds
to a sufficient condition of the unsteerability of the GWSs
based on the algorithm of Refs. [68,69] for constructing LHS
models assuming 136 projective optimal (or almost optimal)
measurements corresponding to the fourth level of their al-
gorithm. The curves for both plow

S and pup
S are plotted using

the numerical data of Ref. [69]. Thus, any GWS above the
pup

S curve in Fig. 8(a) is steerable, while any state below the
plow

S curve is unsteerable. The unsteerability of some of the
states in regime 7 (lying close to the border curve plow

S ) can be
tested by applying the algorithm of Refs. [68,69] for higher
levels, which corresponds to analyzing a larger number of
measurements (n � 136). However, it is unclear whether any

GWSs lying inside regime 7 can be steerable in the limit of
n → ∞.

Figure 8(a) shows that by including the criteria for steering
in multimeasurement scenarios, in addition to S2 and S3, one
can study a CC hierarchy which is more refined than that in
Fig. 6(a). Note that regime 2 in Fig. 6(a) corresponds to the
sum of regimes 6–8 shown in Fig. 8(a).

To answer the questions raised above, we plot the dif-
ferences pup

S − pN and plow
S − pN in Figs. 8(b) and 8(c),

respectively. Both figures are quite similar and show that
the optimal robustness against noise is observed for the Bell
nondiagonal GWSs with the superposition parameter q �= 1

2
(denoted by black solid lines). Thus, even without knowing
the exact threshold values between the steerability and un-
steerability of the GWSs in the limit of an infinite number
of measurements, one can conclude that the predicted optimal
robustness is not an artifact, at least for the cases shown in
Figs. 8(b) and 8(c). This is the answer to question (i). Con-
cerning question (ii), the robustness behavior is different for
different pi = pup

S , plow
S , pS2 , pS3 . Indeed, the optimal values

of the superposition parameter q maximizing pi − pN depend
on i. However, this property does not weaken our conclusion
about higher robustness against the white noise of some Bell
nondiagonal GWSs compared to that of the Werner states.

VII. CONCLUSION

The main purpose of this work was to analyze a CC hierar-
chy of theoretical and experimental Werner states and their
generalization, i.e., the Bell-nondiagonal GWSs. We recall
that the considered GWSs are the mixtures of partially en-
tangled two-qubit pure states (not only of a Bell state) and the
maximally mixed state (white noise). We have shown that the
Bell-nondiagonal GWSs exhibit a more refined CC hierarchy
compared to that of the Bell-diagonal GWSs, i.e., the Werner
states.

By tuning the mixing and superposition parameters of the
GWSs, we have experimentally generated and tomographi-
cally reconstructed such GWSs, which reveal the hierarchy
of the following classes of correlations: 1, separability; 2,
entanglement without steerability in the 3MS; 3, steerability
in the 3MS but not steerable in the 2MS; 4, steerability in the
2MS without violating the Bell-CHSH inequality (so admit-
ting LHV models); and 5, Bell nonlocality, which cannot be
explained within LHV models. Note that the case of steering
is a little more subtle since the measures assume specific mea-
surements. Thus, we have also analyzed a sufficient condition
for unsteerability assuming a very large number (i.e., 136) of
measurements.

In particular, we found five different parameter regimes of
the GWSs, including the states which are steerable in a 2MS
without violating Bell inequalities and thus corresponding to
regime 4. This is a counterintuitive result, especially when
compared with the Girdhar-Cavalcanti theorem [89], which
states that “[all] two-qubit states that are steerable via CHSH-
type correlations are Bell nonlocal” [89]. In Sec. VI A we
explained why the observation of regime 4 in our steering sce-
narios does not imply the violation of the Girdhar-Cavalcanti
theorem. We also demonstrated that regime 4 cannot be ob-
served for the usual Werner states.
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Moreover, we have shown that the robustness against the
white noise for, e.g., steerable states admitting LHV models
can be stronger for some Bell-nondiagonal GWSs than that
for the diagonal GWSs (i.e., the Werner states). This can be
achieved by properly choosing the value of the superposition
coefficient q, as shown in Figs. 6(b) and 7. Thus, we addressed
the problem of optimal robustness of states against white
noise. Specifically, we analyzed threshold values (curves) sep-
arating the five regimes of quantum correlations. Then we
could find optimal transitions between various curves corre-
sponding to the largest amount of white noise or, in other
words, to the largest spread in the hierarchy. Thus, we dis-
covered the optimal Bell-nondiagonal GWSs which are more
robust against white noise than the Werner states.

Furthermore, we considered lower and upper bounds on
steering in multimeasurement scenarios. Again we demon-
strated better robustness against the white noise of some
unsteerable entangled Bell-nondiagonal GWSs compared to
the diagonal ones. Thus, such enhanced robustness is not
limited to only the two- and three-measurement steering sce-
narios; it can also be observed for steering in the limit of a
large number of measurements.

Possible applications of the discovered optimal robustness
against white noise can be found for quantum cryptography.
For instance, imagine that legitimate users of some secure
quantum communications system want to use steering (or
entanglement) such that it should not be detected by the vio-
lations of Bell inequalities by others. Thus, assuming that the
communication is via a depolarizing channel, it is convenient
to use partially steerable (or partially entangled) states which
are Bell local and are the most robust against white noise.
Such optimal states are indicated by arrows in Fig. 6(b).

Our study of the hierarchy of the classes of spatial quantum
correlations can be generalized to analyze a hierarchy of their
temporal or spatiotemporal analogs. Indeed, the concepts of
spatial and temporal quantum correlations are closely related.
Formally, it is enough to replace two-qubit measurements for
testing spatial correlations by measurements on a single qubit,
followed by transmission through a channel, to reveal tem-
poral correlations, as explained in the example of spatial and
temporal steering in Ref. [65]. Thus, many of the results dis-
cussed here for spatial correlations can also be generalized to
temporal correlations. We explicitly indicated such relations
in various sections of this paper. Analyses of CC hierarchies
of temporal correlations can lead to a deeper understanding of,
e.g., quantum causality [92] or enable designing new types of
quantum cryptosystems and finding new methods of breaking
the standard ones.

We believe that analyzing such CC hierarchies is in-
teresting concerning both fundamental aspects of quantum
mechanics and possible cryptographic applications for, e.g.,
secure communication, secure information retrieval, and zero-
knowledge proofs of (quantum) identity.
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APPENDIX A: UNIVERSAL DETECTION OF QUANTUM
CORRELATIONS WITHOUT FULL QUANTUM STATE

TOMOGRAPHY

In this work we determined quantum correlations from
experimentally generated and reconstructed states using a full
QST. Here we address the question of universal detection of
quantum correlations without full QST.

Universal detection of an entanglement measure without
QST. The first experimental universal detection of standard
two-qubit entanglement without full QST was proposed in
Ref. [60] (see also [93]) based on the universal witness of
Ref. [61]. This method was later improved in Ref. [94] to
show theoretically a direct experimental method for determin-
ing the negativity of a general two-qubit state based on 11
measurements performed on multiple copies of the state us-
ing Hong-Ou-Mandel interference. None of these methods of
universal entanglement detection without a full state tomog-
raphy has been demonstrated experimentally yet because of
the complexity of such setups and low probability of required
multiple coincidences. Note that experimental detection, with-
out a complete tomography of the fully entangled fraction
of Bennett et al. [95], was demonstrated by us in Ref. [75].
Unfortunately, the fully entangled fraction is not a universal
entanglement witness in general, so it usually only gives a
sufficient (but not necessary) condition of entanglement.

Universal detection of a steering measure without QST.
Such methods have not been implemented or even proposed
for the steering robustness or the steerable weight. The cal-
culations of these popular steering measures for general
states are based on numerical optimization (using semidefinite
programs). Thus, in general, these measures could only be
determined experimentally for tomographically reconstructed
states or processes, as it has been done in dozens of exper-
imental works (see reviews [7,8] and references therein). Of
course, there are many experiments demonstrating quantum
steering via nonuniversal witnesses (to reveal a hierarchy
of criteria), i.e., by observing the violations of steering in-
equalities [7,8]. We note that measures of steering (e.g., that
proposed for a 2MS and a 3MS in Ref. [91]) which are based
on the maximal violation of well-established steering inequal-
ities can be measured without a complete QST. For example,
the optimal violation of the Cavalcanti-Jones-Wiseman-Reid
inequality [96] can in principle be experimentally demon-
strated with polarized photons without scanning all the angles
of polarizers. This can be done, as we anticipate, in systems
similar to those demonstrating the Horodecki measure of Bell
nonlocality [75].

Universal detection of a nonlocality measure without QST.
The Horodecki measure [70,71]) of Bell-CHSH nonlocality
of two-qubit states can indeed be measured without a full
QST, but it was first determined experimentally only recently
in our experiment [75] without scanning the angles of the
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polarizers to obtain an optimal value of the angles maximizing
the violation of the Bell-CHSH inequality for an unknown
two-qubit state. To demonstrate the power of this method,
we have implemented an entanglement-swapping device with
which we universally detected experimentally a nonlocality
measure (without scanning the polarization angles or without
a priori information about a given generated state).

APPENDIX B: STEERABLE WEIGHT IN A
THREE-MEASUREMENT SCENARIO

Here we consider two-qubit EPR steering in a 3MS,
when Alice performs the measurements of the three Pauli
operators X = |+〉〈+| − |−〉〈−|, Y = |R〉〈R| − |L〉〈L|, Z =
|0〉〈0| − |1〉〈1|, of qubits encoded in the polarization states
of photons, as in our experiment. Thus, these measurements
are just the projections onto the Pauli-operator eigenstates
|±〉 = (|0〉 ± |1〉)/

√
2, |R〉 = (|0〉 + i|1〉)/

√
2, |L〉 = (|0〉 −

i|1〉)/
√

2, |0〉, and |1〉, which correspond to the diagonal, an-
tidiagonal, right-circular, left-circular, horizontal, and vertical
polarization states, respectively. These measurements of Alice
generate unnormalized states σa|x of Bob for x = X,Y, Z as-
suming measured eigenvalues a = ±1. By defining f (|m〉) =
TrA[(|m〉〈m| ⊗ I )ρ], the six possible unnormalized Bob states
σa|x read

σ+1|X = f (|+〉), σ−1|X = f (|−〉),

σ+1|Y = f (|R〉), σ−1|Y = f (|L〉), (B1)

σ+1|Z = f (|0〉), σ−1|Z = f (|1〉).

Alice, after performing her measurements, holds a classical
random variable λ ≡ [x, y, z] = [〈x|X |x〉, 〈y|Y |y〉, 〈z|Z|z〉],
with hereafter x, y, z = ±1. Thus, the variable λ can take
the values λ1 = [−1,−1,−1], λ2 = [−1,−1, 1], . . . , λ8 =
[1, 1, 1]. The unsteerable assemblage σ us

a|x, can now be ex-
pressed as σ us

±1|X = ∑
y,z σ±1,y,z, σ us

±1|Y = ∑
x,z σx,±1,z, and

σ us
±1|Z = ∑

x,y σx,y,±1, where σλ ≡ σxyz are the states held by
Bob. The steerable weight S3 in our 3MS can be given by the
solution of the SDP

S3 = 1 − max Tr
∑
x,y

σxyz (B2)

such that σxyz � 0 and

σ±1|X −
∑
y,z

σ±1,y,z � 0,

σ±1|Y −
∑
x,z

σx,±1,z � 0, (B3)

σ±1|Z −
∑
x,y

σx,y,±1 � 0.

APPENDIX C: STEERABLE WEIGHT IN
TWO-MEASUREMENT SCENARIOS

The above approach can be simplified when analyzing EPR
steering in 2MSs, i.e., when Alice is performing the measure-
ments of only two Pauli operators (XY , XZ , and Y Z). Thus,
one can consider the following three measures.

(i) For the steerable weight SXY
2 for the measurements of X

and Y , the corresponding unsteerable assemblage σ us
a|x can be

expressed as σ us
±1|X = ∑

y σ±1,y and σ us
±1|Y = ∑

x σx,±1, where
σλ ≡ σxy are the states held by Bob. Then the corresponding
steerable weight SXY

2 can be calculated as the solution of the
SDP

SXY
2 = 1 − max Tr

∑
x,y

σxy, (C1)

under the constraints σxy � 0 and

σ±1|X −
∑

y

σ±1,y � 0, σ±1|Y −
∑

x

σx,±1 � 0. (C2)

(ii) The steerable weight SXZ
2 , based on Alice’s measure-

ments of the Pauli operators X and Z , is given by

SXZ
2 = 1 − max Tr

∑
x,z

σxz (C3)

such that σxz � 0 and

σ±1|X −
∑

z

σ±1,z � 0, σ±1|Z −
∑

x

σx,±1 � 0. (C4)

(iii) The steerable weight SY Z
2 corresponding to measuring

the Pauli operators Y and Z can be calculated as

SY Z
2 = 1 − max Tr

∑
y,z

σy,z, (C5)

under the conditions σyz � 0 and

σ±1|Y −
∑

z

σ±1,z � 0, σ±1|Z −
∑

y

σy,±1 � 0. (C6)

The optimized 2MS steerable weight (S2) can be given
as the maximum value of the steerable weights for specific
measurement choices, i.e.,

S2 = max
(
SXY

2 , SXZ
2 , SY Z

2

)
. (C7)

This definition of S2 can directly be applied to symmetric
states, including the Werner states and GWSs. However, for
nonsymmetric states (including some of our experimental
density matrices), the optimal projectors can be found nu-
merically by maximizing the steerable weight over unitary
transformations for any two Pauli operators. In our experi-
ments and theoretical analysis, we apply only single Pauli
operators (rather than their linear combinations) and then
optimize them over their unitary transformations. Thus, we
obtain the steerable weights, which are optimized over von
Neumann’s projection-valued measures, instead of the most
general case of POVMs. Note that the required optimization
over POVMs is more demanding both experimentally and
theoretically and it is not applied in this work. We find that,
on the scale of Figs. 4(c) and 5(c), no differences can be seen
for S2 if it is calculated by the optimized projectors and by
applying directly Eq. (C7) for any of the measured states.

Note that, in this approach to determine S2, we are limiting
the number of types of measurements on Alice’s side, but a
full QST is always assumed on Bob’s side corresponding to
measuring all the Pauli operators. Thus, the steerable weight
S3 corresponds to a 3-3 measurement scenario, i.e., three types
of measurements on Alice’s and Bob sides (assuming that the
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efficiency of detectors is known), while the steerable weight
Si j

2 (for the specific choice of two Pauli operators) corresponds
to a 2-3 scenario, i.e., based on two types of measurements on
Alice’s side and three on Bob’s side.

All these steerable weights in the two- and three-
measurement scenarios can be efficiently calculated numer-
ically as solutions of the described semidefinite programs
using standard numerical packages for convex optimization.
Our numerical programs are based on the software for dis-
ciplined convex programming of Ref. [97]. The steerable
weights in our work were calculated using experimental den-
sity matrices, which were reconstructed using a full quantum
tomography.

APPENDIX D: STEERABILITY IN
MULTIMEASUREMENT SCENARIOS

A related question arises about the steerability using a
larger number n of types of measurements on Alice’s side,
especially in the limit of an infinite number of measurements.
The algorithms of Refs. [68,69,98] for constructing LHS
models can be applied to arbitrary entangled states and thus
can be used for finding numerically a sufficient condition of
unsteerability (i.e., a lower bound on steerability) based on a
given number of projective measurements. Note that for the
GWSs, such a lower bound on steerability was determined
up to n = 136 measurements in Ref. [69]. For convenience,
we consider here a steering lower bound plow

S (n), which can
be numerically determined by the protocols of Refs. [68,69]
for a given number n of measurements. We also consider a
steering upper bound pup

S (n), being a sufficient condition for
steerability, based on an SDP technique of Ref. [7] (see also
[69]) assuming specifically 13 measurements on the Bloch
sphere.

The algorithm of Refs. [68,69] has already been applied
to the steerability of the Bell-diagonal states (including the
Werner states) and GWSs (there referred to as partially en-
tangled states with white noise). Sufficient conditions of
unsteerability, corresponding to n = 6, 16, 46, and 136 types
of measurements, were found for four levels of the algorithm
[69]. These results can enable calculating plow

S (n). Note that
each type of measurement is characterized by a Bloch vector
and all such vectors form a polyhedron on the Bloch sphere.

It is quite challenging to numerically calculate the lower
bound plow

S (n) of steerability in multimeasurement scenarios,
even for the next layer of the protocol of Fillettaz et al. [69]
(corresponding to the number of measurements greater than
136) because of the problem which is closely related to the
“curse of dimensionality.” Indeed, the number of determinis-
tic strategies to be checked numerically grows exponentially
with the number of measurements. The results should also be
optimized for the orientation of the polyhedra; otherwise the
results differ significantly, as explicitly shown in Ref. [68].

The ranges of the allowed values of the mixing (p) and su-
perposition (q) parameters in ρGW(p, q), for which the GWSs
are steerable, increase with the number of measurements n.
Thus, finding numerically a solution to these steering prob-
lems could in principle enable us to analyze a more refined
hierarchy of the classes of steerability as a function of the
number of measurements such that a given state is steerable

using a given number of measurements, but unsteerable using
a smaller number of measurements. However, an experimental
demonstration of such a refined hierarchy is quite challenging,
as explained below.

Clearly, a direct experimental demonstration that a given
state is indeed unsteerable based on 136 types of measure-
ments is extremely demanding using linear optics. However,
even theoretical demonstration of such a refined hierarchy of
the classes of multimeasurement steerability for tomograph-
ically reconstructed experimental states is quite challenging.
These problems include the following.

First problem. We recall that our experimental GWSs
ρE

GW(p, q) have a high Bures fidelity F compared to the the-
oretical optimal GWSs ρGW(popt, qopt ) which on average are
equal to 0.97. Nevertheless, ρE

GW(p, q) and ρGW(popt, qopt ) can
still have very different steering properties such that one of
the states is steerable and the other is unsteerable in the same
n-measurement scenario, especially for n > 3.

Note that all the examples of multimeasurement steer-
ability, based on the protocols of Refs. [68,69,98], were
numerically tested only for highly symmetric states (including
the Werner states and GWSs). Unfortunately, our experimen-
tal states ρE

GW have usually a broken symmetry compared to
that of the theoretical GWSs ρGW. So the calculation of the
steerability of ρE

GW in the 2MS and 3MS is sometimes much
more time consuming and less precise. This is even the case
for calculating the steerable weight and steering robustness
using standard packages in the 2MS. For example, the calcu-
lations of these two steering measures for ρGW take at most a
few seconds on a standard PC, while those for the generated
ρE

GW require sometimes dozens of minutes, assuming the same
precision in both cases. These numerical problems grow very
fast with the increasing number n of measurements.

Second problem. Our experimental tuning of the parame-
ters p and q for the GWSs is not fine enough, as explained in
greater detail in Sec. IV. Note that the ranges of parameters
p and q of the GWSs are very small such that a given GWS
is steerable with n + 1 measurements and unsteerable with n
measurements for n > 3. Our experimental tuning of p and q
was good enough to directly generate states in regime 3 corre-
sponding to S3 > 0 and S2 = 0. However, we were not able to
directly generate experimentally GWSs belonging to different
regimes of steerability for a larger number n. Note that even
our experimental GWS in regime 4, corresponding to S2 > 0
and B = 0, was not generated directly. Indeed, we obtained
it in a hybrid way, i.e., by numerically mixing experimental
states belonging to other regimes, as explained in Sec. VI.

Third problem. It is numerically very challenging to check
whether a given ρE

GW is n-measurement steerable and (n − 1)-
measurement unsteerable, which is crucial in experimentally
demonstrating such a refined hierarchy of the steerability
classes for multimeasurement scenarios. Specifically, if we
numerically obtain Sn(ρE

GW) ∼ 10−12, which is the precision
of our numerical calculation of the steering measures, it is
quite biased to decide whether this state ρE

GW is indeed steer-
able or not. With the increasing number n of measurements,
the numerically estimated Sn(ρE

GW) become less and less pre-
cise. So the question arises how to correctly classify the
steerability of a given experimental state in the hierarchy of
classes of steerability in various multimeasurement scenarios.
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Fourth problem. The border between the steerable and
unsteerable theoretical GWSs is not precisely determined in
the limit of an infinite number n of measurements on Alice’s
side. Indeed, the border corresponds to region 7 in Fig. 8(a)
spanned by the curves plow

S and pup
S . Estimating plow

S for our
experimental imperfect GWSs ρE

GW is even more demanding
because ρE

GW usually exhibits a broken symmetry compared to
that of the ideal GWSs ρGW.

Thus, for these numerical and experimental reasons, we
have decided to analyze in detail the steerability of our ex-
perimental states for the two simplest types of measurement
scenarios only. We believe that this is good enough to show
the hierarchy of some classes of correlations (including steer-
ability in 2MS and 3MS) for experimental states.

APPENDIX E: HIERARCHY OF
ENTANGLEMENT CRITERIA

1. Hierarchy of the Shchukin-Vogel entanglement criteria

Here we briefly recall the Shchukin-Vogel entanglement
criteria for the universal detection of distillable entanglement
via the matrices of moments of the annihilation and creation
operators [43]. This approach, in principle, does not require
a full QST, so it is an alternative to the approach applied in
our experiment using QST. We indicate some advantages and
drawbacks of this approach for detecting two-qubit entangle-
ment.

The Shchukin-Vogel criteria are based on the Hermitian
matrices of moments for a given two-mode state ρ, which are
defined as

Morg
N =

⎡
⎢⎣

M11 M12 · · · M1N

M21 M22 · · · M2N

· · · · · · · · · · · ·
MN1 MN2 · · · MNN

⎤
⎥⎦, (E1)

where Mi j = 〈(a†i2 ai1 b†i4 bi3 )(a† j1 a j2 b† j3 bj4 )〉 are the moments
of the annihilation (a and b) and creation (a† and b†) operators
of two modes of arbitrary dimension. Here i and j label
multi-indices, e.g., (i1, i2, i3, i4). These moments can be de-
tected experimentally (at least for not too high powers) using,
e.g., the setup based on homodyne detection as described by
Shchukin and Vogel [99]. A partially transposed matrix of
moments can be obtained from Morg

N as

M�
i j = 〈(a†i2 ai1 a† j1 a j2 )(b†i4 bi3 b† j3 bj4 )〉�

= 〈(a†i2 ai1 a† j1 a j2 )(b†i4 bi3 b† j3 bj4 )†〉
= 〈(a†i2 ai1 a† j1 a j2 )(b† j4 bj3 b†i3 bi4 )〉, (E2)

where the superscript � denotes partial transposition ap-
plied here for the second mode. This relation between
Morg

N and M�
N is a key observation of Ref. [43]. Let

MN,(r1,r2,...,rn ) denote the n × n submatrix of MN having
Mri,r j elements. The Shchukin-Vogel criteria are based on the
following Sylvester’s theorem [44]: MN is positive semidef-
inite if and only if all its principal minors are non-negative,
i.e., det MN,(r1,r2,...,rn ) � 0. Thus, the Shchukin-Vogel criteria
correspond to the positive-partial-transposition-based Peres-
Horodecki criterion, but formulated in terms of the matrix

moments as [43,44]

ρ is PPT ⇔ ∀N,∀{rk} : det M�
N,(r1,r2,...,rn ) � 0,

ρ is NPT ⇔ ∃N, ∃{rk} : det M�
N,(r1,r2,...,rn ) < 0, (E3)

where 1 � r1 < r2 < · · · < rn � N , n = 1, 2, . . . , N , and
PPT (NPT) stands for positive (nonpositive) states under par-
tial transposition. Many popular entanglement criteria can be
derived from the Shchukin-Vogel criteria [43,50], including
the Hillery-Zubairy inequalities, which below are recalled and
applied to the GWSs.

2. Hierarchy of the Hillery-Zubairy entanglement criteria

The Hillery-Zubairy (HZ) entanglement criteria for
nonuniversal detection of two-mode entanglement read [100]

H1(ρ) ≡ 〈n1n2〉 − |〈ab†〉|2 < 0, (E4)

H1(ρ) ≡ 〈n1〉〈n2〉 − |〈ab〉|2 < 0, (E5)

where n1 = a†a and n2 = b†b. Thus, if H1(ρ) < 0 or H2(ρ) <

0 then ρ is entangled. The criteria are simple and useful wit-
nesses of entanglement and have already been experimentally
tested in a number of setups (see, e.g., [101]). These two
criteria can be derived from the Shchukin-Vogel criteria by
calculating

Hn(ρ) = det M�
n (E6)

for

Morg
1 =

[
1 〈ab〉

〈a†b†〉 〈n1n2〉
]
, M�

1 =
[

1 〈ab†〉
〈a†b〉 〈n1n2〉

]
(E7)

and

Morg
2 =

[ 〈n1〉 〈a†b〉
〈ab†〉 〈n2〉

]
, M�

2 =
[〈n1〉 〈a†b†〉
〈ab〉 〈n2〉

]
,

(E8)

respectively. To analyze the HZ criteria on the same footing
as the discussed measures of quantum correlations, one can
redefine Hn to be the HZ witnesses

H̄n = max{0,−Hn}. (E9)

Let us now analyze in detail the hierarchy and effectiveness
of these criteria in detecting the entanglement of the GWSs
compared to the true measures of entanglement and other
correlations. We find the HZ witnesses for the original GWSs,

H̄1(ρGW) = max
{
0,− 1

4 [1 + p(3 − 4q)]
} = 0, (E10)

H̄2(ρGW) = max
{
0, p2qq̄ − 1

4 (1 + p − 2pq)2}, (E11)

where q̄ = 1 − q. It can be seen that H̄1(ρGW) is useless in
detecting the entanglement of the GWSs; however, H̄2(ρGW)
can be nonzero. Thus, it detects entanglement for the GWSs
corresponding to the blue-line-filled area in Fig. 9(a). The
threshold (border) curve, as a function of the superposition
parameter q in ρGW(p, q), corresponds to the smallest allowed
values of the mixing parameter p, for which the entanglement
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FIG. 9. Hierarchy of criteria versus the CC hierarchy for the
GWSs. Specifically, the criterion hierarchy is based on different
nonuniversal witnesses for a given class of quantum correlation,
while the CC hierarchy reveals different types of correlations deter-
mined by their measures or universal witnesses. This is shown here
by the example of nonuniversal entanglement witnesses using the
(a) first and (b) second HZ witnesses. The color regions reveal the
CC hierarchy, as in Fig. 6(a), while the areas filled with parallel lines
show the criterion hierarchy. The latter areas determine the allowed
values of the mixing parameter p and the superposition parameter
q for the locally rotated GWSs, ρφ (p, q), for which entanglement
can be revealed by the corresponding HZ witnesses: (a) H̄1(ρφ ) for
φ = π (area filled with blue lines), φ = 0.8π (red-line area), and
φ = 0.7π (black-line area) and (b) H̄2(ρφ ) for φ = 0 (blue-line-filled
area), φ = 0.2 (red-line area), and φ = 0.3 (black-line-filled area).
For φ = π/2 neither of the HZ witnesses can detect the entanglement
of the GWSs. The dashed curves are obtained from the analytical
formulas in Eqs. (E12), (E15), (E18), and (E19).

of the GWSs can be detected. This threshold is shown by the
blue dashed curve in this figure and is given by

pH2 (q) = 1/[2(q + √
qq̄) − 1] (E12)

for q ∈ [ 1
2 , 1]. Let us now apply the Pauli operator σ1 (the NOT

gate) to the second qubit in the GWS, which results in the state
ρX = (I ⊗ σ1)ρGW(I ⊗ σ1). Note that the local unitary opera-
tion does not change entanglement measures, but of course it
can change entanglement witnesses, which is the case for the
HZ criteria. Indeed, this local transformation results in the HZ
witnesses

H̄1(ρX ) = max
{
0, p2qq̄ − 1

4 p̄
}
, (E13)

H̄2(ρX ) = max
{
0,− 1

4 (1 − p2) − p2qq̄
} = 0, (E14)

where p̄ = 1 − p. It can be seen that the sensitivities of the
HZ witnesses are exchanged for ρX compared to ρGW. The
second criterion cannot detect entanglement, while the first
reveals entanglement of some GWSs corresponding to those
shown in the blue-line-filled area in Fig. 9(b). Analogously
to Eq. (E12), the threshold curve for the first HZ witness for
ρX (p, q) is given by

pH1X (q) = 2/[1 +
√

1 + 16qq̄] (E15)

for q ∈ [0, 1]. Now let us apply an arbitrary rotation along the
y axis of the second qubit in the GWSs. Thus, we transform
ρGW into ρφ = [I ⊗ RY (φ)]ρGW[I ⊗ R†

Y (φ)], where the rota-
tion is described by RY (φ) = [c,−s; s, c], with c = cos(φ/2)

and s = sin(φ/2). The HZ witnesses for the locally rotated
GWSs read

H̄1(ρφ ) = max
{
0,− 1

4 [c2[1 + p(3 − 4q)]

+ s2( p̄ − 4s2 p2qq̄)]
}
, (E16)

H̄2(ρφ ) = max
{
0, c4 p2qq̄ − 1

4 f+(c2 f+ + s2 f−)
}
, (E17)

where f± = 1 ± p(1 − 2q). The threshold curves for the HZ
witnesses applied to ρφ (p, q) are given by

pH1 (q, φ) = (
f1 +

√
f 2
1 + 2 f2

)
f −1
2 , (E18)

pH2 (q, φ) = 2/[
√

f + 2(1 + C1)q − C1 − 1], (E19)

which are physically meaningful only in the regions
of q for a given φ such that pHn (q, φ) ∈ [0, 1] (n =
1, 2). Here f = (1 − C1)2(1 − 2q)2 + 2(4C1 + C2 + 3)qq̄,
with Cn = cos(nφ), f1 = c2(3 − 4q) − s2, and f2 = 8qq̄s4.
As seen in Fig. 9, the lowest value of q for which the entangle-
ment of the GWSs can be detected via the HZ witness H̄1(ρφ )
[H̄2(ρφ )] is 0 ( 1

2 ) for φ = π (φ = 0). For both HZ witnesses,
the largest allowed value of q is equal to 1.

Figure 9 shows a comparison of the two approaches to
analyze a hierarchy of quantum correlations, i.e., the criterion
hierarchy, which is based on the HZ witnesses, and the CC
hierarchy, which is based on the discussed quantum corre-
lation measures. Any good measure of entanglement results
in the same CC hierarchy for the GWSs, while the criterion
hierarchy depends on the applied nonuniversal witnesses and
can reveal only a subset of the entangled GWSs, which corre-
spond to regimes 2–5. This figure explains our motivation of
experimentally demonstrating in detail only the CC hierarchy
instead of the hierarchy based on the HZ witnesses, or using
other either sufficient or necessary conditions of quantum
correlations. Unfortunately, by contrast to such a hierarchy of
criteria, it is experimentally challenging to reveal such a CC
hierarchy for the GWSs without QST.

3. Quantum state tomography via moments of annihilation and
creation operators

Here we give an example showing that some very limited
additional measurements on a given state can supplement a
partial state reconstruction into a full QST.

We recall that a general single-mode density matrix ρ

of a bosonic field can be reconstructed from the following
moments of the annihilation and creation operators via the
formula [102]

〈m1|ρ|m2〉 =
∞∑
j=0

1

j!
√

m1!m2!
〈(a†)m2+ jam1+ j〉. (E20)

Note that this formula can be divergent for some states of the
radiation field including thermal field with the mean photon
number 〈n〉 � 1. However, for finite-dimensional states, the
above sum becomes finite. In particular, a two-mode version
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of Eq. (E20) leads to the moment-based representation

⎡
⎢⎢⎣

f 〈b†〉 − 〈n1b†〉 〈a†〉 − 〈a†n2〉 〈a†b†〉
〈b〉 − 〈n1b〉 〈n2〉 − 〈n1n2〉 〈a†b〉 〈a†n2〉
〈a〉 − 〈an2〉 〈ab†〉 〈n1〉 − 〈n1n2〉 〈n1b†〉

〈ab〉 〈an2〉 〈n1b〉 〈n1n2〉

⎤
⎥⎥⎦

(E21)
of a general two-qubit state ρ, where f = 1 − 〈n1〉 − 〈n2〉 +
〈n1n2〉 and the annihilation operator a = a1 (and analogously

b = a2) is simply a = σ− = [0, 1; 0, 0], i.e., the qubit low-
ering operator. Thus, an arbitrary two-qubit state can be
completely reconstructed by measuring only the moments
〈ni〉, 〈n1n2〉, 〈ai〉, 〈nia2−i〉, 〈a1a2〉, and 〈a1a†

2〉 for i = 1, 2.
Note that experimental implementations of the HZ wit-

nesses require measuring 〈ni〉, 〈n1n2〉, 〈a1a2〉, and 〈a1a†
2〉.

Thus, by measuring additionally only the moments 〈ai〉 and
〈nia2−i〉, one can collect all the information required for a
complete QST, with which one can thus calculate any prop-
erties of an experimentally reconstructed two-qubit state.
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